Supporting Information

Pt nanowires-anchored dodecahedral Ag₃PO₄{110} constructed for significant enhancement of photocatalytic activity and anti-photocorrosion: spatial separation of charge carriers and photogenerated electron utilization

Hanxu Zhu¹, Yekun Ji¹, Lifang Chen², Weilin Bian², Jinnan Wang^{*1}

¹ State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University,

Nanjing 210023, China

². Institute of Water Environmental Engineering & Technology, YanCheng 224000, China

*Corresponding author: <u>wjnnju@163.com</u>

Scheme S1. Preparation of Pt nanowires-anchored dodecahedral Ag₃PO₄{110}.

Fig. S1. SEM images of pure Ag₃PO₄ with adding different amount of acetic acid during the synthesis process. (A) 0

mL, (B) 0.1 mL, (C) 0.2 mL, (D) 0.4 mL.

Fig. S2. SEM images of Pt nanowires before and after ultrasonic exfoliation (A) 0 h (B) 5 h and (C) 10 h.

Fig. S3. SEM images of Pt nanowires-anchored dodecahedral Ag_3PO_4 {110} with different amount of Pt nanowires: (A)

 $0.2 \text{ }\omega t\%$, (B) $0.5 \text{ }\omega t\%$, (C) $1 \text{ }\omega t\%$, (D) $2 \text{ }\omega t\%$.

Fig. S4. FT-IR spectrum of as-prepared Pt nanowires.

Fig. S5. The high resolution XPS spectrum of (A) P 2p, (B) O 1s, (C) Ag 3d of pure Ag_3PO_4 and Pt-nanowires/ Ag_3PO_4 composite.

Fig. S6. Photolysis curves and photocatalytic degradation curves (A) of bisphenol A and the corresponding TOC removal curves over 2 ω t% Pt nanowires-anchored dodecahedral Ag₃PO₄{110}; (B) the concentration variation curves of BPA and its intermediate product in the degradation process.

High performance liquid chromatograph (HPLC) was used to monitor the BPA and the intermediates concentration. An Agilent TC-C18 column with two Varian ProStar 210 pumps and a Varian ProStar 325 UV–vis Detector was used to analyze the concentration of BPA (wavelength = 230 nm).

Table. S1. Photocatalytic	c degradation of RhB	over Ag ₃ PO ₄ -based	photocatalysts in	previous literatures	and this work.
---------------------------	----------------------	---	-------------------	----------------------	----------------

Photocatalyst	Light source	Pollutant concentration	Degradation	Reference
Ag ₃ PO ₄ porous microcubes	500W Xe lamp	8ppm	95% RhB degraded	(1)
(0.375g/L)	$(\lambda \ge 400 \text{ nm})$		within 24 min	[1]
Branch Ag ₃ PO ₄ crystal	350W	10	98% RhB degraded	(2)
(0.83g/L)	$(\lambda \ge 400 \text{ nm})$	TOppm	within 35 min	[2]
Ag ₃ PO ₄ tetrapods	300W	0	95% RhB degraded	(2)
(1g/L)	$(\lambda > 400 \text{ nm})$	8ppm	within 15min	[3]

Ag/Ag ₃ PO ₄ coaxial hetero-nanowires	300W		98% RhB degraded	
(2g/L)	$(\lambda \ge 400 \text{ nm})$	8ppm	within 6min	[4]
Dd/0.1949/3/Ac DO (1c/13	300W	5 mm	95% RhB degraded	[5]
ru(0.1wt%)/Ag3r04 (1g/L)	$(\lambda \ge 400 \text{ nm})$	Jppm	within 15min	
A. (0.10).)/A. DO. (1.7.)	300W	Francis	94% RhB degraded	[6]
Au(0.1wt%)/Ag ₃ PO ₄ (1g/L)	$(\lambda \ge 400 \text{ nm})$	Sppm	within 15 min	[5]
0.5ot% Pt nanowires-anchored	350W		99.5% RhB degraded	this work
dodecahedral Ag ₃ PO ₄ (0.3g/L)	$(\lambda \ge 400 \text{ nm})$	Sppm	within 10 min	
0.5ot% Pt nanowires-anchored	500W	_	98% RhB degraded	this work
dodecahedral Ag ₃ PO ₄ (0.3g/L)	$(\lambda \ge 400 \text{ nm})$	Sppm	within 5min	
0.5ot% Pt nanowires-anchored	350W	10	99% RhB degraded	this work
dodecahedral Ag ₃ PO ₄ (0.3g/L)	$(\lambda \ge 400 \text{ nm})$	TOppm	within 10min	
0.5ot% Pt nanowires-anchored	350W		98% RhB degraded	this work
dodecahedral Ag_3PO_4 (1g/L)	$(\lambda \ge 400 \text{ nm})$	5ppm	within 3min	

References

- [1] Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, CrystEngComm 14 (2012).
- [2] P. Dong, Y. Wang, H. Li, H. Li, X. Ma, L. Han, J. Mater. Chem. A 1 (2013) 4651.
- [3] J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, X. Zhou, CrystEngComm 15 (2013) 39-42.
- [4] H. Hu, Z. Jiao, T. Wang, J. Ye, G. Lu, Y. Bi, J. Mater. Chem. A 1 (2013) 10612.
- [5] T. Yan, H. Zhang, Y. Liu, W. Guan, J. Long, W. Li, J. You, RSC Advances 4 (2014) 37220.