Supporting Information

Facile fabrication of glycosylpyridyl-triazole@nickel nanoparticles as recyclable nanocatalyst for acylation of amines in water

Zhiwei Lin,^[a] Jianzhong Jin^{*[b]} Jinguo Wang,^[b] Jianying Tong,^[b] and Chao Shen^{*[b]}

^[a] College of Petroleum Chemical Industry, Changzhou University, Changzhou 213164, China ^[b] College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China

1. Catalyst Characterization	
2. Characterization of the Prouducts	S4
3. Copies of NMR spectra	
4. References	S30

1. Catalyst Characterization

Figure S1. ESI-MS of GPT-Ni [GPT-Ni(-Cl)]⁺ (Exact Mass: 1045.2129)

1.2 Figure S2 IR spectra of ligand and GPT-Ni.²

Figure S2 IR spectra of ligand and GPT-Ni

1.3 Figure S3 XPS spectra of GPT-Ni catalyst.

Figure S3 XPS spectra of GPT-Ni catalyst.

2. Characterization of the Products³

N-phenylacetamide (3a)

The product was obtained as white solid in 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.9 Hz, 2H), 7.36 (s, 1H), 7.31 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 2.17 (s, 3H).

N-(2-cyanophenyl)acetamide (3b)

The product was obtained as yellow solid in 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 10.76 (s, 1H), 7.84 (dd, J = 8.0, 1.7 Hz, 1H), 7.45 (dd, J = 7.1, 1.5 Hz, 1H), 6.98 (dd, J = 8.4, 0.8 Hz, 1H), 6.92 – 6.84 (m, 1H), 3.95 (s, 3H).

N-(2-methoxyphenyl)acetamide (3c)

The product was obtained as yellow solid in 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.28 (dd, J = 3.1, 1.4 Hz, 1H), 7.69 (s, 1H), 7.00 (td, J = 7.9, 1.6 Hz, 1H), 6.89 (dd, J = 5.9, 1.4 Hz, 1H), 6.81 (d, J = 1.7 Hz, 1H), 3.81 (s, 3H), 2.13 (s, 3H).

N-(4-methoxyphenyl)acetamide (3d)

The product was obtained as yellow solid in 84% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.6 Hz, 2H), 7.08 (s, 1H), 6.86 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 2.15 (s, 3H).

N-(p-tolyl)acetamide (3e)

The product was obtained as white solid in 88% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (s, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 2.30 (s, 3H), 2.14 (s, 3H).

N-(4-chlorophenyl)acetamide (3f)

The product was obtained as yellow solid in 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (s, 1H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 2.08 (s, 3H).

N-(4-iodophenyl)acetamide (3g)

The product was obtained as yellow solid in 81% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.53 (d, *J* = 4.5 Hz, 2H), 7.26 (d, *J* = 8.8 Hz, 2H), 2.09 (s, 3H).

N-(4-fluorophenyl)acetamide (3h)

The product was obtained as yellow solid in 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 9.0, 4.8 Hz, 2H), 7.32 (s, 1H), 7.00 (t, J = 8.7 Hz, 2H), 2.16 (s, 3H).

N-(3-methoxyphenyl)acetamide (3i)

The product was obtained as yellow solid in 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.40 (s, 1H), 7.26 (d, J = 4.0 Hz, 1H), 7.19 (t, J = 8.1 Hz, 1H), 6.96 (d, J = 7.8 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 3.78 (s, 3H), 2.15 (s, 3H).

N-(m-tolyl)acetamide (3j)

The product was obtained as white solid in 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (s, 1H), 7.31 (s, 1H), 7.28 (s, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 6.92 (d, *J* = 7.4 Hz, 1H), 2.33 (s, 3H), 2.16 (s, 3H).

N-(3,5-dimethylphenyl)acetamide (3k)

The product was obtained as white solid in 78% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.30 (s, 1H), 7.12 (s, 2H), 6.75 (s, 1H), 2.28 (s, 6H), 2.15 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.33 (s), 137.65 (s), 136.69 (s), 125.06 (s), 116.68 (s), 23.60 (s), 20.33 (s).

N-(quinolin-8-yl)acetamide (3l)

The product was obtained as yellow solid in 40% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.77 (s, 1H), 8.80 – 8.71 (m, 2H), 8.13 (dd, J = 8.2, 1.4 Hz, 1H), 7.49 (dt, J = 8.1, 7.6 Hz, 2H), 7.42 (dd, J = 8.2, 4.2 Hz, 1H), 2.34 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 167.72 (s), 147.03 (s), 137.14 (s), 135.38 (s), 133.47 (s), 126.88 (s), 126.37 (s), 120.47 (d, J = 15.6 Hz), 115.41 (s), 24.09 (s).

