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Abstract: Diesel engines operate under net oxidizing environment favoring lower fuel consumption
and CO2 emissions than stoichiometric gasoline engines. However, NOx reduction and soot removal is
still a technological challenge under such oxygen-rich conditions. Currently, NOx storage and reduction
(NSR), also known as lean NOx trap (LNT), selective catalytic reduction (SCR), and hybrid NSR–SCR
technologies are considered the most efficient control after treatment systems to remove NOx emission
in diesel engines. However, NSR formulation requires high platinum group metals (PGMs) loads to
achieve high NOx removal efficiency. This requisite increases the cost and reduces the hydrothermal
stability of the catalyst. Recently, perovskites-type oxides (ABO3) have gained special attention
as an efficient, economical, and thermally more stable alternative to PGM-based formulations in
heterogeneous catalysis. Herein, this paper overviews the potential of perovskite-based formulations
to reduce NOx from diesel engine exhaust gases throughout single-NSR and combined NSR–SCR
technologies. In detail, the effect of the synthesis method and chemical composition over NO-to-NO2

conversion, NOx storage capacity, and NOx reduction efficiency is addressed. Furthermore, the NOx

removal efficiency of optimal developed formulations is compared with respect to the current NSR
model catalyst (1–1.5 wt % Pt–10–15 wt % BaO/Al2O3) in the absence and presence of SO2 and
H2O in the feed stream, as occurs in the real automotive application. Main conclusions are finally
summarized and future challenges highlighted.

Keywords: lean-burn engines exhaust control; NOx removal; NOx storage and reduction;
perovskite-based catalysts; sulfur resistance; hydrothermal resistance

1. Introduction

The concern about pollutants released by internal combustion engines has increased significantly
since the late 1900s. Currently, with more than 600 million automobiles worldwide, vehicle exhaust
is one of the main causes of air pollution, especially in urban areas. Unburned hydrocarbons (HCs),
carbon monoxide (CO), particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), and soot
are the main pollutants in the exhaust [1]. However, exhaust composition depends on the engine
operation principle. In this sense, two types of engines can be differentiated, gasoline engines and
diesel or lean-burn gasoline engines. The latter operate with high air-to-fuel ratios (A/F = 20–65),
which favors fuel economy, engine efficiency, driving performance, and limits CO2, CO, and HCs
emissions with respect to stoichiometric gasoline engines. These advantages have motivated the
increasing implementation of diesel or lean-burn engines during the last years [2]. Nevertheless, the
excess of oxygen introduced leads to a net oxidizing environment, which limits the simultaneous
removal of NOx and soot [3]. As a result, the control of NOx, PM and soot is still a technological challenge
in diesel and lean-burn gasoline engines. This fact, together with the progressive implementation of
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stringent standards regarding NOx and soot emissions (currently Euro VI legislation in Europe), has
driven the development of a complex exhaust treatment system. The system is usually composed
of diesel oxidation catalyst (DOC) followed by a diesel particulate filter (DPF) and NOx reduction
catalyst (NRC) in series. This system is usually complemented by ammonia slip catalyst (ASC) placed
downstream [4]. The limited NOx reduction efficiency of diesel engines has driven that recent efforts
have been mainly focused on the development of an efficient NRC. NOx storage and reduction (NSR),
selective catalytic reduction (SCR), and the hybrid NSR–SCR technologies have been developed in
order to mitigate NOx emissions in diesel engines [5].

NOx storage and reduction (NSR) technology was introduced by Toyota in the mid-1990s [6].
This alternative operates cyclically under fuel-lean and fuel-rich conditions. The duration of the former
period is in the order of few minutes while the latter period duration is few seconds. During the
long lean period NOx are trapped over catalytic surface. Then, in the subsequent short-rich period,
stored NOx are reduced preferentially to N2. For that, the NSR catalyst compositions usually contain
active sites for NO-to-NO2 oxidation and NOx-to-N2 reduction, as well as storage components for NOx

adsorption during lean period [7–9]. In this context, Pt–Ba/Al2O3 catalyst emerges as the model NSR
formulation [10,11]. Alternatively, SCR technology achieves NOx reduction under steady oxidizing
conditions by the injection of a selective chemical reductant of the NOx. The ammonia generated from
urea decomposition, which is stored on-board in a specific reservoir is the usual reductant in this
technology (NH3-SCR) [12,13]. In this case, catalysts based on Cu or Fe exchanged on different zeolites
are widely adopted as NH3-SCR formulation [14–16].

Both alternatives, the NSR technology and the SCR technology, show some drawbacks that limit
their extended implementation, as summarized in Table 1. On the one hand, NSR system requires
high Pt loads (1–2 wt %) which increase the costs and limits the hydrothermal and sulfur resistance.
Furthermore, some extent of NH3 and N2O may be formed during the short-rich period. On the other
hand, NH3-SCR involves a continuous admission of NH3 to reduce NOx, which is formed from the
thermal decomposition of urea stored in on-board tank. This fact limits the implementation of SCR
technology in small vehicle due to the cost and space requirement. Taking into account that NSR
system generates some NH3 as byproduct during the rich phase, a reasonable interest in linking both
technologies has grown. Hybrid NSR–SCR technology emerges as a potential solution of some of the
main drawbacks previously reported for stand-alone NSR and SCR technologies [17]. Specifically, in
the hybrid NSR–SCR system the NOx removal efficiency is increased notably with a simultaneous
decrease in the NH3 slip. This operation principle allows circumventing the implementation of an
on-board NH3 generation unit. The coupled NSR–SCR technology is composed of NSR and SCR
catalysts operating cyclically in a similar way to single-NSR technology. SCR catalyst can be placed
downstream of the NSR catalyst in sequential NSR–SCR configuration or alternatively in a single-brick
composing the dual-layer architecture. In most cases, the NOx removal efficiency of hybrid NSR–SCR
systems has been analyzed using model NSR formulation ((1–2 wt %) Pt–(10–15 wt %) BaO/Al2O3).
However, the amount of noble metal (Pt) should be reduced or replaced by less expensive and thermally
more stable materials.

Taking into account these drawbacks, during the last decade, a great interest in developing
perovskite-based formulation for NOx removal in diesel engines has grown. Particularly, high structural
stability and low cost qualify perovskite oxides as potential alternative to Pt-based catalysts, widely
implemented as model NSR formulations [18]. Therefore, the main objective of this review is to
overview the recent progress in the application of perovskite-based materials in the stand-alone NSR
and combined NSR–SCR systems. First, we shall focus on the general application of perovskite-based
formulations to NOx removal in diesel engines. Then, a general outlook on different preparation
methods and chemical compositions used during the application of the perovskite-based formulation
to the single-NSR system is provided. A major emphasis is devoted to the viability of perovskite-based
formulation as alternative to Pt-based NSR catalyst. For that, the thermal and sulfur resistance of
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both type formulations is also compared. Finally, a brief look of the viability of the perovskite-based
formulations as NSR system in the combined NSR–SCR technology is included.

Table 1. Comparison among stand-alone NSR, stand-alone SCR, sequential NSR–SCR, and dual
layer NSR–SCR technologies for NOx removal in diesel light-duty vehicles (adapted from [17] with
permission of Wiley-VCH)

NSR SCR NSR + SCR NSR–SCR

Principle

The system runs under
lean-rich cycles.

During lean period
NOx is adsorbed on

the catalyst, and then is
released and reduced
in the subsequent rich

period.

