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Abstract: Direct ethanol fuel cells (DEFCs) have emerged as promising and advanced power systems
that can considerably reduce fossil fuel dependence, and thus have attracted worldwide attention.
DEFCs have many apparent merits over the analogous devices fed with hydrogen or methanol. As the
key constituents, the catalysts for both cathodes and anodes usually face some problems (such as
high cost, low conversion efficiency, and inferior durability) that hinder the commercialization of
DEFCs. This review mainly focuses on the most recent advances in nanostructured catalysts for anode
materials in DEFCS. First, we summarize the effective strategies used to achieve highly active Pt-
and Pd-based catalysts for ethanol electro-oxidation, including composition control, microstructure
design, and the optimization of support materials. Second, a few non-precious catalysts based on
transition metals (such as Fe, Co, and Ni) are introduced. Finally, we outline the concerns and future
development of anode catalysts for DEFCs. This review provides a comprehensive understanding of
anode catalysts for ethanol oxidation in DEFCs.
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1. Introduction

In recent decades, direct ethanol fuel cells (DEFCs) and direct methanol fuel cells (DMFCs) have
received considerable attention as renewable energy sources [1,2]. They can play important roles in
replacing traditional fossil fuels, and thus alleviating the energy crisis and reducing green-house gas
emissions. When compared to DMFCs and hydrogen fuel cells, DEFCs show remarkable advantages,
such as higher safety in the storage and transportation of ethanol, as well as lower costs for producing
and handling ethanol fuels [3]. For example, hydrogen storage is still a major concern that hinders
wide applications of hydrogen fuel cells [4]. Methanol is more toxic and tends to cross over membranes
more easily than ethanol [5]. Moreover, ethanol demonstrates much higher volumetric energy density
than hydrogen gas and methanol (6.28 kWh/L for ethanol vs. 0.18 kWh/L for hydrogen stored at
70 bar and 25 ◦C and 4.82 kWh/L for methanol [6]). In combination with other common merits of
fuel cells, such as relatively low operating temperature and integrated system design, DEFCs show
promising applications in portable power for electronics and power devices for vehicles. The main
mechanism of DEFCs is to convert ethanol fuels into electricity by stripping the C–C bonds in ethanol

Catalysts 2020, 10, 166; doi:10.3390/catal10020166 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0002-3709-8895
http://dx.doi.org/10.3390/catal10020166
http://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/10/2/166?type=check_update&version=3


Catalysts 2020, 10, 166 2 of 22

which simultaneously generates electrons, protons, and CO2 at the anode [7]. For example, the overall
oxidation reaction of ethanol can be expressed as follows [8].

Ethanol oxidation reaction (EOR) at anode: C2H5OH+3 H2O→ 2 CO2+12 H++12 e− (1)

Oxygen reduction reaction (ORR) at cathode: 3 O2+12 H++12 e−→ 6 H2O (2)