N-benzylacetamide (3m)

The product was obtained as white solid in 57% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.25 (t, J = 6.4 Hz, 3H), 6.37 – 6.17 (m, 1H), 4.37 (d, J = 5.7 Hz, 2H), 1.97 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 170.14 (s), 138.29 (s), 128.65 (s), 127.78 (s), 127.44 (s), 43.66 (s), 23.11 (s)

N-cyclohexylacetamide (3n)

The product was obtained as white solid in 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 6.90 (t, J = 22.2 Hz, 1H), 3.72 (tdt, J = 11.7, 8.0, 3.9 Hz, 1H), 1.98 (s, 3H), 1.91 – 1.85 (m, 2H), 1.76 – 1.70 (m, 2H), 1.65 – 1.58 (m, 1H), 1.37 – 1.28 (m, 2H), 1.16 (dddd, J = 15.9, 12.5, 9.6, 6.4 Hz, 3H).

N-phenylpropionamide (30)

The product was obtained as white solid in 71% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 2H), 7.32 (t, J = 7.8 Hz, 2H), 7.14 (s 1H), 7.10 (t, J = 7.2 Hz, 1H), 2.40 (q, J = 7.5 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H).

N-(4-isopropylphenyl)propionamide (3p)

The product was obtained as white solid in 67% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.2 Hz, 3H), 2.87 (dt, J = 13.8, 6.9 Hz, 1H), 2.37 (q, J = 7.5 Hz, 2H), 1.24 (dd, J = 11.8, 7.0 Hz, 9H).

N-(p-tolyl)propionamide (3q)

The product was obtained as white solid in 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.17 (s, 1H), 7.11 (d, J = 8.1 Hz, 2H), 2.37 (q, J = 7.6 Hz, 2H), 2.31 (s, 3H), 1.23 (d, J = 7.6 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 170.87 (s), 128.44 (s), 118.87 (s), 28.68 (s), 19.82 (s), 8.70 (s).

N-(2-hydroxyethyl)-N-phenylacetamide (3r)

The product was obtained as white solid in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.17 (m, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 6.67 – 6.61 (m, 2H), 5.30 (s, 1H), 4.30 – 4.27 (m, 2H), 3.43 – 3.38 (m, 2H), 2.08 (s, 3H)

N-phenylformamide (5a)

The product was obtained as white solid in 78% yield. ¹H NMR (500 MHz, DMSO-d₆) δ 10.28 (s, 1H), 8.29 (d, *J* = 1.8 Hz, 1H), 7.69 – 7.62 (m, 3H), 7.44 – 7.41 (m, 2H).

N-(4-ethylphenyl)formamide (5b)

The product was obtained as white solid in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ

8.55 (d, *J* = 11.5 Hz, 1H), 8.28 (s, 1H), 7.77 (s, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.10 (t, *J* = 9.1 Hz, 4H), 6.93 (d, *J* = 8.2 Hz, 2H), 2.60 – 2.51 (m, 4H), 1.20 – 1.12 (m, 8H).

N-(4-isopropylphenyl)formamide (5c)

The product was obtained as white solid in 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.55 (d, J = 11.5 Hz, 1H), 8.28 (d, J = 1.7 Hz, 1H), 7.74 (dt, J = 4.5, 2.6 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.16 – 7.10 (m, 5H), 6.99 – 6.90 (m, 3H), 6.61 – 6.54 (m, 1H), 2.82 (dd, J = 15.1, 7.0 Hz, 2H), 1.17 (d, J = 5.4 Hz, 6H), 1.16 (d, J = 5.4 Hz, 6H).

N-p-tolylformamide (5d)

The product was obtained as white solid in 78% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.61 (d, J = 11.5 Hz, 1H), 8.35 (d, J = 1.4 Hz, 1H), 7.82 (s, 1H), 7.42 (d, J = 8.4 Hz, 2H), 7.15 (dd, J = 11.9, 8.3 Hz, 4H), 6.98 (d, J = 8.3 Hz, 2H), 2.33 (s, 3H), 2.32 (s, 3H).

