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Abstract: Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional
wastewater treatment plants and widely detected in wastewater bodies. In the present study,
advanced oxidation processes for carbamazepine removal are investigated, with particular regard to
the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis.
Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation,
a well-known technique in the field of industrial surface treatments, in view of an easy scale-up
of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while
only 65% removal was achieved by photolysis. The investigation of the transformation products
(TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and
accordingly reaction pathways were proposed. Above 80 min the transformation products disappear,
probably forming organic acids of low-molecular weight as final degradation products. The results
demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation
is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment
aimed at removing compounds of emerging concern.

Keywords: immobilized catalyst; titanium dioxide; photoelectrocatalysis; heterogeneous
photocatalysis; compounds of emerging concern; transformation products

1. Introduction

Organic micropollutants represent a group of contaminants of emerging concern (CECs) contained
in the effluents of wastewater treatment plants. This class of substances includes pharmaceutical
and personal care products, fire retardants, plasticizers, steroidal hormones, antibiotic resistance
genes and many other groups of compounds [1,2]. Unfortunately, sometimes information about their
toxicity are insufficient to define their maximal levels in drinking water. However, at the same time
it has been estimated that every year about two million people die due to diseases related to unsafe
water [3]. Because of the growth of the world population and the increase of water consumption in
the agricultural and industrial sectors, water reuse represents an important challenge, in particular in
regions suffering from water scarcity. The European Union started to consider the question of CECs
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with the Directive 2013/39/EU, including new substance in the priority list of the Directive 2000/60/EC
and fixing a watch list of 10 substances that need to be monitored to ensure water quality [4,5] (Decision
2015/495/EU and Decision 2018/840/EU).

The request to improve water quality and the difficulty to remove CECs by conventional treatments
have driven the scientific community to focus its efforts in the development of alternative technologies
in wastewater treatment plants (WWTPs).

In fact, the conventional strategies used to treat wastewater fail with CECs, leading to partial
pollutant removal or degrading them into products that are still active [6–9]. In recent years, various
removal process like adsorption, photochemical processes and biological treatments have been used for
the removal of these harmful substances [10–15]. Advanced oxidation processes (AOPs) represent new
and very promising technologies able to remove a wide range of micropollutants, due to the generation
of highly reactive non-selective hydroxyl radicals. AOPs include photochemical, photocatalytic
and chemical oxidation processes. Among the AOPs, the use of heterogenous photocatalysts has
been proposed as an effective alternative for the degradation of various classes of compounds in
water. In fact, heterogeneous photocatalysis is able to completely remove contaminants from the
system and to reduce the formation of undesired byproducts, which may be even more toxic than the
parent compound [16,17]. Although numerous semiconductor oxides could be used for environmental
remediation purposes (TiO2, ZnO, MgO, WO3, etc.), TiO2 is the most investigated photocatalyst because
of its low cost, chemical and photochemical stability, well known high activity and abundance [18–22].
Free-suspending systems are inherently more efficient than the immobilized ones due to higher surface
area [23,24]. However, they also suffer from severe disadvantages, such as catalyst loss and difficulty
in recovery the catalyst at the end of the treatment, limiting their real application because of the poor
quality of the treated effluent. The possibility to immobilize TiO2 particles on large size supports
allows us to overcome part of these inconveniences, facilitating the reuse of the catalyst in subsequent
treatment cycles [25–27].

Titanium dioxide-based photoelectrocatalysis (PEC) is an interesting alternative to common AOPs
for water treatment. Provided that good electrical contact could be established between the support
and the catalyst and between the catalytic material, the electrical polarization of the catalyst prevents
electron-hole recombination, potentially compensating the inherent lack of surface area.

TiO2 photoactive coatings can be obtained by several techniques, such as sol-gel, chemical vapor
deposition, radio frequency magnetron sputtering, plasma spray, electron beam evaporation, pulsed
laser deposition, anodic oxidation and plasma electrolytic oxidation (PEO) [28–33]. Among them,
electrochemical anodization allows the direct growth of the photoactive catalyst by oxidation of an
electrically conducting support (e.g., a titanium mesh) providing good mechanical adhesion and
electrical contact with the substrate [33–35]. Furthermore, the electrochemically generated films,
though usually porous, grow in the form of continuous and homogeneous coatings thus showing an
inherently higher electrical conductivity compared to particle-made supported films. In particular,
the PEO process is known to be a consolidated technique in the field of industrial surface treatments,
showing distinctive advantages compared to other traditional techniques such as chemical conversion
or conventional anodizing [36]. Compared to traditional anodizing resulting in TiO2 nanotube arrays,
the PEO process works at higher currents and higher voltages. Processing times required to obtained
crystalline films are of the order of only few minutes (less than 10 min) and the resulting films show
a peculiar porous double-layered morphology [37]. Some of the authors recently reported that TiO2

films obtained by PEO outperform TiO2 nanotube arrays showing quantum yields higher than 90% in
photon-to-electron conversion [32,38]. They also demonstrated that TiO2 films obtained by PEO are
effective in water decolourization by photoelectrocatalysis [39] and that the catalysts can be successfully
reused several times and regenerated if necessary [40].