In general, the trade-off between EOR and ORR determines the overall efficiency of DEFCs.
However, due to the poor activity of catalysts, the EOR process cannot occur completely, and many
byproducts such as acetaldehyde and acetic acid can be produced during EOR (Figure 1), which restricts
the conversion of ethanol to CO2 [9]. Thus, incomplete ethanol oxidation and inferior conversion
efficiency become the main obstacles for the commercial application of DEFCs. Furthermore, when
it comes to the practical application of single DEFCs, the influence of operational parameters on the
efficiency and stability of DEFCs have to be considered. For instance, Azam et al. investigated the
effects of operational parameters (such as ethanol concentration, operating temperature, and mass flow
rate) on a single-cell DEFC performance with a PtRu/Pt couple, achieving a specific power value of up
to 8.70 mW cm−2 at 85°C at stable conditions [5]. Thus, it is critical to design highly active and stable
catalysts and assemble them into DEFCs for further investigation [10].
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Currently, Pt-based catalysts have been developed as the most mature anode catalysts in DEFCs
due to their superior activity towards ethanol electro-oxidation. However, the reaction intermediates
(e.g., CO and CHx) generated during the catalytic process can cause obvious surface poisoning
of Pt-based catalysts, leading to the sluggish kinetics of ethanol reaction and thus weak service
performance [12]. Therefore, the high cost of Pt and the relatively low durability are the main concerns
for the wide applications of Pt electro-catalysts. Extensive efforts have been devoted to the development
of binary Pt-based catalysts with reduced Pt loading or carefully controlled microstructures as well as the
design of Pd-based and non-noble metal-based alternatives [13–15]. Bimetallic or trimetallic Pt-based
alloys, such as PtSn [16], PtCu [17], PtCo [18], PtBi [19], and PtIrNi, [20] have emerged as promising
electrocatalysts for EOR. Moreover, these Pt-based catalysts can mitigate the catalyst poisoning caused
by the incomplete oxidation of C–C groups in ethanol. The well-controlled microstructures of Pt- and
Pd-based catalysts contribute to large specific areas and abundant active sites, which are beneficial for the
catalytic process [21,22]. Novel synthetic routes have been developed to fabricate various catalysts with
core-shell structures [23], nanowires [24,25], nanoplates [26], nanoparticles [27], and micropores [28].
Another important way to improve the catalytic performance of DEFCs is to strengthen the contact
or interaction between catalysts and supports which can further enhance the electron and mass
transfer [29]. Thus, substantial attention has been directed to the optimization of support materials for
various ethanol electro-oxidation catalysts. Carbon black is among the most widely used supports for
the catalysts due to its relatively high surface area and wide accessibility. Besides, graphene [30], carbon
nanotubes [29,31], metal oxides [32], carbon fibers [33], metal hydroxides [34], and their hybrids [35,36]
have been employed as alternative supports for ethanol electrocatalysts.
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Recently, many outstanding reviews have outlined both experimental and theoretical advances in
anodic electrocatalysts for DEFCs [1,8,14,37]. However, to the best of our knowledge, few reviews
have focused on Pt- and Pd-based anode catalysts as well as non-noble metal-based alternatives for
DEFCs [14,38]. Moreover, a series of researches have reported the advanced catalytic performance for
these promising materials in recent years. Thus, it becomes essential to contribute a timely review on
this topic. In this review, we summarize the recent development of anode catalysts for ethanol oxidation
in direct alcohol fuel cells. Both Pt- and Pd-based catalysts and alternative non-noble metal-based
catalysts are involved with respect to their specific applications in ethanol oxidation. The strategies
for further improving the catalytic activity and durability in EOR are summarized, which include the
tailoring of chemical composition and microstructure as well as the optimization of support materials.
Finally, the prospects and future development of anode catalysts for DEFCs are presented.

2. Highly Active and Stable Pt- and Pd-Based Catalysts for EOR

Pt- and Pd-based alloys are among the most popular catalysts for EOR which mainly show active
performance in acidic and alkaline solutions, respectively. However, the pristine Pt and Pd often suffer
from incomplete cleavage ability of C–C bonds and unstable catalytic performance while subjected to
long-term cyclic tests [9]. Together with the high cost of noble Pt and Pd, these concerns become the
main obstacles for the commercial application of Pt and Pd. Therefore, substantial efforts have been
directed to design highly active and stable catalysts for EOR, such as composition and morphology
control, formation of composite catalysts, and optimization of support materials. This section will
outline the recent advances in EOR electrocatalysts followed by implementation of these strategies.

2.1. Nanostructure Engineering and Composition Control

As the EOR process is sensitive to the microstructure of catalysts, the control over shape and size
is important for enhancing the catalytic performance for EOR. Morphology control via nanostructure
engineering has been widely employed to enlarge surface areas or to expose special facets, thus
promoting reaction kinetics of Pt and Pd catalysts. To date, many novel methods have been developed
to synthesize Pt and Pd catalysts with abundant nanostructures, including nanoparticles, nanowires,
nanosheets, and nanopores [39]. However, stability remains a concern in these nanostructured Pt or
Pd catalysts for EOR [40]. On account of this, foreign elements have been incorporated to form Pt-
and Pd-based alloys. This is an effective way to reduce the overall cost of catalysts and to improve
their durability performance in DEFCs, which can be ascribed to the induced lattice mismatch and
modification of electronic properties via the interaction between different components. To date, diverse
Pt-based alloys have been synthesized by alloying with oxyphilic atoms, such as Sn [41], Bi [19],
Cu [17], Zn [42], etc. In particular, bimetallic PtSn alloys exhibit advanced catalytic activity for EOR in
both acidic and alkaline media due to the bifunctional mechanism, i.e., Sn can supply -OH species
(by accelerating the dissociative adsorption of water ) at relatively low overpotentials that facilitate the
oxidation of intermediates [41]. Moreover, the Sn-induced alternation of Pt electronic structure can
weaken the bonding between Pt and poisonous CO species produced during the EOR process [43].
In general, it is a common practice to combine the beneficial effects of both morphology and composition
control which can improve both catalytic activity and durability for Pt- and Pd-based catalysts [38].