N-(4-methoxyphenyl)formamide (5e)

The product was obtained as yellow solid in 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 11.4 Hz, 1H), 8.31 (s, 1H), 8.11 (s, 1H), 7.44 (d, J = 8.9 Hz, 3H), 7.03 (d, J = 8.8 Hz, 2H), 6.87 (dd, J = 11.6, 8.9 Hz, 4H), 3.80 (s, 3H), 3.78 (s, 3H).

N-(4-ethoxyphenyl)formamide (5f)

The product was obtained as yellow solid in 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, J = 11.6 Hz, 1H), 8.33 (d, J = 1.5 Hz, 1H), 7.54 (s, 1H), 7.46 – 7.38 (m, 2H), 7.08 (dd, J = 9.7, 7.2 Hz, 1H), 7.05 – 6.98 (m, 2H), 6.91 – 6.83 (m, 4H), 4.02 (qd, J = 7.0, 2.3 Hz, 4H), 1.41 (dd, J = 13.2, 7.0 Hz, 6H).

N-(4-fluorophenyl)formamide (5g)

The product was obtained as white solid in 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.50 (d, J = 11.4 Hz, 1H), 8.29 (d, J = 1.2 Hz, 1H), 7.98 (s, 1H), 7.47 – 7.41 (m, 3H), 7.30 (d, J = 17.9 Hz, 1H), 7.00 (d, J = 6.3 Hz, 4H), 6.96 (t, J = 8.7 Hz, 3H).

N-(2-chlorophenyl)formamide (5h)

The product was obtained as yellow solid in 75% yield. ¹H NMR (500 MHz, DMSO-*d*6) δ 10.01 (s, 1H), 8.20 (d, *J* = 2.0 Hz, 1H), 7.50 (d, *J* = 9.0 Hz, 2H), 6.89 (d, *J* = 9.1 Hz, 2H).

N-(2-methoxyphenyl)formamide (5i)

The product was obtained as yellow solid in 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 11.6 Hz, 1H), 8.39 (s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.72 (s, 1H), 7.13 (d, J = 7.7 Hz, 1H), 7.06 (t, J = 7.7 Hz, 1H), 7.01 (t, J = 7.7 Hz, 1H), 6.95 – 6.78 (m, 3H), 3.82 (d, J = 3.8 Hz, 3H), 3.81 (d, J = 3.3 Hz, 1H)

N-(3-methoxyphenyl)formamide (5j)

The product was obtained as yellow solid in 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 11.4 Hz, 1H), 8.30 (s, 1H), 7.92 (s, 1H), 7.27 (s, 1H), 7.22 – 7.13 (m, 3H), 6.94 (d, J = 7.9 Hz, 1H), 6.64 (ddd, J = 21.3, 11.7, 5.0 Hz, 3H), 6.54 (s, 1H), 3.74 (s, 3H), 3.73 (s, 3H).

N-(3,5-dimethylphenyl)formamide (5k)

The product was obtained as white solid in 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 11.5 Hz, 1H), 8.35 (d, J = 1.3 Hz, 1H), 7.68 (s, 1H), 7.16 (s, 1H), 6.81 (d, J = 20.9 Hz, 2H), 6.69 (s, 2H), 2.31 (s, 6H), 2.30 (s, 4H).

N-cyclohexylformamide (51)

The product was obtained as white solid in 67% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 1.1 Hz, 1H), 7.00 – 6.84 (m, 1H), 3.94 – 3.70 (m, 1H), 1.92 – 1.87 (m, 2H), 1.77 – 1.71 (m, 2H), 1.64 – 1.60 (m, 1H), 1.36 – 1.31 (m, 2H), 1.25 – 1.15 (m, 3H).

N-(3,4-dichlorophenyl)propionamide (propanil)

The product was obtained as yellow solid in 72% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.35 (d, J = 8.6 Hz, 2H), 7.29 (s, 1H), 2.39 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 171.09 (s), 136.38 (s), 131.75 (s), 129.46 (s), 120.42 (s), 117.90 (s), 28.68 (s), 8.45 (s).

3. Copies of NMR spectra

6. References

- 1. C. Shen, H. Shen, M. Yang, C. Xia, P. Zhang, Green Chem., 2015, 17, 225.
- 2. H. Shen, C. Shen, C. Chen, A. Wang, P. Zhang, Catal. Sci. Technol., 2015, 5, 2065.
- 3. R. B. Sonawane, N. K. Rasaland, S. V. Jagtap, Org. Lett., 2017, 19, 2078.