In the present study, we report our recent achievements in the reaction pathways of carbamazepine
degradation by photoelectrocatalysis. For this purpose, carbamazepine was spiked in MilliQ water
and the identification of the possible transformation products during photoelectrocatalysis was carried



Catalysts 2020, 10, 169 3 of 20

out by linkage analysis. For comparison, reaction pathways during conventional photocatalysis using
commercial TiO2 powder (Degussa P25-TiO2 nanoparticle) and during photolysis were also studied
and discussed. The TiO2 mesh employed in the photoelectrocatalytic reactions was obtained by PEO
in view of a viable up-scaling and industrial application in water decontamination.

2. Results and Discussion

2.1. Characterization of the Nanostructured Catalyst

The characterization of the TiO2 catalyst exploited in the present study was performed on sacrificial
samples obtained in the same synthesis conditions used to prepare the TiO2 meshes employed in the
reactor. The TiO2 catalyst showed a porous morphology typical of oxides obtained by PEO, where
pores formed an interconnected sponge-like surface structure which became increasingly compact
closer to the oxide/substrate interface (Figure 1a) [37]. Energy-dispersive X-ray spectroscopy (EDX)
(Figure 1a, insert) confirmed that the TiO2 catalyst contained only Ti and O. Image processing of the
SEM surface micrographs provided surface porosity values of about 10%. Electrochemical Impedance
Spectroscopy (EIS) was carried out to further investigate the structure of the oxide. The Bode plot
shown in Figure A1 in the Appendix A shows two time-constants, confirming that the oxide consisted
of a double-layered structure, namely a more porous surface layer and a more compact inner layer.
The corresponding Nyquist plot in Figure 1b shows a normal distribution. In the insert in Figure 1b the
equivalent circuit is sketched, where Rel accounts for the electrolyte and ohmic resistances, Rc and Rp

represent the resistance of compact and porous layer, and the Qc and Qp represent the corresponding
capacitance. According to the fitting of the electrochemical impedance spectra, the values of Rc and
Rp were respectively 168 ± 4.70 kΩ·cm2 and 3.55 ± 0.19 kΩ·cm2, while Qc and Qp were respectively
31.7 ± 0.85 and 23.1 ± 0.79. Therefore, most of the resistance of the TiO2 coatings can be attributed to
the compact layer, while the capacitance of the oxide is quite similar in the two layers.
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Figure 1. SEM micrographs, the left insets show a magnified SEM cross-section image and the
EDX spectrum (a); Nyquist plot and fitting equivalent circuit (inset) (b); XRD pattern of the TiO2

catalyst (experimental pattern) and the reference spectra for Anatase; Rutile; and Titanium (c); UV-VIS
reflectance spectra (right and upper axes) and corresponding Tauc plot (left and lower axes) (d).

According to the GD-OES in-depth profiling shown in Figure A2 in the Appendix A, the thickness
of the oxide film was about 2.5 µm, which is considered a reasonable compromise between high surface
area and low probability of electron-hole recombination [41].

According to the XRD patterns in Figure 1c, the as-prepared oxide layers were crystalline in
structure and consisted of a mixture of the anatase and rutile allotropic phases. The reflections at
2θ = 25.31, 48.05, 53.89 and 55.15 can be attributed to the anatase planes (101), (200), (105), (211)
respectively. The rutile reflections appear at 2θ = 27.48 (110), 36.08 (101) and 54.31 (211). Reflections
at 2θ = 38.37 and 40.18 can be attributed to the α-Titanium substrate. Based on Equation (2), the
relative mass fraction of anatase and rutile phases was 58% and 42%, respectively. Based on UV-VIS
spectroscopy and Kubelka-Munk conversion (Figure 1d), the energy band-gap was 3.06 eV, in agreement
with the expectations considering the crystalline phase composition and the band-gap values of pure
anatase and pure rutile, 3.2 eV and 3.02 eV, respectively [42–44].