Nanowire catalysts often possess low-coordinated sites, few grain boundaries, high aspect ratios
and preferential crystal growth that are favorable for the EOR process [44]. Many efforts have been
devoted to designing novel nanowire catalysts with superior catalytic performance. For example,
ultrathin Pt nanowires outperform Pt nanoparticles in the EOR process due to the more abundant
active sites exposed for ultrathin Pt nanowires. It is noteworthy that partial substitution of Sn for Pt
can promote the formation of oxygenated species at a relatively low potential, which can alleviate the
poisoning effect through the reaction between oxygen-containing groups and CO intermediates [41].
Thus, PtSn alloys often demonstrate accelerated ethanol electro-oxidation. Recently, Sn alloying and
ultrathin structure design have been incorporated in Pt-based nanowires via a facile wet-chemical
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synthesis method [44]. Among these PtSn compounds with various compositions, the ultrathin Pt7Sn3

nanowires presented the highest activity towards EOR, such as the highest current density and lowest
onset potential. The stability of Pt7Sn3 nanowires was also improved significantly. Moreover, the
solution colloidal method has been used to synthesize sub-1 nm PtSn ultrathin sheets with the diameter
in the range of 200 nm–1 µm (Figure 2a,b). The achieved ultrathin PtSn nanosheets exhibited an
advanced mass activity of 673.6 mA mgPt

−1 in EOR, more than five times higher than commercial
Pt black (Figure 2f) [41]. This result is among the highest activity towards EOR for PtSn-alloyed
electrocatalysts [45]. The outstanding catalytic performance for EOR in both acidic and alkaline media
should originate from the large exposed area of (111) facet in PtSn nanosheets, which can markedly
improve the C–C bond cleavage ability and remove the intermediate CO adsorbed on the catalyst
surface. Flowerlike Pt-based nanocrystals have been synthesized through the hydro- or solvo-thermal
method. Recently, Huang et al. incorporated porous structures into Pt54.5Pd45.5 nanoflowers via a
facile aqueous solution synthesis [40]. The obtained products consisted of ~5 nm subunits and many
nanopores. The porous Pt54.5Pd45.5 nanoflowers showed much higher mass activity and stability
towards ethanol oxidation compared to the commercial Pt black. This is mainly ascribed to the
enhanced surface area to volume ratio and the nanopore-induced “nano-reaction pools” that can
promote the interaction between fuel molecules and catalysts.
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Figure 2. (a,b) Scanning electron microscopy (SEM) images and (c) high-resolution transmission
electron microscopy (TEM) image of PtSn nanosheets, showing a lattice spacing of 0.297 nm. The inset
corresponds to the fast Fourier transform image of the same area. (d,e) Atomic force microscopy (AFM)
image and the thickness of PtSn nanosheets. (f) The mass and specific activities (for EOR) of PtSn
nanosheet, commercial Pt black and Pt/C. Reproduced with permission from [41]. Copyright 2019,
Elsevier Ltd.