The SCR catalyst
reduces selectively

NOx with NH3
generated from an

aqueous urea solution.

Operates similarly
to NSR system.
The SCR unit
downstream

reduces the NOx
with the NH3

produced in the
NSR.

Similar operation to
NSR system. The NOx
diffuses the top SCR
layer and generates
NH3 in the bottom

NSR layer, which then
reduces the NOx

slipped from the NSR.

Model catalyst
Pt–Ba/Al2O3 deposited

on a cordierite
monolith.

Cu, Fe/Chabazite
deposited on a

cordierite monolith.

Sequential NSR +
SCR double
monolith.

Dual layer NSR + SCR
single monolith.

Advantages

70–90% efficiency at
low loads. More
economical for

light-duty vehicles.
Reductant fluid not

required.

Up to 90% NOx
conversion efficiency.
More economical for

heavier vehicles.

High NOx removal
efficiency at low

temperatures.
Reduction of PGM.
Reductant fluid not

required.

High NOx removal
efficiency at low

temperatures. Less
volume and weight

than sequential
monoliths.

Limitations

Limited NOx storage
capacity and NSR

efficiency for highway
and ascending driving.
Need of high amount

of PGM.

Low sulfur resistance.
Requires on board DEF

AdBlue storage tank
with heating and
injection system.

Operational limitations
under urban driving

conditions.

High cost.
Packaging

constrains (double
monolith). Possible

migration of Pt
from NSR to SCR.

Calibration
difficulties.

High cost. Spillover of
stored NH3 onto

vicinal Pt sites, which
limits NOx reduction.
Possible migration of
Pt from NSR to SCR

layer. Calibration
difficulties due to its

complexity.

2. Perovskite-Based Catalysts in Automotive Exhaust Catalytic Converters

Perovskite-type oxides have attracted attention as promising catalyst for exhaust control in
automotive applications since Libby [19] and Voorhoeve et al. [20] explored perovskites firstly in early
1970s. The term of perovskite is the general name for oxides with ABO3 and/or A2BO4 structure. In the
ideal cubic crystalline unit cell of perovskite (Figure 1), the larger cation A is located in the center edge
of the structure; meanwhile the smaller cation B is located in the center of the octahedron. O is an
anion that bonds both cations [21]. A cation (coordinated by 12 oxygen), can be a rare earth, alkaline,
or alkaline-earth cation. The B cation (surrounded by six oxygen in octahedral coordination) can be
any transition metal ions from 3d, 4d, or 5d configuration. In the perovskite structure, A cation plays
an essential role as responsible for the stabilization of the structure, while B cation is responsible for
the catalytic activity.Catalysts 2019, 9, x FOR PEER REVIEW 4 of 25 
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Perovskite-type oxides can accommodate a wide number of components in A and B sites and can
stabilize various distorted structures. The wide range of possible cationic substitutions in the perovskite
family generates great flexibility in terms of structure, allowing it to be adjusted appropriately to the
process. The stability of the perovskite structure is governed by geometric considerations summarized
by the Goldschmidt tolerance factor, Equation (1),

t =
rA + rO
√

2(rB + rO)
(1)

where rA, rB, and rO are the respective radii of A, B and oxygen ions. The tolerance factor must be in
the range of 0.75 to 1.00 so that the oxide can crystallize with perovskite-type structure.

As above mentioned, the flexibility to modulate the catalytic properties of the perovskite structure
by the partial or total substitution of A and B cations allows to better adapting to the desired automotive
applications [18,22]. Indeed, perovskite-based materials have been widely implemented as low-cost
alternative to the catalysts composed of platinum-group metals (PGMs) in automotive catalytic
converters [19,20,23,24]. Perovskites have shown excellent activity in oxidation reactions in their
implementation as diesel oxidation catalyst (DOC) [23,25–32]. Furthermore, these oxides demonstrated
excellent efficiency in the joint mitigation of NOx and soot emissions from diesel engines. Thus, these
materials have been implemented in diesel particulate NOx reduction filter (DPNR) [33–39]. On the
other hand, the catalytic decomposition of nitrous oxide or nitric oxide has been reported as a one
their potential applications [40–46]. Finally, perovskites have been widely implemented for NOx

reduction in both stoichiometric gasoline engines (three-way catalyst, TWC) [33,47–53] and diesel or
lean-burn gasoline engines (NSR and SCR systems). Recently, the latter application has gained special
attention due to the increasing necessity of developing an efficient NOx reduction system in diesel
engines. This fact became more evident for NSR alternative to overcome the requirement of high
platinum-group metals (PGMs) loads to maximize NOx removal efficiency. Therefore, a great range of
studies have focused on developing perovskite-based formulations as economical and more durable
alternative to Pt-based model catalyst.

3. Perovskite-Based Catalysts for NSR Technology

NSR technology is considered as a promising approach to control NOx emissions in diesel
engines. This alternative operates cyclically under fuel-lean and fuel-rich conditions. During the lean
period, platinum oxidizes NO-to-NO2, which is then adsorbed over Ba in the form of nitrites/nitrates.
During the subsequent short-rich period, a reductant, such as CO, H2, or HC, is used to release
and reduce the stored NOx. Thus, NO-to-NO2 conversion is considered a critical step in improving
the NOx removal efficiency in the model NSR formulation. However, this reaction requires high Pt
loadings, compound very costly and with limited thermal stability [23]. As a result, the applicability of
perovskites-based materials to NSR technology is initially related to the capacity to oxidize NO-to-NO2

during the lean period. After that, the NO2 form should be efficiently trapped over catalytic surface
during the oxidizing period. Finally, the perovskite-based catalyst should selectively reduce the
stored-NOx-to-N2. In order to cover efficiently the consecutive stages in the NSR process different
alternatives have progressively been explored. Some authors modified the physicochemical properties
of the perovskites-based formulations by partial substitution of A and B cations. Alternatively, other
studies supported perovskites over high surface area materials, whereas in other cases additional
components were incorporated over perovkite-based formulations. This allows tailoring the catalytic
properties of perovskite-based materials for automotive applications. The final goal is to develop a
perovskite-based formulation with similar or even higher NOx removal efficiency, with more sulfur
resistance and hydrothermal stability than the Pt-based model catalyst.
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3.1. NO-to-NO2 Conversion

As previously discussed, NO2 plays a decisive role as an intermediate species in the NSR process.
Thus, a primary prerequisite to explore the real applicability of perovskite-oxides to NSR technology is
to develop a perovskite-based formulation with high NO oxidation capacity. Generally speaking, Choi
et al. [54] reported that the catalytic activity in oxidation reactions is strongly influenced by molecular
and atomic interactions of oxygen with the perovskite surface. In this sense, many authors suggested
that the catalytic oxidation over metal oxides (M) follows a Mars–van Krevelen mechanism [55,56].
As a result, the adsorption of dissociated oxygen is facilitated by vacancies (
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and especially citric acid method are the more explored synthesis routes due to their simplicity, ease of
scale-up, and appropriate textural properties [22]. The synthesis conditions—such as citrate to nitrate
molar ratio in the starting solution, pH of the gel precursor dissolution, and calcination protocol—have
shown significant influence on NO-to-NO2 conversion activity of the material prepared by citric acid
method [25,57]. Regarding perovskite composition, LaCoO3 and LaMnO3 perovskites and their doped
modifications have been investigated extensively for NO-to-NO2 conversion due to the excellent
performance on other oxidation reactions [58,59].

