Highly Crystallized Pd/Cu Nanoparticles on Activated Carbon: An Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Catalysts
3.2. General Procedure for Sonogashira Reactions
3.3. Recycling Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chinchilla, R.; Nájera, C. The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem. Rev. 2007, 107, 874–922. [Google Scholar] [CrossRef] [PubMed]
- Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 2011, 40, 5084–5121. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, S.H. Sonogashira coupling in natural product synthesis. Org. Chem. Front. 2014, 1, 556–566. [Google Scholar] [CrossRef]
- Thomas, A.M.; Sujatha, A.; Anilkumar, G. Recent advances and perspectives in copper catalyzed Sonogashira coupling reactions. RSC Adv. 2014, 4, 21688–21698. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [Green Version]
- Carril, M.; Correa, A.; Bolm, C. Iron-Catalyzed Sonogashira Reactions. Angew. Chem. Int. Ed. 2008, 47, 4862–4865. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M. Tuning Chemoselectivity in Iron-Catalyzed Sonogashira-Type Reactions Using a Bisphosphine Ligand with Peripheral Steric Bulk: Selective Alkynylation of Nonactivated Alkyl Halides. Angew. Chem. Int. Ed. 2011, 50, 10973–10976. [Google Scholar] [CrossRef]
- Wang, L.; Lia, P.; Zhang, Y. The Sonogashira coupling reaction catalyzed by ultrafine nickel(0) powder. Chem. Commun. 2004, 514–515. [Google Scholar] [CrossRef]
- Tobisu, M.; Chatani, N. Cross-Couplings Using Aryl Ethers via C–O Bond Activation Enabled by Nickel Catalysts. Acc. Chem. Res. 2015, 48, 1717–1726. [Google Scholar] [CrossRef] [Green Version]
- Kyriakou, G.; Beaumont, S.K.; Humphrey, S.M.; Antonetti, C.; Lambert, R.M. Sonogashira Coupling Catalyzed by Gold Nanoparticles: Does Homogeneous or Heterogeneous Catalysis Dominate? ChemCatChem 2010, 2, 1444–1449. [Google Scholar] [CrossRef]
- Lauterbach, T.; Livendahl, M.; Rosellón, A.; Espinet, P.; Echavarren, A.M. Unlikeliness of Pd-Free Gold(I)-Catalyzed Sonogashira Coupling Reactions. Org. Lett. 2010, 12, 3006–3009. [Google Scholar] [CrossRef] [PubMed]
- Kanuru, V.K.; Kyriakou, G.; Beaumont, S.K.; Papageorgiou, A.C.; Watson, D.J.; Lambert, R.M. Sonogashira Coupling on an Extended Gold Surface in Vacuo: Reaction of Phenylacetylene with Iodobenzene on Au(111). J. Am. Chem. Soc. 2010, 132, 8081–8086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaumont, S.K.; Kyriakou, G.; Lambert, R.M. Identity of the Active Site in Gold Nanoparticle-Catalyzed Sonogashira Coupling of Phenylacetylene and Iodobenzene. J. Am. Chem. Soc. 2010, 132, 12246–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Abroshan, H.; Liu, C.; Zhu, M.; Li, G.; Haruta, M. Sonogashira cross-coupling on the Au(1 1 1) and Au(1 0 0) facets of gold nanorod catalysts: Experimental and computational investigation. J. Catal. 2015, 330, 354–361. [Google Scholar] [CrossRef]
- Karak, M.; Barbosa, L.C.A.; Hargaden, G.C. Recent mechanistic developments and next generation catalysts for the sonogashira coupling reaction. RSC Adv. 2014, 4, 53442. [Google Scholar] [CrossRef]
- Beccalli, E.M.; Broggini, G.; Gazzola, S.; Mazza, A. Recent advances in heterobimetallic palladium(ii)/copper(ii) catalyzed domino difunctionalization of carbon–carbon multiple bonds. Org. Biomol. Chem. 2014, 12, 6767–6789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, Z.Y.; Wang, C.W.; Xu, G.; Chang, H.T. Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in directmethanol fuel cells. J. Mater. Chem. A 2013, 1, 4773–4778. [Google Scholar] [CrossRef]
- Myers, S.V.; Frenkel, A.I.; Crooks, R.M. X-ray Absorption Study of PdCu Bimetallic Alloy Nanoparticles Containing an Average of ∼64 Atoms. Chem. Mater. 2009, 21, 4824–4829. [Google Scholar] [CrossRef]
- Espinet, P.; Echavarren, A.M. The Mechanisms of the Stille Reaction. Angew. Chem. Int. Ed. 2004, 43, 4704–4734. [Google Scholar]