Pt-based catalysts mainly show superior EOR activity in an acidic environment, while Pd-based
counterparts can fill the gap of oxidizing ethanol efficiently in alkaline media. Further, Pd is more
earth-abundant and thus less expensive than Pt. Moreover, the oxyphilic nature of Pd facilitates the
oxidative desorption process of intermediate byproducts, which can alleviate the catalyst poisoning
effect to some extent. These unique features make Pd-based catalysts as important and promising
alternatives in boosting EOR activity in alkaline electrolytes. Many metals (such as Ni [46–48], Sn [49,50],
Ag [51,52], Au [53], Cu, Rh [49], and Ru [32]) or external additives (such as metal oxides [54,55] and
hydroxides [56]) have been alloyed or mixed with Pd to form multicomponent systems with optimized
catalytic performance and operational durability. Moreover, nanostructure engineering has been
adopted to design Pd-based catalysts with enlarged surface areas and abundant active sites. In most
cases, the collective effects of both metal alloying and microstructure design result in highly active
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Pd-based EOR catalysts with enhanced durability. Pd-Ni bimetallic nanoparticles were synthesized
through a borohydride reduction method, which consists of large-area Ni nanoparticles modified by
discrete Pd nanoparticles with an average diameter of ~3 nm [48]. The Pd-Ni catalysts show more
active EOR process compared to Pd catalyst alone. Also, the obtained Pd-Ni catalysts demonstrate
a maximum EOR activity after cycling for 50 cycles with a potential limit of +1.2 V. This indicates
that possible reorganization of PdNi catalyst surface occurs after certain cycles and thus results in the
effective ethanol electrooxidation. The aforementioned Pd-based binary catalysts are mainly based
on the mixtures of Pd metal and another metal component supported by carbon, which often show
a more advanced EOR activity than a single Pd/C electrode due to the synergistic effects from both
components. However, these Pd-based mixtures often present relatively weak service performance,
which can be ascribed to the possible rearrangement of catalyst surfaces or aggregation of catalysts
under cycling test. On account of this, heterostructured nanocrystal catalysts have received great
attention, which allows electronic interaction and interface engineering among the constituent elements.
The heterostructured bimetallic nanocrystals usually demonstrate better catalytic activity and cycling
performance than the single counterpart. Despite the wide-ranging methods employed in synthesizing
heterostructured nanocrystals, it is still challenging to control the fine surface morphologies in order to
achieve homogeneous and diversified microstructures for advanced catalytic performance. Recently,
bimetallic Au@Pd core-shell nanostructures have been carefully designed which show an advanced
catalytic performance towards EOR [23,53,57]. For instance, the seed-mediated epitaxial growth method
has been employed to synthesize Au@Pd core-shell nanorods via controllable interface engineering
(Figure 3) [23]. The surface morphology of Au@Pd nanorods can be facilely adjusted by the pH value
of electrolytes and concentration of reducing agents or the Pd precursor. The (100)-faceted Au@Pd
core-conformal shell nanorods exhibit nearly 4-fold higher mass activity towards EOR in alkaline
environment as well as better cycling stability when compared to commercial Pd black catalysts.
The highly stable Au@Pd nanorods mainly benefit from the rigid Pd shells supported by Au cores
and the suppression of catalyst aggregation due to the low surface energy of core-shell structures.
In addition, two-dimension (2D) configuration and metal alloying have been successfully implemented
in achieving 2D PdAg nanodendrites with superior electrocatalytic activity and operation stability [51].
These two synergistic effects contribute to enlarged surface areas and abundant active sites as well as
Ag-induced weakened binding between Pd and deleterious adsorbates.
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2.2. Configuration of Composite Catalysts