On the developed formulations, at low temperatures, low conversions were attained, due to
kinetic limitations. With increasing temperatures NO-to-NO2 conversion began to increase until
300–350 ◦C, where the conversion began to drop due to thermodynamic limitations and the reaction
pathway then followed the equilibrium curve, as observed in Figure 2. Both LaCoO3 and LaMnO3

benchmark systems show excellent NO-to-NO2 conversion efficiencies [58]. Based on the Mars–van
Krevelen mechanism above described (Equations (2) and (3)), the excellent activity of these materials
for oxidation reactions can be related to some specific structural properties, such as change of oxidation
state of B cation, active oxygen mobility, and ion vacancy defect [59]. Indeed, the promotion of oxygen
vacancy density seems to be the key factor to maximize oxidation efficiency [60–64]. La3+ partial
substitution by Ca2+, Ba2+, or Sr+2, is accepted as a simple way to alter the main physico-chemical
properties of perovskite (crystallinity, average crystal size, specific surface area, and redox properties).
Among them, Sr2+ is the most explored cation for this approach. The introduction of lower oxidation
state Sr2+ in substitution of La3+ in LaMnO3 and LaCoO3 lattice generates a net charge imbalance that
may be compensated by alteration of the oxidation state of a fraction of transition metal, leading to
Mn4+ or Co4+ formation.
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Table 2. Activity in NO-to-NO2 oxidation of different perovskite-based formulations

Formulation Shape Feedstream GHSV, h–1 T, ◦C XNO-to-NO2 ,
% Ref.

LaCoO3 powder [NO] = 100 ppm;
[O2] = 10% 30,000 260 83.0 [58]

LaCoO3
(+) powder [NO] = 400 ppm;

[O2] = 5% 80,000 350 57.9 [65]

La0.9Sr0.1CoO3 monolith [NO] = 400 ppm;
[O2] = 8% 30,000 300 86.0 [23]

La0.7Sr0.3CoO3 powder [NO] = 800 ppm;
[O2] = 5% 80,000 300 74.1 [66]

La0.7Sr0.3CoO3 powder [NO] = 650 ppm;
[O2] = 6% 123,500 300 80.0 [25]

La0.7Sr0.3Co0.97Pd0.03O3 powder [NO] = 500 ppm;
[O2] = 6.7% 32,000 280 87.8 [67]

La0.7Sr0.3Co0.8Fe0.2O3 powder [NO] = 750 ppm;
[O2] = 5% 80,000 300 84.6 [68]

La0.5Sr0.5CoO3 powder [NO] = 500 ppm;
[O2] = 3% 120,000(a) 300 55.0 [69]

La0.9Ba0.1CoO3 powder [NO] = 400 ppm;
[O2] = 10% 180,000(a) 265 93.0 [26]

La0.8Ce0.2CoO3 powder [NO] = 800 ppm;
[O2] = 8% 0.096(b) 300 80.0 [28]

LaCo0.92Pt0.08O3 powder [NO] = 280 ppm;
[O2] = 8% 72,000 300 < 80.0(*) [70]

LaCo0.9Cu0.1O3 powder [NO] = 400 ppm;
[O2] = 10% 180,000(a) 310 82.0 [71]

LaNi0.7Co0.3O3 powder [NO] = 400 ppm;
[O2] = 6% 200,000 325 < 80.0 [27]

LaMnO3 monolith [NO] = 400 ppm;
[O2] = 8% 30,000 350 62.0 [72]

La0.9MnO3 powder [NO] = 100 ppm;
[O2] = 10% 30,000 296 85.0(*) [59]

La0.9Sr0.1MnO3 powder [NO] = 650 ppm;
[O2] = 6% 123,500 325 65.0 [25]

La0.9Sr0.1MnO3 monolith [NO] = 400 ppm;
[O2] = 8% 30,000 350 62.5 [23]

La0.7Sr0.3MnO3 powder [NO] = 800 ppm;
[O2] = 5% 80,000 350 70.2 [57]

La0.9Ca0.1MnO3 powder [NO] = 100 ppm;
[O2] = 10% 30,000 300 82.0 [73]

La0.8Ag0.2MnO3 powder [NO] = 400 ppm;
[O2] = 8% 600,000 250 ~ 90.0(*) [74]

LaMn0.9Co0.1O3 powder [NO] = 100 ppm;
[O2] = 10% n.a. 300 76.5 [29]

BaTi0.8Cu0.2O3 powder [NO] = 500 ppm;
[O2] = 6% n.a. 400 47.0 [75]

(*) Presence of H2O and/or CO2. (+) Prepared by nanocasting. (a) Units (mL g–1 h–1). (b) Units (g s mL–1).

Alternatively, the oxidation state of transition metal could be maintained unaltered (Mn3+ or Co3+),
but instead oxygen vacancies could be generated in the lattice to attain the charge balance. Even a mixed
situation showing altered oxidation state of transition metal along with oxygen vacancies in the lattice
could be expected. As suggested by Kim et al. [23] and more recently in our study [25] charge imbalance
associated to strontium (Sr2+) incorporation in the perovskite lattice in substitution of lanthanum (La3+)
was preferentially balanced by Mn4+ promotion in La1−xSrxMnO3 perovskites, whereas formation of
oxygen vacancies seems to be the mechanism for charge compensation in La1−xSrxCoO3 perovskites,
where Co remained as Co3+ ions. The preferential formation of oxygen vacancies explains the higher
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NO-to-NO2 conversion efficiencies for La1−xSrxCoO3 perovskites (Figure 2). Indeed, the designed
perovskite-based materials could potentially rival Pt-based model catalyst (Pt–Ba/Al2O3). Thus,
La1−xSrxMnO3 and La1−xSrxCoO3 perovskites can be considered efficient approaches to promote
NO-to-NO2 conversion in automotive catalysis.
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(2017) Elsevier.

Different authors carried out kinetic studies on NO-to-NO2 oxidation process with LaMnO3 and
LaCoO3-type perovskites. The results obtained lead to similar conclusions. On the one hand, reaction
rate could be linearly accelerated by increasing the concentration of NO and O2 [57], whereas the NO
oxidation rate of LaMnO3 and LaCoO3-type perovskites is limited in the presence of NO2 [54,72,74].
Indeed, Constantinou et al. [76] determined a NO, O2, and NO2 orders near to 1, 1 and –1, respectively
for LaMnO3 perovksite. Regarding the apparent activation energies of these materials, their values
were in the range of 31–45 kJ/mol for LaxMnO3 perovskites and in the range of 50–100 kJ/mol for
La1–xSrxCoO3 perovskites.

Some of the studies reported in Table 1 have been focused on understanding the electronic
structure of perovskites [54,69,71]. Specifically, Density Functional Theory (DFT) calculations have
been carried out to analyze the NO-to-NO2 reaction on LaCoO3-type perovskites. These studies try to
develop theoretical model to describe oxygen exchange process during NO-to-NO2 oxidation. Indeed,
they concluded that the NO-to-NO2 reaction is favored by Cu [71] or Sr [54] doping due to a decrease
of the energy of extralattice oxygen, favoring oxygen vacancies formation. Furthermore, as observed
by kinetic experiments, the formation of NO2 seems to limit NO oxidation.