- Peng, Y.; Li, W.D.Z. cine Substitution and the Cu Effect in Stille Cross-Coupling Reactions: Mechanistic Perspectives and Synthetic Utility. Eur. J. Org. Chem. 2010, 35, 6703–6708. [Google Scholar]
- Pérez-Temprano, M.H.; Casares, J.A.; Espinet, P. Bimetallic Catalysis using Transition and Group 11 Metals: An Emerging Tool for C-C Coupling and Other Reactions. Chem. Eur. J. 2012, 18, 1864–1884. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Garcίa, H.; Primo, A. Palladium and copper supported on mixed oxides derived from hydrotalcite as reusable solid catalysts for the Sonogashira coupling. J. Catal. 2006, 241, 123–131. [Google Scholar] [CrossRef]
- Cano, R.; Yus, M.; Ramόn, D.J. Impregnated copper or palladium–copper on magnetite as catalysts for the domino and stepwise Sonogashira-cyclization processes: A straightforward synthesis of benzo[b] furans and indoles. Tetrahedron 2012, 68, 1393–1400. [Google Scholar] [CrossRef]
- Cintas, P.; Cravotto, G.; Gaudino, E.C.; Orio, L.; Boffa, L. Reticulated Pd(II)/Cu(I) cyclodextrin complexes as recyclable green catalyst for Sonogashira alkynylation. Catal. Sci. Technol. 2012, 2, 85–87. [Google Scholar] [CrossRef]
- Heshmatpour, F.; Abazari, R.; Balalaie, S. Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction. Tetrahedron 2012, 68, 3001–3011. [Google Scholar] [CrossRef]
- Xu, W.; Sun, Y.L.; Guo, M.; Zhang, W.Q.; Gao, Z.W. Montmorillonite Supported Pd/Cu Bimetallic Nanoparticle Catalyzed Sonogashira Coupling. Chin. J. Org. Chem. 2013, 33, 820. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Sun, H.M.; Yu, B.; Zhang, G.F.; Zhang, W.Q.; Gao, Z.W. Sonogashira Couplings on the Surface of Montmorillonite-Supported Pd/Cu Nanoalloys. ACS Appl. Mater. Interfaces 2014, 6, 20261–20268. [Google Scholar] [CrossRef]
- Kariuki, N.N.; Wang, X.; Mawdsley, J.R.; Ferrandon, M.S.; Niyogi, S.G.; Vaughey, J.T.; Myers, D.J. Colloidal synthesis and characterization of carbon-supported Pd-Cu nanoparticle oxygen reduction electrocatalysts. Chem. Mater. 2010, 22, 4144–4152. [Google Scholar] [CrossRef]
- Behmenyar, G.; Akın, A.N. Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell. J. Power Sources 2014, 249, 239–246. [Google Scholar] [CrossRef]
- Gong, Q.; Gong, S.; Zhang, T.; Cheng, X.; Li, H. Achieving High Activity and Stability of Carbon Supported Pd-Cu Alloyed Catalysts for Fuel Cell Applications. J. Electrochem. Soc. 2019, 166, F906–F913. [Google Scholar] [CrossRef]
- Sengupta, D.; Saha, J.; De, G.; Basu, B. Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins: An excellent heterogeneous catalyst for the Sonogashira reaction. J. Mater. Chem. A. 2014, 2, 3986–3992. [Google Scholar] [CrossRef]
- Korzec, M.; Bartczak, P.; Niemczyk, A.; Szade, J.; Kapkowski, M.; Zenderowska, P.; Balin, K.; Lelątko, J.; Polanski, J. Bimetallic nano-Pd/PdO/Cu system as a highly effective catalyst for the Sonogashira reaction. J. Catal. 2014, 313, 1–8. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Jalehb, B.; Ehsani, A. Preparation of carbon supported CuPd nanoparticles as novel heterogeneous catalysts for the reduction of nitroarenes and the phosphine-free Suzuki–Miyaura coupling reaction. New J. Chem. 2015, 39, 1148–1153. [Google Scholar] [CrossRef]
- Gholinejad, M.; Ahmadi, J. Assemblies of Copper Ferrite and Palladium Nanoparticles on Silica Microparticles as a Magnetically Recoverable Catalyst for Sonogashira Reaction under Mild Conditions. ChemPlusChem 2015, 6, 973–979. [Google Scholar] [CrossRef]
- Diyarbakir, S.; Can, H.; Metin, O. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces. 2015, 7, 3199–3206. [Google Scholar] [CrossRef]
- Gholinejad, M.; Jeddi, N.; Pullithadathil, B. Agarose functionalized phosphorus ligand for stabilization of smallsized palladium and copper nanoparticles: Efficient heterogeneous catalyst for Sonogashira reaction. Tetrahedron 2016, 72, 2491–2500. [Google Scholar] [CrossRef] [Green Version]
