

Supplementary Materials

Nitric Acid Functionalization of Petroleum Coke to Access Inherent Sulfur

Qing Huang, Annelisa S. Schafranski, Melanie J. Hazlett, Ye Xiao and Josephine M. Hill*

Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; qing.huang1@ucalgary.ca; annelisa.schemberger@ucalgary.ca; melanie.hazlett@ucalgary.ca; ye.xiao@ucalgary.ca; jhill@ucalgary.ca

* Correspondence: jhill@ucalgary.ca; Tel.: +1-(403) 210-9488

From the CO and CO₂ TPD profiles (Figure S1), HNO₃ and HNO₃/H₂SO₄ treatments generated more O-containing groups than treatment with H₂SO₄. The detected CO₂ molecules below 400 °C are mainly from the decomposition of carboxylic groups, while above 400 °C they are attributed to decomposed carboxylic anhydrides and lactonic groups [1]. Carboxylic anhydride groups simultaneously generate both CO and CO₂ with 1:1 ratio [2]. Hydroxyl and carbonyl groups decomposed to CO at temperatures above 600 °C. Further decomposition of carboxylic groups was confirmed by the corresponding peak of CO₂ at the same temperature [2]. The presence of a significant number of O-containing groups explains the high total acidities of P-N-24 and P-N/S-24.

SEM images of the samples are shown in Figure S2. No major differences exist between the samples. Reaction schemes for the acid treatments are given in Figures S3 and S4.

Figure S1. CO and CO₂ temperature-programmed decomposition profiles of petcoke samples before and after acid treatments.

Figure S2. SEM images of (a) Petcoke; (b) P-S-24; (c) P-N-24; (d) P-N/S-24.

Figure S3. Scheme of aromatic sulfonation with sulfuric acid treatment.

Figure S4. Scheme of aromatic nitration with nitric acid treatment.

References

- 1. Gorgulho, H.F.; Mesquita, J.P.; Gonçalves, F.; Pereira, M.F.R.; Figueiredo, J.L. Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption. *Carbon N. Y.* **2008**, *46*, 1544–1555.
- 2. Li, N.; Ma, X.; Zha, Q.; Kim, K.; Chen, Y.; Song, C. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. *Carbon N. Y.* **2011**, *49*, 5002–5013.