3.2. NOx Adsorption under Oxidizing Conditions

Once NO is oxidized to NO2, the nitrogen dioxide formed should be efficiently trapped over
the catalytic surface. In agreement with above described, A-site elements of perovskite are usually
alkali/alkaline earth metals, which serve as ideal adsorption sites for the NOx storage. As a result,
perovskite-type oxides were also implemented as efficient lean NOx trap materials. For the first time
in the scientific literature, Hodjati et al. [77–79] reported the NOx storage capacity (NSC) of different
perovskite-type catalysts (with A = Ca, Sr or Ba; and B = Sn, Zr or Ti). Their studies showed that for the
A-site cations NSC was in the order of Ca > Sr > Ba; while the influence of the B-site cations on the NSC
was in the order of Ti > Zr > Sn. Thus, the BaSnO3 perovskite had the largest NOx storage capacity.
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In a series of consecutive studies BaCoO3 [80,81] and BaFeO3 [82–84] perovskites were also explored
as alternatives with high NOx storage capacity and notable sulfur resistance. In these materials,
the presence of BaCO3 as an impurity promoted the NOx adsorption capacity; however, this phase
limited the regeneration capacity after SO2 poisoning. More recently, perovskites BaFe0.8Ti0.2O3 [85]
and BaFe0.8Cu0.2O3 [75,86] have been proposed as alternative formulations.

Alternatively, La-based perovskites have been extensively studied in recent years due to their
excellent NO oxidation conversion and structural stability. As observed for NSR model catalysts,
La-based perovskites show volcano-type dependence of the NOx storage capacity with temperature,
showing maximum NSC around 350–400 ◦C. At higher temperatures, NOx adsorption capacity tends
to decrease due to the lower stability of NOx adsorbed species together with the lower NO-to-NO2

conversion (Figure 2), which is the limiting step during the NOx storage step. In agreement with that
observed for NO oxidation capacity, the modification of physicochemical properties by the partial
substitution of A and B cations could promote NOx adsorption efficiency. In this case, La3+ was partially
substituted by other cations with high basicity, such as K+, Ca2+, Ba2+, or Sr+2, due to their high
NOx adsorption capacity in the conventional NSR formulations. In fact, some studies demonstrated
that Sr2+ rather than La3+ cations preferred to migrate from the bulk to the surface during the NOx

storage period. This migration enhanced the perovskite NSC and catalytic performance due to the
presence of higher amount of basic sites at the surface [87–89]. Similar process can be expected for
the other explored cations. Ueda et al. [90] observed that the partial replacement of 30% of La3+ by
Ba2+ practically tripled the NOx storage capacity of perovskite LaFe0.97Pd0.03O3. Meanwhile, Li et
al. [34] proposed the La0.9K0.1Co0.9Fe0.1O3–δ perovskite as lean NOx trap material. More recently,
Li et al. [66] observed how doping LaCoO3 perovskite with 30% of Sr (La0.7Sr0.3CoO3) maximized the
storage capacity of La1–xSrxCoO3 perovskites. The best NOx adsorption efficiency was assigned to a
best balance between NO-to-NO2 oxidation efficiency and NOx adsorption sites concentration at the
surface. Based on the results of DRIFT, they also proposed three main storage routes in these solids:
monodentate nitrates (1440 cm–1), free nitrate ions (1384 cm–1), and nitrates in perovskite (1362 cm–1).
An increase in temperature above 300 ◦C favors the storage of NOx as free nitrate ions formed on
strontium carbonates or surface structural strontium, as well as the adsorption of the other two species
(Figure 3).
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López-Suarez et al. [91] observed similar NOx storage mechanism for the SrTi0.89Cu0.11O3

perovskite. Otherwise, Dong et al. [57] analyzed the influence of synthesis conditions on the NOx

storage capacity of perovskites La0.7Sr0.3MnO3. In this case they observed that the adsorption of
NOx at 350 ◦C occurs mainly in the form of free nitrate ions, which is favored by a greater specific
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surface area and a more homogeneous distribution of the different components. As described for NO
oxidation conversion, the synthesis conditions also influence the NOx adsorption capacity of these
perovskites. In this sense, Peng et al. [89] have controlled the selective dissolution of Sr inside the
structure La0.5Sr0.5CoO3 by treating the catalyst with HNO3. The migration of Sr promotes the NO
oxidation and NOx storage capacities. On the other hand, other authors analyzed the effect of partial
substitution of B cation by Pt or Pd [70,92]. The incorporation of these noble metals over perovskite
surface has been also explored [92,93]. In both cases the promotion of NOx adsorption capacity is
assigned to generation of structural defects and especially to promotion of NOx adsorption sites
regeneration during the short-rich period.

One of the main drawbacks of bulk perovskites is the crystal growth of the oxide due to the
calcination at high temperature during the synthesis. As a result, bulk perovskites usually possess
low specific surface areas (usually below 25 m2 g−1) and limited NOx storage sites accessibility [72,76].
Both factors limit NOx adsorption capacity during lean conditions. Two potential solutions were
explored to overcome this limitation: synthesis of mesostructured perovskites via nanocasting method
and synthesis of supported perovskite by their distribution over high-surface area materials [94].

Regarding supported perovskites, He et al. [94] found that the distribution of 20 wt % of
LaCoO3 perovskite over ZrTiO4 support limited sintering of perovskite. As consequence of the higher
accessibility of the perovskite the NOx storage capacity was promoted. In fact, the perovskite-based
catalyst exhibited higher NSC than Pt-based catalysts due to the promoted NO-to-NO2 oxidation
behavior. Alternatively, You et al. [95,96] observed that the impregnation of a 10 wt % of LaCoO3

perovskite over ceria and Ce0.75Zr0.25O2 supports provides high NOx storage and reduction capacity.
More conventional supports with lower price and higher surface area have been also explored. Ding
et al. [97] confined the La0.7Sr0.3CoO3 perovskite nanoparticles (60 wt %) on mesoporous silica. This
sample significantly increased the NOx adsorption capacity per sample mass unit at 300 ◦C with
respect to bulk sample. Recently, we have prepared alumina-supported perovskites (10–50 wt %
La0.7Sr0.3CoO3/Al2O3) by the impregnation of the La0.7Sr0.3CoO3 over γ-Al2O3 [87]. As observed in
Figure 4, the distribution of the bulk perovskite over alumina support inhibited the agglomeration of
the former. The higher distribution of perovskite phase favors the diffusion of intermediate compounds
from oxidation to NOx adsorption sites. The intermediate loading (30 wt % La0.7Sr0.3CoO3/Al2O3)
maximized the efficient use of perovskite phase. This fact was as a consequence of a best balance
between well-developed perovskite phase and NO oxidation as well as NO adsorption sites (oxygen
vacancies, structural La and Sr at the surface, and segregated SrCO3) distribution. In fact, the NOx

storage capacity normalized per perovskite mass unit (NSC = 305.8 µmol NOx (gLSCO)–1) was three
times higher than that of bulk perovskite (NSC = 115.0 µmol NOx (gLSCO)–1).