- Gholinejad, M.; Ahmadi, J.; Najera, C.; Seyedhamzeh, M.; Zareh, F.; Kompany-Zareh, M. Graphene Quantum Dots Modified Fe3O4 Nanoparticles Supported PdCu with Enhanced Catalytic Activity for Sonogashira Reaction. ChemCatChem 2017, 8, 1442–1449. [Google Scholar] [CrossRef] [Green Version]
- Evangelisti, C.; Balerna, A.; Psaro, R.; Fusini, G.; Carpita, A.; Benfatto, M. Characterization of a Poly-4-vinylpyridine-Supported CuPd Bimetallic Catalyst for Sonogashira Coupling Reactions. ChemPhysChem 2017, 14, 1921–1928. [Google Scholar] [CrossRef]
- Hronec, M.; Fulajtárováa, K.; Vávra, I.; Sotáka, T.; Mičusík, E.D.M. Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Appl. Catal. B Environ. 2016, 181, 210–219. [Google Scholar] [CrossRef]
- Jiao, S.; Xu, M.; Zhang, Y.; Pang, G.; Feng, S. Influence of Polyols on the Formation of Iron Oxide Nanoparticles in Solvothermal System. J. Nanosci. Nanotechnol. 2010, 10, 8405–8407. [Google Scholar] [CrossRef]
- Xiong, J.; Cheng, G.; Qin, F.; Wang, R.; Chen, H.S.R. Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem. Eng. J. 2013, 220, 228–236. [Google Scholar] [CrossRef]
- Lai, J.; Niu, W.; Luque, R.; Xu, G. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today 2015, 10, 240–267. [Google Scholar] [CrossRef]
- Gabasch, H.; Hayek, K.; Klötzer, B.; Unterberger, W.; Kleimenov, E.; Teschner, D.; Zafeiratos, S.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; et al. Methane Oxidation on Pd(111): In Situ XPS Identification of Active Phase. J. Phys. Chem. C 2007, 111, 7957–7962. [Google Scholar] [CrossRef]
- Espinós, J.P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J.P.; González-Elipe, A.R. Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2 and Cu/ZrO2 Catalysts. J. Phys. Chem. B 2002, 106, 6921–6929. [Google Scholar] [CrossRef]
Entry | Catalysts | Isolated Yield [%] |
---|---|---|
1 | Cat 1 | 87 |
2 | Cat 2 | 80 |
3 | Cat 3 | 83 |
4 | Cat 4 | 89 |
5 | Cat 5 | 98 |
6 | Pd@AC | 50 |
7 | Cu@AC | 61 |
8 | Pd@AC+Cu@AC | 67 |
| |||||||
Entry | Ar-X | R | Yield [%]c | Entry | Ar-X | R | Yield [%]c |
1 | | C6H5 | 97 | 12 | | 3-ClC6H4 | 77 |
2 | | C6H5 | 96 | 13 | | 4-ClC6H4 | 84 |
3 | | C6H5 | 90 | 14 | | 4-BrC6H4 | 65 |
4 | | C6H5 | 90 | 15 | | n-C6H13 | 66 |
5 | | C6H5 | 96 | 16 | | n-C5H11 | 84 |
6 | | C6H5 | 91 | 17 | | n-C4H9 | 96 |
7 | | C6H5 | 92 | 18b | | C6H5 | 94 |
8 | | C6H5 | 99 | 19b | | C6H5 | 65 |
9 | | 4-C2H5C6H4 | 95 | 20b | | C6H5 | 46 |
10 | | 3-MeC6H4 | 64 | 21b | | C6H5 | 51 |
11 | | 4-MeC6H4 | 97 | Conditions: Ar-X (0.5 mmol), RC≡CH (0.6 mmol), Cat 5 (53 mg, Pd 3 mol%), K2CO3 (2 equiv), PPh3 (5 mol%), EtOH (5 mL), 80 °C, 12 h, N2 atmosphere. b X-Phos (5 mol%), 100 °C, 24 h. c Isolated yields. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Xie, Z.; Gao, L.; Wang, Y.; Sun, H.; Jian, Y.; Zhang, G.; Xu, L.; Yang, J.; Zhang, W.; et al. Highly Crystallized Pd/Cu Nanoparticles on Activated Carbon: An Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling Reaction. Catalysts 2020, 10, 192. https://doi.org/10.3390/catal10020192
Wei Z, Xie Z, Gao L, Wang Y, Sun H, Jian Y, Zhang G, Xu L, Yang J, Zhang W, et al. Highly Crystallized Pd/Cu Nanoparticles on Activated Carbon: An Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling Reaction. Catalysts. 2020; 10(2):192. https://doi.org/10.3390/catal10020192
Chicago/Turabian StyleWei, Zhen, Zunyuan Xie, Lingxiang Gao, Yanyan Wang, Huaming Sun, Yajun Jian, Guofang Zhang, Liwen Xu, Jianming Yang, Weiqiang Zhang, and et al. 2020. "Highly Crystallized Pd/Cu Nanoparticles on Activated Carbon: An Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling Reaction" Catalysts 10, no. 2: 192. https://doi.org/10.3390/catal10020192
APA StyleWei, Z., Xie, Z., Gao, L., Wang, Y., Sun, H., Jian, Y., Zhang, G., Xu, L., Yang, J., Zhang, W., & Gao, Z. (2020). Highly Crystallized Pd/Cu Nanoparticles on Activated Carbon: An Efficient Heterogeneous Catalyst for Sonogashira Cross-Coupling Reaction. Catalysts, 10(2), 192. https://doi.org/10.3390/catal10020192