The photoelectrochemical activity of the titanium dioxide coatings was assessed by current
measurements under two electrical polarization conditions (open circuit and 0.6 V), both in the dark
and under irradiation. During current measurements, the incident wavelength was linearly scanned
from 310 nm to 430 nm in order to determine the optimal photoactivation wavelength. The photocurrent
was calculated under the same polarization conditions as the difference between the current under
irradiation minus the current in the dark. Finally, the Incident Photon-to Current Efficiency (IPCE),
i.e., the capability of the oxide in converting the incident photons into photogenerated electrons, was
calculated at each single irradiation wavelength using Equation (3). As shown in Figure 2, the IPCE of
TiO2 films represented as a function of the irradiation wavelength exhibited a non-symmetric bimodal
distribution, with maximum values of 93% and 62% at 310 nm and 375 nm, respectively. The bimodal
shape can be understood considering that the oxide consisted of a mixture of anatase and rutile phases,
whose activation peaks are positioned at around 325 nm and 380 nm, respectively. The same Figure 2
also shows that the IPCE can be enhanced by applying a positive voltage of 0.6 V vs. SCE. Based on
the abovementioned IPCE values, it was inferred that the TiO2 catalyst under investigation could be
well photoactivated by UV-C sources; it was also concluded that a slight anodic polarization would
have further increased the photoactivity of the catalyst.
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Figure 2. Incident photon to current efficiency (IPCE) of the TiO2 catalyst as a function of incident light
wavelength at open circuit and 0.6 V vs. saturated calomel electrode (SCE).

The minimum surface area of the TiO2 catalyst was the geometrical area of the mesh, around
327.5 cm2. To evaluate the surface enhancement due to porosity, ElectroChemical Surface Area (ECSA)
measurements were carried out. The ECSA values were calculated on the basis of the capacitance of
the layers by means of cyclic voltammetry at several scan rate and was performed in the non-faradaic
region around the open-circuit potential value. The estimated ECSA was 5.7 m2 g−1 for the TiO2 film,
which seems to be a reasonable value when it is compared with real surface area of TiO2 nano-powders
as 50 m2 g−1. The surface area increase due to the porous structure of the TiO2 film was 54.8 per unit
geometrical area of mesh, corresponding to a total surface area of 1.795 m2. Comparatively, given
that the concentration of the TiO2 nanopowders was 100 mg L−1, the total surface area employed in
conventional photocatalysis was 5 m2. Considering that one of the main concerns using supported
nanocatalyst is the reduction of surface area, in the present study due to surface morphology the
supported catalyst showed a surface area which was of the same order of magnitude of the conventional
TiO2 Degussa P25.

2.2. Degradation of Carbamazepine
Figure 3 shows the degradation of carbamazepine under the investigated UV-assisted processes,

namely: photoelectrocatalysis (UV + Bias + Mesh), photocatalysis using the TiO2 mesh (UV +

Mesh), electrochemical oxidation (Mesh + Bias), conventional photocatalysis (UV + Degussa P25) and
photolysis (UV).

Catalysts 2020, 10, x FOR PEER REVIEW 5 of 23 

 

 
Figure 2. Incident photon to current efficiency (IPCE) of the TiO2 catalyst as a function of incident 
light wavelength at open circuit and 0.6 V vs. saturated calomel electrode (SCE). 

The minimum surface area of the TiO2 catalyst was the geometrical area of the mesh, around 
327.5 cm2. To evaluate the surface enhancement due to porosity, ElectroChemical Surface Area 
(ECSA) measurements were carried out. The ECSA values were calculated on the basis of the 
capacitance of the layers by means of cyclic voltammetry at several scan rate and was performed in 
the non-faradaic region around the open-circuit potential value. The estimated ECSA was 5.7 m2 g−1 
for the TiO2 film, which seems to be a reasonable value when it is compared with real surface area of 
TiO2 nano-powders as 50 m2 g−1. The surface area increase due to the porous structure of the TiO2 film 
was 54.8 per unit geometrical area of mesh, corresponding to a total surface area of 1.795 m2. 
Comparatively, given that the concentration of the TiO2 nanopowders was 100 mg L−1, the total 
surface area employed in conventional photocatalysis was 5 m2. Considering that one of the main 
concerns using supported nanocatalyst is the reduction of surface area, in the present study due to 
surface morphology the supported catalyst showed a surface area which was of the same order of 
magnitude of the conventional TiO2 Degussa P25.  

2.2. Degradation of Carbamazepine  

Figure 3 shows the degradation of carbamazepine under the investigated UV-assisted processes, 
namely: photoelectrocatalysis (UV + Bias + Mesh), photocatalysis using the TiO2 mesh (UV + Mesh), 
electrochemical oxidation (Mesh + Bias), conventional photocatalysis (UV + Degussa P25) and 
photolysis (UV).  