Regarding perovskites with ordered structures, the studies are scarce and the preparation methods
are more complex. Ye et al. [65] compared the catalytic behavior of LaCoO3 bulk perovskite and
a mesoporous-ordered LaCoO3 perovskite prepared by nanocasting. The latter was obtained by
nanocasting using SBA-15 silica as hard-template. As can be observed in Figure 5, the agglomeration
of perovskite is significantly inhibited for the sample prepared by nanocasting. As a result, the NSC
increases from 93 µmol NOx g–1 for the sample prepared by conventional method to 252 µmol NOx g–1

for the sample prepared by nanocasting. The higher NSC can be attributed to the following aspects:
(1) more active sites are exposed due to its much larger specific surface area; (2) easier transportation
of reactants and products during reactions due to the mesoporous structure; (3) larger number of
oxygen vacancies; (4) presence of high-valence cobalt ions (Co3+δ). Alternatively, the conformation
of La0.8Cs0.2Mn0.8Ga0.2O3 perovskites with cotton-like morphology consisting of nanoparticles and
nanorods [98] or ZnO nanorod array supported Pt:La0.8Sr0.2MnO3 lean NOx traps [99], emerge as more
complex alternatives of improvement of the storage capacity of NOx. Recently, Alcalde-Santiago et
al. [100] prepared macroporous SrTi1–xCuxO3 perovskites with high NOx adsorption capacities.
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As previously reported, NSR catalysts usually contain strong basic components to promote the
trapping of the acidic NOx molecules. This fact motivated the incorporation of small amounts of basic
components over perovskite-based formulation, or alternatively, the mixing of the perovskite with a
phase with high NOx trapping efficiency. Ye et al. [65] observed that the incorporation of K (5 wt % of
K2CO3) into the mesostructured LaCoO3 perovskite increased the adsorption capacity from 252 µmol
NOx g–1 to 981 µmol NOx g–1 at 350 ◦C, due to the presence of a higher concentration of surface basic
sites. On the other hand, Qi et al. [72,76] in their studies ball-milled LaMnO3 perovskite with Ba/Al2O3

catalyst to promote NOx adsorption efficiency during the lean period. Alternatively, Wen et al. [101]
loaded LaCoO3 perovskite (25 wt %) on Al2O3 support by mechanical mixing. Subsequently, K2CO3

(16 wt %) and Pt (0, 0.3, and 1 wt %) were loaded on LaCoO3/Al2O3 by the conventional impregnation
method. Meanwhile, You et al. [95,96] incorporated increasing contents of K2CO3 (x = 1–8 wt %) on
LaCoO3/CeO2 and LaCoO3/Ce0.75Zr0.25O2 catalysts. In this case, NOx storage capacity was maximized
for the samples with 3–5 wt % of K2CO3 due to the presence of higher concentration of homogeneously
distributed NOx adsorption sites at the surface. This activates a new NOx storage pathway in form of
nitrates and/or nitrites formed due to the reaction between K2CO3 and NOx.

3.3. NOx Reduction

Perovskites have demonstrated as promising materials for NO oxidation and NOx storage in an
oxygen-rich atmosphere. However, the final aim of NSR system is to reduce efficiently the NOx stored
during the lean period preferentially to N2 in the subsequent short-rich period. Thus, perovskites
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should also be good NOx reduction catalysts in a fuel-rich atmosphere. In this sense, few works analyze
the NOx removal efficiency of perovskite-based formulations. Table 3 summarizes the most relevant
results found in the scientific literature related to the utilization of perovkite-based formulations as
NSR catalyst.

Table 3. DeNOx activity of different perovskite-based formulations

Formulation Feedstream (lean/rich) GHSV, h–1 XNOx , %/SN2 , % Ref.

5 wt % K/LaCoO3
(+)

[NO] = 400 ppm; [O2] = 5%; [C3H6] =
1000 ppm (180 s)/[C3H6] = 1000 ppm

(60 s)
80,000 97.0/97.3 [65]

La0.7Sr0.3CoO3

NO] = 500 ppm; [O2] = 6.7%; [C3H6]
= 1000 ppm (180 s)/[NO] = 500 ppm;

[C3H6] = 1000 ppm (60 s)
80,000 71.4/100 [66]

La0.7Sr0.3Co0.97Pd0.03O3

[NO] = 500 ppm; [O2] = 6.7% (120
s)/[NO] = 500 ppm; [C3H6] = 0.1%

(60 s)
32,000 > 90.0/> 90.0 [67]

30 wt % La0.7Sr0.3CoO3/Al2O3
[NO] = 500 ppm; [O2] = 6%; (150

s)/[NO] = 500 ppm; [H2] = 3%; (20 s) 123,500 46.9/53.3 [102]

1.5 wt % Pd–30 wt %
La0.7Sr0.3CoO3/Al2O3

[NO] = 500 ppm; [O2] = 6%; (150
s)/[NO] = 500 ppm; [H2] = 3%; (20 s) 123,500 79.2/89.7 [102]

1.4 wt % Pd/La0.7Sr0.3CoO3
[NO] = 400 ppm; [O2] = 5%; (50 s)/

[C3H6] = 1000 ppm (10 s) (*) 120,000(b) 90.4/n.d. [92]

La0.5Sr0.5CoO3

[NO] = 500 ppm; [O2] = 5% (120
s)/[NO] = 500 ppm; [C3H6] = 1000

ppm (60 s)
120,000(b) 42.4/n.a. [89]

LaCo0.92Pt0.08O3
[NO] = 280 ppm; [O2] = 8% (120

s)/[NO] = 280 ppm; [H2] = 3.5% (30 s) 72,000 90.0/70.0(*) [70]

5 wt % K2CO3–20% LaCoO3/S(a) NO] = 400 ppm; [O2] = 5%; (180
s)/[C3H6] = 1000 ppm (60 s) 45,000 98.2/98.8 [95]

0.3 wt % Pt–16 wt % K–25 wt %
LaCoO3/Al2O3

[NO] = 500 ppm; [O2] = 8%; (120 s)/
[NO] = 500 ppm; [H2] = 3.5%; (120 s) n.a. ~80/90 [101]

LaMnO3 + 4 wt % Pd/Al2O3+2 wt
% Rh/CeO2–ZrO2

(c)

[NO] = 400 ppm; [O2] = 10% (60
s)/[NO] = 400 ppm; [H2] = 1%;

[CO] = 3% (5s)
25.000 85/n.a.(*) [72]

La0.9Sr0.1MnO3 + (1.6 wt % Pd +
0.16 wt % Rh)–20 wt %

Ba/CeO2–ZrO2
(c)

[NO] = 200 ppm; [O2] = 10% (60
s)/[NO] = 200 ppm; [H2] = 1%;

[CO] = 3% (5s)
50.000 > 90/n.a.(*) [23]

La0.7Ba0.3Fe0.776Nb0.194Pd0.03O3

[NO] = 512 ppm; [O2] = 5%; [C3H6] =
200 ppm (54 s)/[NO] = 512 ppm;

[CO] = 4% (6 s)
n.a. 47/n.a. [90]

(*) Presence of H2O and/or CO2. (+) Prepared by nanocasting. (a) S = Ce0.75Zr0.25O2-doped with 5 wt % Y. (b) Units
(mL g–1 h–1). (c) Monolith.