In combination with optimized morphology and composition of Pt- and Pd-based catalysts as
discussed above, suitable additives have been explored and introduced to further improve their
catalytic activities for EOR. The typical co-catalysts include metal phosphides and oxides, such as
Ni2P [58], Fe2P [59], TiO2 [32], CeO2 [60], SnO2 [61], Sb2O5 [35], etc, which exhibit excellent stability
in acid or alkaline solutions. Further, these introduced additives can either modify the electronic
structures of Pt- and Pd-catalysts or expedite the oxidation of intermediate species. In general, it
is difficult to maximize the activity of Pt-based catalysts by simple phosphorus doping due to its
limited doping concentration [62]. On account of this, various transition metal phosphides have been
developed as catalysts promoters that can help suppress the poisoning effect in the oxidation process of
fuels, including formic acid [63], methanol [64], and ethanol [58,59]. For instance, Pt-Fe2P catalysts with
petal-like structures and anchored Pt nanoparticles (~2 nm) were synthesized by microwave-assisted
alcohol reduction method [59]. The hybrid catalysts showed excellent catalytic activity, ~3-fold that of
the control Pt/C catalyst, and highly improved stability over the Pt/C catalyst. This could be ascribed
to the strong coupling effect at the interface of Pt and Fe2P, including strong electronic interaction and
facile reactant transportation. Most of these studies utilized a two-step method to incorporate metal
phosphides into Pt- or Pd-based catalysts. This is tedious and time-consuming. In addition, a recent
study by Liu et al. reported a facile one-step hydrothermal approach to achieve Pt-Ni2P composite
catalysts supported on graphene [58]. Pt and Ni2P nanoparticles were anchored on the graphene
surface with an average size of ~2 nm. The composite catalysts exhibited the best catalytic performance
for EOR at an optimal Ni2P concentration of 20 wt%, which can be attributed to the hybridization
between Pt and Ni2P in the synthesis. Moreover, the presence of Ni2P favored CO oxidation due to
its active role in water activation (i.e., by oxygen evolution reaction) [65], which collectively helped
sustain the highly active and stable catalytic performance for EOR.

On the other hand, metal oxides have also emerged as promising additives that can enhance
the catalytic performance for EOR. For example, tin oxides can help provide OH groups outside the
surface by adsorbing and dissociating H2O, which can reduce the formation of CO intermediates. On
the basis of merits induced by both Rh and SnO2 [66], ultrathin PtRh nanowires patched with SnO2

were synthesized via a one-spot synthesis method [67]. The obtained PtRh@SnO2 nanowires had
an average diameter of ~2.0 nm (Figure 4a) and exhibited the highest EOR activities at an optimal
SnO2 content of 40.7 at%. Moreover, the core-shell-like PtRh@SnO2 nanowires (Figure 4a–d) showed
more advanced mass activity and specific activity (3160 mA mg−1 and 5.63 mA cm−2, respectively)
compared to commercial Pt/C in alkaline electrolyte (Figure 4e). In addition to the widely-developed
nanowires, many novel nanostructures, such as nanocages and nanoframes, have been constructed to
accommodate more abundant active sites and large surface-area-to-volume ratios. Also, a few ternary
metal-based catalysts (such as PtCuNi [68], PtRhNi [61], PtMoNi [69], and PtAuSn [70]) with precise
composition control have shown increased EOR selectivity. The PtRhNi polyhedra nanoparticles [71]
were chemically etched to form Pt-skin PtRhNi nanoframes which were then attached with SnO2

nanoparticles [61] (Figure 4f–i). The hybrid SnO2@PtRhNi/C catalysts exhibited excellent mass activity
and specific activity that were 6-fold and 10-fold higher than the commercial Pt/C catalyst, respectively
(Figure 4j). The CeO2 addition also proved effective in enhancing the catalytic activity of Pt-based
catalysts in EOR due to its interaction with Pt and the ability in oxygen storage [72,73]. Xu et al.
adopted a simple electro-deposition method to prepare CeO2-modified Pt/Ni catalysts which exhibited
advanced catalytic performance for EOR in alkaline media [60]. This is mainly ascribed to the
bifunctional mechanism, i.e., CeO2 can accelerate the oxidation of adsorbed CO on Pt surface by
supplying chemisorbed oxygen species.
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nanowires. (e) The comparison of mass and specific activities of different catalysts for EOR. Reproduced
with permission from [67]. Copyright 2019, Royal Society of Chemistry. (f) Schematic illustration
for the synthesis of SnO2-decorated PtRhNi nanoframes. (g–i) HAADF-STEM images of the PtRhNi
nanoframes with decoration of SnO2 nanoparticles. (j) Comparison of the first EOR forward scan
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2.3. Optimization of Support Materials