 

325 350 375 400 425310
0

10

20

30

40

50

60

70

80

90

100

IP
C

E 
(%

)

Wavelength (nm)

 @ OCP
 @ 0.6 V vs. SCE

Figure 3. Degradation of carbamazepine by photoelectrocatalysis (UV + Bias + Mesh), photocatalysis on
the TiO2 mesh (UV + Mesh), electrochemical oxidation (Mesh + Bias), photolysis (UV) and conventional
photocatalysis (UV + Degussa P25).
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The results show that by photoelectrocatalysis a complete abatement of carbamazepine was
obtained in 55 min. The beneficial effect given by the electrical polarization of the mesh is apparent
when the UV + Mesh test is considered, where the catalyst was operating in open circuit conditions.
The resulting degradation kinetics was significantly slower using the TiO2 mesh in presence of the only
UV source; after 55 min the residual concentration of carbamazepine was 35% and at the end of the test
(90 min) it was about 17%. The photolysis process was carried in the same reactor after removing the
TiO2 mesh. As shown in Figure 3, the degradation was faster than in the UV + TiO2 mesh process.
A fast degradation kinetics was also observed by conventional photocatalysis with commercial TiO2

powder (Degussa P25-TiO2 nanoparticle), where a complete abatement of carbamazepine was obtained
within 30 min.

However, to properly compare the three reactions, the results of the actinometric measurements
should be taken into account. In fact, actinometry revealed that the TiO2 mesh induced a shielding
effect of the UV light, reducing the UV dosage on the water sample by 51% and the radiance density
flux from 0.16 W cm−2 to 0.08 W cm−2. Similarly, it was assessed that the TiO2 Degussa P25 powders
produced a shielding effect of about 7%, the remaining radiance flux being 0.15 W cm−2. As discussed
in Section 2.1, based on ESCA measurements the total surface area of the TiO2 mesh (about 1.8 m2) was
of the same order of magnitude of the surface area of the TiO2 nanopowders (5 m2). Therefore, the
values of degradation rates of photolysis and conventional photocatalysis compared to (electro)catalytic
counterparts (i.e., photocatalysis on supported TiO2 and photoelectrocatalysis, respectively) can be
mainly attributed to the different irradiation flux rather than to the different surface area. Despite the
drawback consisting in the shielding effect of the mesh, the possibility of easily managing a supported
catalyst, which does not need to be recovered with difficulty at the end of the treatment and it can
be easily regenerated, makes electrochemical photocatalysis strongly advantageous if compared to
conventional photocatalysis using commercial TiO2 powder (Degussa P25-TiO2 nanoparticle).

As shown in Figure A3 in the Appendix A, all results were well fitted by applying the
Langmuir-Hinselwood model to a first order kinetics. From the value of the kinetic constants
the Electrical Energy per Order of magnitude of removal (EEO) of carbamazepine during investigated
treatments was calculated according to Equation (1).

EEO
(
kWhm−3

)
=

38.4 × UV power (kW)

V (l) × k
(
min−1

) (1)

where k is the first-order rate constant in the different reaction configurations, V is the total volume of
the treated water and UV power was obtained from the employed UV lamp.

The corresponding kinetic constants, half-life time and EEO values are reported in Table 1.

Table 1. Kinetic constants, half-life times and Electrical Energy per Order of magnitude of removal (EEO)
of carbamazepine during degradation by photoelectrocatalysis (UV + Bias + Mesh), photocatalysis
using the TiO2 mesh (UV + Mesh), electrochemical oxidation using the TiO2 mesh (Mesh + Bias),
photolysis (UV) and photocatalysis using commercial TiO2 powders (UV + Degussa P25).

Reactor Configuration k (min−1) h.l.t (min) EEO (KWh/m3)

UV + Bias + Mesh 0.076 ± 0.002 17 7.58
UV + Mesh 0.018 ± 0.007 36 31.98
Mesh + Bias 0.0008 ± 0.0002 ∞ 719.55

UV 0.028 ± 0.001 31 20.55
UV + Degussa P25 0.174 ± 0.018 × 10−15 4.5 3.30

Based on the parameters reported in Table 1, it can be generally concluded that, excluding
photoeletrocatalysis on TiO2 powders which will be commented separately, the photoelectrocatalytic
reaction was most efficient process. As for the kinetic constant, by applying a bias to the catalyst
during operation (UV + Mesh + Bias) an increase by a factor of 4.2 was observed with respect to
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photocatalysis on supported TiO2 (UV + Mesh). The employment of a polarized catalyst increased
the kinetic constant by a factor of 2.7 with respect to photolysis. Correspondingly, the half-life time
changed. More interestingly, by applying an electrical polarization to the catalyst the EEO decreased by
a factor of 2.7 with respect to photolysis (i.e., from 20.55 kW/m3 to 7.58 kW/m3).