BaFeO3–x [84] and La0.7Ba0.3Fe0.776Nb0.194Pd0.03O3 [90] were the alternatives firstly explored;
however, these perovskites did not show high NOx removal efficiency. Kim et al. [23] were the first
that observed comparable results to conventional formulations in the application of perovskite-based
catalysts as DOC and also as LNT. Specifically, their monolithic catalyst based on La0.9Sr0.1MnO3

perovskite ball-milled with Pd–Rh/BaO/CeO2–ZrO2 catalyst, with noble metal contents (1.8 Pd/0.2
Rh, g L–1) somewhat lower than a commercial catalyst (1.6 Pt/0.3 Pd/0.2 Rh, g L–1), showed a NOx

removal efficiency similar to the commercial catalyst in the presence of CO2 and H2O. More recently,
two consecutive studies carried out by researchers from General Motors [72,76] analyzed the catalytic
behavior and reaction mechanism of a monolithic LaMnO3 + 4 wt % Pd/Al2O3 + 2 wt % Rh/CeO2–ZrO2

prepared by ball-milling. Figure 6 shows the NO, NO2 and ammonia concentration profiles at
35 ◦C under cycling lean (60 s)/rich (5 s) periods over Pd/Rh/LaMnO3/BaO/Al2O3 catalyst with a
SV = 25,000 h−1. The lowest NOx outlet concentration is observed at the beginning of the lean period
due the NOx adsorption over basic sites (Feed composition: 400 ppm NO, 10% O2, H2O, CO2, and
N2 as balance). As increasing lean period duration, NOx trapping sites become gradually saturated
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and thus NOx concentration at the reactor outlet increased. In any case, a significant amount of NOx

was adsorbed on the catalyst during the lean period. In fact, a maximum NO outlet concentration
of 25 ppm upon switching to rich period was reached after six cycles. This indicates that more than
90% of NOx are stored. During the short-rich period, oxygen was replaced by a mix of reductant
gases (1% H2, 3% CO). As a result, the stored NOx are released as NO with a very small amount of
ammonia upon switching to a rich feed. This indicates that the reaction between desorbed NOx and
reductant gases (CO + H2) occurred. Indeed, this formulation showed NOx conversions above 85% and
selectivity towards NH3 around 25%. Taking into account the mechanism of the process, numerous
similarities with the Pt-based model catalysts were confirmed. In fact, this formulation showed similar
temperature dependence of NOx storage and reduction to the conventional Pt–Ba/Al2O3 catalyst.
However, Constantinou et al. [76] found some differences in their study: (i) a greater resistance to
diffusion of nitrates at low temperature, (ii) a faster decomposition of nitrates in reducing environment,
and (iii) a greater inhibition of the OSC (oxygen storage capacity) by nitrates.

Alternatively, other studies tried to develop new alternatives based on simpler perovskite-based
formulations. In the study carried out by Li et al. [66], the improvement of the NOx storage
capacity for the catalyst La0.7Sr0.3CoO3 after Sr doping was also accompanied by an improvement
of the reduction of NOx with C3H6. This catalyst showed NOx conversion of 71% and selectivity
towards N2 of 100%. However, the results were obtained with relative high rich/lead periods ratio
(60 s/180 s), and continuous admission of the reducing agent (C3H6). In order to obtain higher NOx

reduction efficiency, small contents of noble metals, especially Pd, are incorporated on perovskite-based
formulation. Two preparation methods were explored for the synthesis of noble metal containing
perovskite-based formulations: impregnation or doping the perovskite structure. Li et al. [67] proposed
the incorporation of Pd inside the perovskite structure (La0.7Sr0.3Co0.97Pd0.03O3) by doping as a simple
way to improve the NOx reduction efficiency of the catalyst. In their study, the Pd accommodation
within the lattice was demonstrated by the results obtained by XRD, XPS, and EXAFS experiments.
This formulation achieved high NOx conversions and selectivity towards N2 above 90%, feeding C3H6

(0.1%) only during the rich period. In fact, the NOx removal efficiency was similar to that observed
for conventional NSR formulation, as observed in Figure 7. However, the duration ratio of rich/lead
periods remained high (60 s/120 s).Catalysts 2019, 9, x FOR PEER REVIEW 13 of 25 
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0.2 g/L Rh). Reprinted from [72]. Copyright (2012) Elsevier.
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For the first in the literature, Zhao et al. [92] compared the NOx removal efficiency of two Pd-based
La0.7Sr0.3CoO3 perovskites prepared by impregnation or doping the perovskite structure. As a general
trend, NOx storage and reduction efficiency is significantly promoted after the incorporation of Pd.
The improvement of the NOx removal efficiency is assigned to a promotion of NOx adsorption sites
regeneration and NOx reduction rate during rich period (Figure 8). Thus, the higher accessibility of Pd
obtained by impregnation method further promoted these steps for Pd-impregnated sample. More
recently, we synthesized different catalysts with increasing palladium loadings (0.75, 1.5, 2.25 and
3.0 wt %) incorporated by both methodologies over 30 wt % La0.7Sr0.3CoO3/Al2O3 formulation [102].
As a general trend, Pd-impregnated samples showed higher NOx-to-N2 conversion than Pd-doped
samples. In agreement with the observed by TEM-EDX mapping and XRD analysis, this fact was
ascribed to the partial accommodation of Pd inside the perovskite structure observed for Pd-doped
sample, which limits Pd accessibility during lean-rich periods. Among Pd-impregnated samples, the
1.5 wt % Pd–30 wt % La0.7Sr0.3CoO3/Al2O3 variant achieved the best balance between NOx storage and
reduction activity and minimum palladium content. Specifically, their NOx conversion and nitrogen
production were as high as 86% and 70%, respectively. In fact, this formulation achieved comparable
DeNOx activity to the model NSR catalyst (1.5 wt % Pt–15 wt % BaO/Al2O3). These results confirm
the potential of the 1.5 wt % Pd–30 wt % La0.7Sr0.3CoO3/Al2O3 catalyst for NOx removal in diesel
automobile applications. On the other hand, Wang et al. [70] and Wen et al. [101] analyzed the effect of
Pt on NOx removal efficiency of LaCo0.92Pt0.08O3 and 0.3 wt % Pt/K2CO3/LaCoO3/Al2O3 formulations,
respectively. These alternatives showed NOx-to-N2 removal efficiencies comparable or superior to
1 wt % Pt–16 wt % Ba/Al2O3 catalyst. However, the Pt load in the former was high (~6.0 wt % Pt),
whereas the catalyst composition was too complex in the later, which makes them less promising than
the previously described.
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Taking into account results reported for NOx storage capacity, the incorporation of perovskites
on high surface area supports is presented as an alternative for partial or total replacement of Pt in
these formulations. You et al. [95,96] observed how the catalyst 5 wt %K2CO3–10 wt % LaCoO3/S
(with S = Ce0.75Zr0.25O2 doped with 5% Y) provided NOx reduction efficiencies of 98% and selectivities
towards N2 of 99% at 350 ◦C. The high activity of these formulations (even in the presence of CO2 in
the feed) is assigned to the high oxidation capacity of NO, and dispersion of the NOx storage centers
(K), which favors a good contact between both phases and the diffusion of intermediate compounds.
However, although the results obtained are apparently promising, the reducing periods used in their
experiments were too long (60 s) and the space velocities too low (45,000 h–1). In addition, the results
were obtained in absence of NO in the rich period. As observed for NOx adsorption, the conformation
of mesoporous perovskites with ordered structure has also been analyzed. The 5 wt % K2CO3/LaCoO3

formulation prepared by nanocasting and sequential impregnation of K2CO3 showed NOx reduction
efficiencies of 97% and N2 selectivities of 97% at 350 ◦C [65]. However, again the reducing periods
used are considered long (60 s), and the results were obtained in absence of NO in the rich period
and feeding reducing agent (C3H6) in both periods. On the other hand, the ordered macroporous
SrTi1–xCuxO3 perovskites showed a limited NOx reduction capacity and a high influence of CO2 and
H2O, which limits their actual application [100].