Besides the extensive efforts devoted to the optimization of compositions and microstructures for
catalysts, another method can be adopted for the further enhancement of catalytic activities, i.e., the
regulation of support materials. In general, catalysts need to be coated on supports to realize their
functionalizations for EOR. Carbon black (such as Vulcan XC-72R) often serves as the most common
support material due to its high electrical and thermal conductivity, large surface area, low cost and
easy availability. However, the inert nature of carbon prohibits its assistance in catalytic activities [74].
The surface area and electrical conductivity of supports as well as the dispersity of catalysts on supports
are among the critical factors that affect the EOR at anodes [75]. Recent studies have been extended
to develop diverse alternatives to replace the carbon black, such as carbon nanotubes, graphene,
metal oxides, metal hydroxides, and their hybrids. Moreover, a few self-supported promoters have
also been developed, such as Fe2P [59], W2C [70], and MoS2 [76]. Further, flexible and conductivity
substrates can also serve as promising supports for Pt- and Pd-based catalysts. In the following section,
the alternative support materials for catalysts during EOR will be covered.

2.3.1. Carbon-Based Materials

Carbon-based materials, including carbon black, expanded graphite, graphene and carbon
nanotubes (CNTs) have long been regarded as typical support materials for the EOR catalysts due to
their large specific areas, excellent chemical stability and strong affinity to catalysts. The strong affinity
between metal catalysts and carbon-based supports may originate from the formation of possible
metal-carbon bonding. In general, Vulcan XC-72R is the most popular commercial carbon black that
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has been widely used as support materials in Pt- and Pd-based catalysts [77]. However, the micropores
on Vulcan XC-72R are usually below 2 nm, making it hard for it to be completely interacted with
most catalysts. In this regard, expanded graphite [78], graphene [79], carbon nanotubes [80], and
their hybrids have aroused great interests which can promote the electrochemical activity of catalysts.
Further, introducing various dopants and designing novel structures in the carbon-based materials
serve as important strategies for further optimization of these support materials. Doping with suitable
elements (such as B, N, S, or P) in carbon-based supports can increase the active sites inside and facilitate
the modulation of conjugated bonds and thus electron distribution [81,82]. Moreover, many novel
structures, such as hollow structures [83], nanocages [84], and porous structures [81], are incorporated
in carbon-based supports with markedly enlarged surface areas and enhanced activities. Recently,
ternary N, S, and P-doped hollow carbon sphere materials were synthesized and utilized as a promising
support for Pd nanoparticles, which show a high mass peak current density of 1686 mA mgPd

−1 for
EOR, nearly three times that of Pd/C catalysts [83]. Similarly, graphitized carbon nanocage-supported
Pd nanoparticles also show advanced catalytic activity and stability for EOR [84]. This is due to
the unique graphite structure and opening gaps of carbon nanocages that facilitate electron transfer,
mass transport, and ion diffusion. However, it should be noted that graphitic carbon-based support
materials may suffer from corrosion under electrochemical oxidation conditions [85]. In particular,
heteroatom-doped carbon nanostructures with abundant defects are quite sensitive to corrosion. This
may result in the detachment, aggregation, or dissolution of active materials and thus the degradation
of catalytic performance. Therefore, it becomes a necessity to investigate the durability of catalysts as
well as to develop corrosion-resistant support materials during EOR.