Photocatalysis using commercial TiO2 powders was carried as it is considered a bench-mark
to evaluate other AOPs. In this case, the fastest degradation kinetics was observed (k = 0.174).
As previously mentioned, in the present study the ECSA of the supported TiO2 catalyst (1.8 m2) and
the surface area of the commercial TiO2 powders (5 m2) were comparable. The different kinetics can be
explained considering that the UV dosage using the mesh decreased by 51%, compared to 7% using
the dispersed TiO2 powders. However, this drawback is compensated by the mentioned technological
advantage of using a supported catalyst, which does not need recovering of the catalyst after usage,
can be used several times and can be easily regenerated in case of aging [40].

2.3. Identification of the Transformation Products and Degradation Pathways of Carbamazepine

The identification of possible transformation products (TPs) arising from uncompleted
mineralization of carbamazepine was carried out by means of linkage analysis using LC-MS and
LC-MS/MS investigation [45]. The analysis was done on the basis of both the accurate m/z ratio of all
detected compounds and the corresponding fragmentation pattern, obtained by high resolution-mass
spectrometry, along with elemental composition employing the isotopic distribution of molecular
ion. Possible transformation products (TPs) were identified for all the investigated photodegradation
processes, i.e., photoelectrocatalysis, photolysis and conventional photocatalysis, and listed in Tables 2–4,
respectively. Based on the described approach for the identification of the TPs and according to
Schymanski et al. [46], the identification level for detected TPs was 2 (probable structure), except for TP
129 formed during the photoelectrocatalysis treatment for which the identification level was 5 (exact
mass of interest).

Table 2. Transformation products of carbamazepine by photoelectrocatalysis.

Product
Code

m/z
[M + H]+

Elemental
Composition Structure MS Error

(ppm) Trend Refs

CBZ 237.1016 C15H12N2O
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Table 2. Cont.
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were identified. Ten TPs were identified during photoelectrocatalysis, three of them (TP119, TP129 and
TP173) being new carbamazepine TPs. The same number of transformation products were identified
during photolysis, out of them four being new TPs (TP173, TP224, TP229 and TP238). By conventional
photocatalysis, only five transformation products were determined, and out of them TP217 is not
reported in literature. Carbamazepine exhibits a constant decreasing profile in all the tested processes.
The detected TPs showed two different types of time profiles, i.e., a bell-shape trend and a constant
increase during the reaction time.

The time-profiles of all identified TPs, obtained by plotting the peak area of each selected TP along
reaction time, are shown in Figure A4 in the Appendix A.

Most part of these TPs show a bell shape trend. Only a few TPs show an increasing concentration,
corresponding to TPs accumulation in the reaction mixture. This is an evidence that UV-based processes
represent a good alternative to traditional degradation approaches, reducing by-products accumulation
in the treated wastewater. In particular, the time-profile plots revealed that the photoelectrocatalytic
reaction generates TPs with higher intensity respect to photolysis with a subsequently faster abatement
for all of them, except for TP120 for which a slight peak area increase along time of treatment was
observed without no further degradation. Compared to conventional photocatalysis, despite the
larger number of TPs the overall abatement by photoelectrocatalysis was obtained in shorter reaction
times. This is also evident considering the two TPs (TP252 and TP266) occurring in all the three
reactions (Figure 4), where the shortest degradation times were observed by photoelectrocatalysis. The
results confirm that photoelectrocatalysis can outperform photolysis and compare to conventional
photocatalysis. It must also be mentioned that only for photoelectrocatalysis smaller compounds
were found, such as TP119 and TP173, confirming the higher degradation abilities of this approach if
compared to the others. In both photoelectrocatalysis and conventional photocatalysis with Degussa
(P25) at reaction times higher than 80 min the TPs disappear, probably producing small organic acids
whose low-molecular weight (e.g., formic acid, acetic acid, etc. [52]) requires the use of a different
analytical technique, such as ion chromatography, for detection and identification [53].
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Figure 4. Time-resolved profiles of TP252 (a) and TP266 (b) of carbamazepine obtained by all the
investigated processes.