3.4. SO2 and Hydrothermal Resistance

Based on above described results, perovskite-based formulations can be proposed as an economical
alternative to 1.5 wt % Pt–15 wt % BaO/Al2O3 model catalyst. However, one of the essential
characteristics of the NSR catalyst for application in the exhaust aftertreatment of diesel engines is
the durability, basically referring to hydrothermal resistance. In this sense, Pt-based model catalyst
shows poor hydrothermal stability and limited sulfur resistance [103,104]. Thus, to accomply the
characteristics required for real application, the perovskite-based formulations should show high
NOx removal efficiency with simple and complex feedstreams, appropiate hydrothermal stability,
and sulfur resistance. In order to have a more realistic vision on these aspects, some of the works
previously reported also analyzed the hydrothermal and sulfur resistance of the corresponding
perovskite-based formulations.

Regarding sulfur resistance, it is widely accepted that the decrease of NOx removal efficiency
after sulfur poisoning is derived from a significant decrease of NOx adsorption capacity during
lean period. This fact is assigned to the formation of very stable sulfates over basic components of
the NSR catalyst. Kim et al. [23] observed that their monolithic catalyst based on La0.9Sr0.1MnO3

perovskite ball-milled with Pd–Rh/BaO/CeO2–ZrO2 catalyst showed higher sulfur resistance and
regenerability after SO2 poisoning. More recently a new concept has emerged based on the results
reported by Nishihata et al. [105]. In that work, the authors observed for Pd-doped perovskites a
self-regeneration of Pd0/Pd2+ in and out of perovskite lattices when switching between oxidizing
and reducing atmospheres. This behavior could improve the hydrothermal and sulfur resistance of
perovskite-based materials. Taking these results as reference, Li et al. [67] also explored the sulfur
resistance of La0.7Sr0.3Co0.97Pd0.03O3 perovskite. This formulation shows excellent sulfur tolerance.
Based on the results obtained by EXAFS, XPS, and XRD analysis, this behavior was related to the Pd
mobility in the perovskite structure, as outlined in Figure 9. In contrast, the Pt–BaO/Al2O3 catalyst was
readily poisoned by sulfur (NOx conversion dropping from 99% to 55%, N2 selectivity dropping from
96% to 85%) and could not recover its initially catalytic activity by reducing in H2 at mild temperatures,
such as 325 ◦C. Apparently, the Pd-doped perovskite provides a new possibility for overcoming the
problems caused by sulfur poisoning for the LNT systems.
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perovskite during alternative lean-rich cycles. Reprinted from [67]. Copyright (2013) American
Chemical Society.

More recently, Wang et al. [70] compared the sulfur resistance of LaCo0.92Pt0.08O3 and 1 wt %
Pt–16 wt % Ba/Al2O3 catalysts. As observed in Figure 10, both formulations are quickly deactivated
in the presence of 100 ppm of SO2, but LaCo0.92Pt0.08O3 shows higher regeneration ability than
Pt–Ba/Al2O3 in the lean period. This fact is assigned to the formation of surface and bulk cobalt sulfate
on LaCo0.92Pt0.08O3 perovskite, which is less stable than bulk barium sulfate under reducing conditions.
The sulfur resistance of LaCoO3 perovskites was also highlighted in the simultaneous removal of NOx

and soot [106].
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fresh, sulfated, and regenerated (R) catalysts. Reprinted from [70]. Copyright (2013) American
Chemical Society.

Regarding hydrothermal resistance, the limited stability of the NSR model formulation is ascribed
to Pt progressive agglomeration during reactions as well as the formation of BaAl2O4 phase. Wang
et al. [70] compared the thermal stability of LaCo0.92Pt0.08O3 and model NSR catalyst (Pt–Ba/Al2O3).
For that, samples were first treated in a muffle at 850 ◦C for 40 h and then submitted to stability
test. As shown in the left side of the Figure 11, LaCo0.92Pt0.08O3 has a much better thermal stability
than conventional Pt–Ba/Al2O3. As observed in Figure 11, the particle size of Pt–Ba/Al2O3 catalyst
increased from 4−6 nm to 26−46 nm after hydrothermal aging. In contrast, fine Pt particles (about
4−7 nm) accommodated in the perovskite structure have no obvious change after LaCo0.92Pt0.08O3 was
thermally aged under the same conditions. Thus, Pt particles sintering at high operating temperature
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explains the lower stability of Pt–Ba/Al2O3 catalyst. However, good redox property of LaCo0.92Pt0.08O3

can well maintain its perovskite-type structure. Thus, the self-regeneration of noble metal particles in
and out of perovskite lattices when switching between oxidizing and reducing atmospheres seems to
prevent it from agglomeration during reactions. On the other hand, as the real feed stream usually
contents H2O, the NOx removal activity was also compared incorporating a 10% of H2O in the
feed stream (right side of Figure 11). The presence of H2O results in a quick decrement of NOx

conversion for both formulations. However, the NOx conversion is rapidly restored after cutting
off the supply of water. More recently, Wen et al. [101] also analyzed the hydrothermal and sulfur
resistance of 0.3 wt % Pt/K2CO3/LaCoO3 catalyst. This alternative showed NOx-to-N2 reduction
efficiency, resistance to poisoning with SO2, regenerability, and durability comparable or superior to
Pt–Ba/Al2O3 model catalyst.

The results analyzed suggest that the segregated metallic Pd/Pt from perovskite in fuel-rich
atmospheres plays a significant role in obtaining promising achievements in reducing deactivation.
This provides a new possibility for the application of perovskite-based formulations as alternative to
NSR model catalyst and for solving the problems caused by simultaneous sulfur poisoning and noble
metal aggregation at high temperatures.Catalysts 2019, 9, x FOR PEER REVIEW 17 of 25 
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LaCo0.92Pt0.08O3, and (d) aged Pt–Ba/Al2O3, which were maintained at 850 ◦C for 40 h followed by NOx

conversion test at 350 ◦C for 200 h. Reprinted from [70]. Copyright (2013) American Chemical Society.
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4. Perovskite-Based Catalysts for Combined NSR–SCR Technology

Results above reported demonstrate that perovskite-based formulations are able to obtain
NOx removal efficiency, hydrothermal stability, and sulfur resistance similar of even higher than
conventional NSR model catalalyst (Pt–BaO/Al2O3). However, as above mentioned, single-SCR and
NSR technologies have some drawbacks that limit their global application in diesel vehicles. These
limitations have been partially solved by the implantation of hybrid NSR–SCR, discovered by the
Ford Motor company [107]. Since its discovery hybrid NSR–SCR systems have been subjected to a
continuous development. Indeed, different system architectures, catalytic formulations and operation
control have been analyzed [108–111]. However, the NSR formulation in the combined NSR–SCR
configuration is usually based on the Pt-model formulation. As a result, the cost of the hybrid NSR–SCR
system increases, whereas its hydrothermal stability decreases. Taking into account the results above
reported, the application of perovskite-based formulations in combined NSR–SCR systems can be
considered as an improvement of the conventional NSR–SCR configuration.