Based on the identified TPs, a reaction pathway was proposed for photoelectrocatalysis (Figure 5),
photolysis (Figure 6) and conventional photocatalysis (Figure 7). The pathways shown in Figures 5–7,
mostly consist in oxidation reactions resulting in multiple-step degradation mechanism.

As for the photoelectrocatalytic treatment two possible reaction pathways were proposed: (i) an
increase of 16 Da from CBZ was indicative of an oxidation reaction forming the TP252-A; from this
transformation product a contraction of the 7-membered ring into a 6-membered ring within a loss of
-CHNO group was proposed to produce TP223. Both TP 179 (acridine) and TP 173 were rationalized to
derive from TP223 as results of multiple transformations. Sequential oxidation reactions transformed
the intermediary TP252-A in TP266 and subsequently in TP282 by means of a hydroxylation reaction
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based on an increase of 16 Da [50]; (ii) an hydroxylation and ring contraction of CBZ produced TP252-B
subsequently transformed in TP222 through an intramolecular ring formation and loss of the aldehyde
group. One more compound of MW 120.0547 ([M + H]+) was identified, TP119, and based on both
the predicted elemental composition and MS/MS fragmentation spectra a molecular structure was
proposed (Table 2).

According to the reaction pathway supposed for the photolytic process, an increase of 16 Da was
also in this case indicative of CBZ oxidation in TP252 and from this product two possible reactions
were suggested: (i) consecutive oxidation reactions transforming the intermediary TP252 in TP268
and subsequently in TP266 from which TP 250 was rationalized to derive by a hydration reaction [40];
(ii) a contraction of the 7-membered ring into a 6-membered ring to produce the TP238 from which a
loss of –CHNO group was indicative for the production of TP195, with a decrease of 43 Da in terms
of m/z, whereas the loss of the ketonic group and the subsequent cyclization resulted in TP224 and
TP222, respectively. Two more compounds of MW 230.0808 and 174.0534 ([M + H]+) were identified,
TP229 and TP173 respectively, and based on both the predicted elemental composition and MS/MS
fragmentation spectra a molecular structure was proposed (Table 3).

Finally, the detected TPs produced during the carbamazepine degradation by conventional
photocatalysis with TiO2 Degussa P25 revealed two possible reactions: (i) consecutive CBZ oxidation in
TP252 and then TP266 subsequently transformed in TP250 by a hydration reaction; a contraction of the
seven-membered ring into a six-membered ring to form the TP195 as result of multiple intermediate
transformations. One more compound of MW 218.0816 ([M + H]+) was identified, TP217, and based
on both the predicted formula and MS/MS fragmentation a molecular structure was proposed (Table 4).
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3. Materials and Methods

3.1. Syntehsis and Characterization of the Nanostructured TiO2 Catalyst

The titanium dioxide catalyst was prepared by Plasma Electrolytic Oxidation in 1.5 M H2SO4

(14.7 wt.%) solutions prepared with distilled water for 5 min at constant potential of 150 V. Grade 1
Titanium expanded meshes having geometric surface area 327.5 cm2 were used as anodes. During
the PEO synthesis, the electrolyte temperature was refrigerated at about −5 ◦C by means of a cryostat
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(HAAK D10). After PEO, the expanded meshes were rinsed with water and dried in a stream of air.
For further characterization, several smaller samples having an area of 18 cm2 were also prepared.
Under visual observation, the TiO2 catalyst appeared uniform and light gray coloured. Morphology
was observed by scanning electron microscopy (SEM) using a Zeiss EVO 50 instrument. The phase
structure and texture of the titanium dioxide films were determined by X-ray diffraction (XRD) using a
Philips PW1830 instrument. Diffractograms were acquired in Bragg-Brentano geometry at a potential
of 40 kV with a filament current of 40 mA. The CuKα1 radiation was exploited at the scanning rate
of 2.5◦ per min in the 2θ range 20–60◦. The powder diffraction files of titanium (ICDD-PDF 44-1294),
anatase (ICDD-PDF 21-1272) and rutile phases (ICDD-PDF 21-1276) were used to index the XRD
patterns. The mass fraction of anatase was calculated by Equation (2) following Spurr and Meyer [54],
where IR is the intensity of the strongest rutile reflection, (110), and IA is the intensity of the strongest
anatase reflection, (101),

fA =
1(

1 + 1.26 (IR)
(IA)

) % (2)

Surface porosity was evaluated by ImageJ, an open-source tool for the processing of scientific
images. A number of SEM surface micrographs acquired at 20,000× were used for this purpose. Glow
Discharge Optical Emission Spectrometry (GD-OES) was exploited to determine film thickness and
depth profiling. GDOES analysis was carried on sample areas of ~2.5 mm diameter by means of a
analyzer (Spectruma GDA750) operating at 700 V in Ar atmosphere at 230 Pa. The monitored light
emission wavelength was 130 nm and 362 nm for O and Ti, respectively.