In a preliminary study, we analyzed the applicability of perovskite-based materials to hybrid
NSR–SCR configuration [112]. Figure 12 shows how evolved NOx (NO + NO2), and NH3 outlet
concentration profiles during two consecutive lean-rich periods, as well as mass spectroscopy N2 signal
for the single-NSR and combined NSR–SCR configurations at 300 ◦C. NSR catalyst correspond to 0.5 wt
% Pd–30 wt % La0.5Ba0.5CoO3/Al2O3 formulation, whereas SCR system is composed of conventional 4%
Cu/SAPO-34 formulation. As can be observed in Figure 12a, the single-NSR system shows the typical
NOx outlet concentration profile previously described in Figure 6 [8]. However, when SCR system
is placed downstream the NOx (Figure 12a) and NH3 (Figure 12b) outlet concentrations decrease
drastically in comparison to single-NSR system. These results suggest that most NH3 formed during
regeneration of the NSR catalyst is adsorbed over SAPO-34 zeolite and then, in the subsequent lean
period, reacts with the NOx slipping NSR system following SCR reactions [113]. The occurrence of SCR
reactions over the Cu/SAPO-34 catalyst is confirmed by the evolution of N2 signal measured by MS
(Figure 12c). As can be observed, N2 signal is detected in the rich and lean periods when the reaction
was carried out with the combined NSR–SCR system, whereas N2 formation is only detected during
the rich period for the single-NSR systems. When the gas mixture is switched to lean conditions,
practically all NOx is trapped on the NSR catalyst, and consequently, is not available to carry out the
SCR reactions with the NH3 stored in the Cu/SAPO-34 downstream. However, as the NSR catalyst
becomes saturated, the gradual increase of NOx leaving the NSR system promotes the N2 production
by the reduction of non-adsorbed NOx with the NH3 previously stored over the acid sites of the
zeolite [114]. This fact explains the similar evolution of the NOx concentration and N2 signal at the
outlet of the combined NSR-SCR system.

In summary, the applicability of 0.5 wt % Pd–30 wt % La0.5Ba0.5CoO3/Al2O3 catalyst to mixed
NSR–SCR system is confirmed. Based on the reported results, the implementation of these types of
perovskite-based materials in coupled NSR–SCR configurations can be considered as a promising
evolution of the conventional NSR–SCR systems. As a result, this opens a new scope in the development
of perovskite-based formulation as a new generation of NSR catalyst to overcome NOx removal
environmental issue in diesel and lean-burn gasoline engines.
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Figure 12. (a) NOx (NO + NO2) and (b) NH3 outlet concentrations, and (c) MS signal of N2 for the
single-NSR and NSR–SCR configurations at 300 ◦C. Feed: 500 ppm NO, 6% O2/3% H2, and Ar to
balance; W/FA0 = 200 (g h Mol−1). NSR and SCR formulations correspond to 0.5 wt % Pd–30 wt %
La0.5Ba0.5CoO3/Al2O3 and 4 wt % Cu/SAPO-34 catalysts, respectively [112].

5. Conclusions

Diesel engines offer higher energy efficiency and lower CO2 emissions than gasoline engines.
However, NOx emission removal diesel engine exhaust gases remains as an unsolved environmental
issue. To overcome this technological challenge, two main potential solutions have been developed:
NOx storage and reduction (NSR) and selective catalytic reduction using NH3 (NH3-SCR). However,
these technological alternatives show some limitations for extensive application. NSR system shows
some NO non-converted as well as large quantities of NH3 generated during the rich period as
byproduct. Furthermore, the catalyst needs large quantities of expensive Pt to obtain high NOx removal
efficiencies. This fat also limits the thermal stability of the system. Otherwise, NH3-SCR system
requires the urea feeding system for the ammonia injection as chemical reductant. This additional
system increases the cost and limits its implementation to light-duty vehicles. Moreover, the limited
NO conversion at low temperature and NH3 slip are some of main of limitations. Recently, combined
NSR–SCR configurations have been explored to overtake individual limitations of the stand-alone NSR
or SCR systems. In fact, the developed hybrid NSR–SCR systems are able to increase the temperature
operational window and NO conversion, and avoid the need for a urea dosing system. Nevertheless,
the conventional Pt–Ba/Al2O3 NSR catalyst is the most adopted formulation in coupled NSR–SCR
configurations. Thus, a new generation of catalysts and an evolution of the current technologies are
essential to reduce NOx emissions below EURO VI standards.
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Perovskite-type oxides can adopt a great range of stoichiometries and crystal structures maintaining
a high thermal stability. Indeed, the physico-chemical properties can be controlled by the modification
of their composition substituting partially A and B cations. This allows qualify them for their
automotive application. As a consequence, perovskite-based materials have been extensively explored
as economical and more durable alternative to Pt-based model catalyst for NSR system. La-based
formulations, especially LaCoO3 and LaMnO3 perovskites, have been the most explored alternative
due to their excellent efficiency in NO-to-NO2 conversion, which is considered a primary step in
the NSR process. La3+ partial substitution by other cations, such as Ca2+, Ba2+, or Sr+2, is widely
accepted as a simple way to improve NO oxidation conversion and NO storage capacity during lean
period. The improvement of the NO oxidation activity is closely related to a higher oxygen vacancy
density at the surface, which promotes the active oxygen mobility. Meanwhile, the promotion of NOx

storage capacity is ascribed to the promotion of NO-to-NO2 conversion together with the presence of
higher concentration of NOx adsorption sites at the surface. Unfortunately, bulk perovskites are not
efficient enough as NOx storage and reduction catalyst due to their crystallization at high temperature.
Supporting perovskite over high surface area materials, such as Al2O3, CeO2, Ce0.75Zr0.25O2, SiO2,
or ZrTiO4, has demonstrated to be an efficient approach. Alternatively, the incorporation of small
amounts of basic components, such as Sr, Ba, or K, over perovskite-based formulation, or alternatively,
the mixing of the perovskite with a phase with high NOx trapping efficiency also improves NOx

storage and reduction efficiency. Nonetheless, perovskite-based materials show limited NOx reduction
at low and intermediate temperatures. The incorporation of noble metal (Pt or Pd) low contents by
impregnation over perovskite-based formulation or doping perovskite structure emerge as efficient
solutions. The former seems to be more appropriate to maximize NOx removal efficiency. Meanwhile,
the latter partially inhibits the agglomeration of noble metal during reactions and promotes sulfur
resistance. This fact is ascribed to the self-regeneration of noble metal particles in and out of perovskite
lattices during lean-rich cycles. Indeed, these formulations show similar or even higher NOx removal
efficiencies, and hydrothermal and sulfur resistance than conventional Pt–BaO/Al2O3 catalyst.

The promising results discussed in the application of perovskite-based formulations to stand-alone
NSR system motivated their implementation in hybrid NSR–SCR configurations. The preliminary
results have shown almost complete NOx conversion to N2 without NH3 slip. These results are even
more promising considering that the noble metal content in the NSR catalyst is significantly lower than
in conventional NSR–SCR configuration.

The results reported in this review reveal that perovskites-based materials have emerged as a new
generation of material for diesel automotive applications. In upcoming years, more comprehensive
studies focused on understanding the mechanism involved in NOx storage and reduction over
perovskite-based formulation, are required. Furthermore, the efficiency of the system during cyclic
lean-rich periods can be further promoted. It is worth to mention that the application of perovskite
composed materials to the combined NSR–SCR system is very recent. Thus, this opens a new horizon
on diesel engines aftertreatment systems with ample room for improvement. Efforts should be focused
on exploring different catalyst architectures (i.e., segmented zones or dual layer monoliths), reducing
the cost of the catalyst and developing of detailed kinetic model.
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