The estimation of the electrochemical surface area (ECSA) of the TiO2 obtained by PEO was done
by performing cyclic voltammetry [55], where consecutive potential cycles centered around the open
circuit potential were recorded in a potential window of 100 mV vs. SCE at five different scan rate.

The photoelectrochemical activity of the TiO2 film was measured using a three electrode PEC
cell with separated anodic and cathodic compartments. A TiO2 electrode was used as working
electrode, a platinum foil (25 × 25 mm2) as counter electrode and a saturated calomel electrode (SCE)
as reference electrode. The photocurrent and corresponding incident photon to current efficiency
(IPCE) were determined using an optical bench where the light source was a 300 W Xe lamp (Lot-qd),
the monochromator was a LOT-qd Omni-λ 150 instrument, the shutter was Thorlabs SC10 tool, and
the electrochemical cell was a homemade Plexiglas reactor presenting with an Pyrex optical glass
window. The photocurrent measurements were carried out in a 1.0 M NaOH solution without and
with applying an external bias (0.6 V vs. SCE) using an Amel mod. 2549 potentiostat/galvanostat and a
digital multimeter (Tektronix DMM4040). The incident wavelength values ranged from 250 nm to
450 nm with a step of 2 nm and a dwell time of 4 s per step. A calibrated Thorlabs S130VC photodiode
connected to a Thorlabs PM200 power meter was applied to measure the incident light power. To
account for the transmittance of the cell window, a Pyrex window was placed in between. The IPCE
percentage at each wavelength was calculated using the following Equation (3):

IPCE (%) =
h× c

e
×

I
P× λ

(3)

where h is the Plank constant [m2 Kg/s], c is the speed of light [m/s], e is the electron charge
[C], I is the steady-state photocurrent density [A/m2], P is the light intensity [W/m2] and λ is the
incident wavelength.

3.2. Bench-Scale Experiments

Degradation tests were carried out on 100 µg L−1 (100 ppb) Carbamazepine (Sigma-Aldrich,
Germany) dissolved in MilliQ water. The chemical structure of carbamazepine is displayed in Figure 8.
The carbamazepine concentration was chosen as good compromise between having a concentration



Catalysts 2020, 10, 169 14 of 20

high enough to allow the detection of several transformation products and low enough to simulate
real environmental conditions [56,57].Catalysts 2020, 10, x FOR PEER REVIEW 16 of 23 
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Figure 8. The structure of Carbamazepine.

The experiments were carried out in a laboratory-scale tubular stainless steel reactor having a
volume of 1 L which is schematically represented in Figure 9. The reactor was equipped with a 2 L
buffer reservoir and worked in semi-batch mode. An Iwaky Magnet Pump MD-30RZ-220N with
a nominal power of 80 W was used to recirculate the carbamazepine solution. The water sample
was pumped through the reactor up-flow. The UV lamp was a 30 W low-pressure Hg vapor lamp
UV-C lamp emitting at 254 nm. A tubular expanded titanium mesh (geometric surface area 327.5 cm2)
coaxially surrounded the UV lamp at a constant distance of a few mm. During the PEC experiments,
an anodic bias of 4 V was applied to the anodized titanium mesh and a cathodic bias to the steel reactor
body by means of an AMEL 2549 potentiostat/galvanostat. Actinometry test was exploited using
10 mM uridine (Sigma-Aldrich, Germany) considering the radiance density flux at 254 nm to quantify
the shading effect of TiO2 mesh on the UV dosage.
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Exploiting the described reactor, four different configurations were tested: UV + Bias + Mesh, UV
+ Mesh, Mesh + Bias, and UV. Test using a commercial TiO2 powder (Degussa P25-TiO2 nanoparticle)
and named UV + Degussa P25, was performed using a tubular reactor (1 L) equipped with a 30 W
low-pressure Hg vapor lamp (Helios Italquartz) and working in batch mode. The employed catalyst
was Degussa P25 (Evonik) TiO2, having an anatase-to-rutile ratio of typically of 80:20, an average
diameter of 30 nm and a surface area of 50 m2 g−1. Each test was repeated three times.

3.3. Analytical Set-Up and Data Processing

The analytical set-up used both to monitor the residual concentration of carbamazepine and to
identify TPs consisted of a TripleTOF 5600+ high-resolution mass spectrometer (AB-Sciex) interfaced
with an Ultimate 3000 UPLC System (Thermo Fisher Scientific, Waltham, MA, USA). The mass
spectrometer was equipped with a duo-spray ion source operating in positive and negative electrospray
(ESI) mode. The MS analysis was accomplished following an information-dependent acquisition (IDA)
method, including a full scan acquisition in TOF-MS, a background subtraction and the subsequent
isolation and fragmentation in the collision cell of the 4 most intense ions. The chromatographic
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separation of the analytes was carried out using an Acquity BEH C18 column, 2.1 × 150 mm, 1.7 µm,
operating at 0.200 mL min−1.

500 µL samples were injected by a large volume injection mode in order to reach detection limit of
the order of few ng L−1 and eluted with a binary gradient consisting of H2O/ACN 95/5 (A) and ACN
(B) both with 0.1% HCOOH as follows: 5% B held for 4.6 min, linearly increased to 80% of B in 18.5 min
and to 100% of B in further 5.5 min and kept for 5 min. The final eluent composition was then brought
to 5% of B in 0.5 min and left to equilibrate the system for 10 min before the next run of analysis.

The residual concentration of CBZ was quantified by MultiQuant software (AB Sciex).
As for data processing, identification of both already known in literature and new TPs was

performed by a suspect target and non-target screening employing data acquired with high resolution
mass spectrometry (HRMS). All the analyzed samples, collected during each investigated treatment
at different reaction times were processed using a detailed analytical protocol, including the
following steps:

i. the AB-Sciex software namely SciexOS, PeakView and MasterView were employed to screen
samples for a list of known TPs (collected from data reported in the literature or from prediction
models) based on the mass exact, isotopic cluster, fragmentation MS/MS spectrum and estimated
chromatographic retention time (suspect target screening);

ii. for each acquired file, a list of precursor ions with a specific retention time and peak intensity was
generated by an open source software (i.e., enviMass); the list of detected ions was successively
reduced by replicate sample intersection, isotope grouping and adduct grouping. Moreover,
the list of detected ions was reduced by removing ions which have also been detected in blank
samples (non-target screening);

iii. the reduced peak list was processed by SciexOS software using both the formula finder algorithm
(which tries to predict the possible chemical formula based on the MS and MS/MS spectrum
using the precursor ion’s mass accuracy, isotopic pattern and MS/MS fragmentation pattern)
and the library searching capabilities (LibraryView). Structure identification was carried out
based on high resolution MS/MS data [17]. For a more confident identification, the detected
compound were linked to ChemSpider and Metlin [58].

iv. Finally, in order to obtain additional information about the occurrence of possible TPs the final
peak list was processed using a linkage analysis script in R statistical environment [47].

4. Conclusions

The application of a novel TiO2 supported catalyst obtained by Plasma Electrolytic Oxidation
employed in photoelectrocatalytic processes was investigated for the removal of a well-known
recalcitrant emerging contaminant, i.e., carbamazepine, as a useful alternative to common advanced
oxidation processes (AOPs). For comparison, the performance of both conventional photocatalysis
using commercial TiO2 powder (Degussa P25-TiO2 nanoparticle) and photolysis were also studied
and discussed.

Results showed that with Titanium dioxide-based photoelectrocatalysis a complete abatement of
carbamazepine was obtained in 55 min under the investigated conditions. The resulting degradation
kinetics was significantly slower using the TiO2 mesh in presence of the only UV source and with
respect to the photolysis, although instead conventional photocatalysis showed a higher degradation
efficiency in carbamazepine removal.

However, the possibility of easily managing a supported catalyst, which does not need to be
recovered with difficulty at the end of the treatment and easily prepared by a well-established technique
in the field of industrial surface treatments makes electrochemical photocatalysis strongly advantageous
if compared to conventional commercial TiO2 powder (Degussa P25-TiO2 nanoparticle). Moreover,
the identification of the possible transformation products formed during the investigated treatments
revealed that compared to conventional photocatalysis, despite the larger number of TPs, the overall
abatement by photoelectrocatalysis was obtained in shorter reaction times.
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It follows that the investigated treatment is a suitable oxidation process for practical applications
in the field of water treatment as wastewater tertiary treatment aimed at removing compounds of
emerging concern.
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Figure A3. Fitted data by applying the Langmuir-Hinshelwood model reduced to a first order kinetics.
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Figure A4. Time-profiles of the all the TPs at different reactor configuration: (a) Photo-electrocatalysis,
(b) Photolysis, and (c) conventional photocatalysis with TiO2 Degussa P25.
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