In addition, CNTs have been widely explored as promising support materials for various catalysts
in direct ethanol fuel cells [29]. As the integrated CNTs often show a chemically inert nature, surface
treatment or chemical doping is necessary for CNTs to further enlarge their surface areas and to
increase their affiliation with metal-based catalysts by introducing functionalized groups (such as
the oxygen-containing group) on the surface [86]. For example, HNO3-treated CNTs were employed
as the support material of Pt-based nanoparticles [31]. The obtained bimetallic PtAu/CNTs and
PtPd/CNTs catalysts exhibit large ECSAs, low onset potentials and excellent stabilities. Moreover,
nitrogen-doping in CNTs has proved effective in advancing π-binding ability, introducing point defects,
and improving interaction between CNT supports and active sites of catalysts [87]. Pd nanoparticles
anchored on three-dimensional (3D) N-doped CNTs (denoted as Pd/3DNCNTs) were synthesized
via a facile and green method using ethanol as the reducing agent [88], as presented in Figure 5a.
The Pd/3DNCNTs catalysts show a much increased catalytic performance and durability towards
EOR which benefits from the improved interaction between Pd nanoparticles and nitrogen-containing
functional groups as well as the three-dimensional network structure (Figure 5b). Despite the
unique advantages of CNTs, challenges still remain with regards to the self-dispersity of CNT as
well as the homogeneous distribution of the catalyst within CNT networks. Moreover, Ning and
coworkers developed a series of CNT-supported Pd-based catalysts, including Pd/CNT, bimetallic
PdSn/CNT and trimetallic PdSnNi/CNT via a microwave-assisted polyols and in-situ reduction [89].
The Pd-based nanoparticles were found to be well distributed on CNT support with no obvious
aggregation (Figure 5c), thus securing a large electrochemically active surface area (ECSA). Together
with the beneficial modification of electronic structures by Sn and Ni alloying, PdSnNi/CNT catalysts
demonstrate enhanced electrocatalytic activity and long-term durability for the EOR in alkaline
environment when compared to the Pd/C catalyst. Moreover, carbon-based nanocomposites comprised
of expanded graphite and multi-walled CNTs (Figure 5d) have also emerged as promising supports for
Pd nanoparticle catalysts [36]. Further, Pd5 nanoclusters (~ 1nm) with an ultralow loading of 2% on
multi-walled CNTs supports demonstrate superior catalytic activity toward EOR [80]. In particular,
the mass activity for Pd5 nanoclusters/CNTs can reach 1.82 mA mgPd

−1, ~2 times higher than that
of the commercial Pd/C. The onset and peak potential of Pd5 nanoclusters/CNTs is also reduced in
comparison to that of Pd/C catalysts. The great enhancement in the catalytic performance for EOR in
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CNT-supported Pd5 nanoclusters mainly benefits from the increased surface area-to-volume ratio as
well as the improved exposure of active atoms.
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Furthermore, another two-dimensional allotrope of carbon, graphene or reduced graphene oxide
(rGO), has been considered as an important support material in catalysts due to its high electron
mobility, attractive mechanical flexibility, fascinating surface areas, advanced chemical stability,
and facile dispersion with metal-based catalysts [90]. The Pt-based catalyst-decorated rGO nanosheets
often possess more advanced catalytic behaviors in ethanol oxidation than carbon black-supported
Pt [91]. Pd-based catalysts supported by rGO have also emerged as promising catalysts for EOR in
alkaline solution [92,93]. For instance, Alfi et al. synthesized three-dimensional Pd-Cd nanonetworks
supported by rGO by a galvanic method [94]. The obtained Pd-Cd/rGO catalysts show outstanding
activity for EOR in alkaline media, i.e., a high peak current density of 179 mA cm−2 which is ~ 4.5 times
higher than that of Pd/C commercial catalysts. It is noteworthy that rGO nanosheets usually tend to
form agglomerations in solution due to the π-π interactions between adjacent nanosheets. This may
result in reduced surface areas and electrical conductivity of rGO, making it difficult to maximize the
catalytic activities of rGO supported metal-based catalyst. To overcome the detrimental effects caused
by rGO agglomeration, CNTs attached with Pd-NiO nanoparticles were fabricated and incorporated
with rGO support (Figure 5e) [79]. The Pd-NiO/CNTs/rGO hybrid catalysts present much higher
activity (90.9 mA cm−2) for EOR in alkaline solution than either hybrid Pd/CNTs/rGO (43.1 mA cm−2)
or commercial Pd/C catalysts (28.0 mA cm−2). Also, the durability of the hybrid catalysts has been
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improved significantly (Figure 5f). The great enhancement in the catalytic performance and stability for
Pd-NiO/CNTs/rGO mainly results from the increased active sites induced by the interaction between
rGO and CNTs as well as the anti-poisoning effect derived from bimetallic Pd-NiO nanoparticles.
In addition, another poly(triazine imide) (PTI) and graphene hybrid support have been developed
and applied for Pt-Sn catalysts [95], which exhibit a more efficient performance towards EOR than
graphene-supported counterparts. Therefore, it is essential to develop hybrid support materials
by combining the synergistic effects from various carbon-based materials and other additives, thus
boosting their applications in catalytic fields.

2.3.2. Non-Carbon-Based Supports

Considering that DEFCs usually exhibit increased efficiency of ethanol oxidation at elevated
temperatures [96], it becomes critical to investigate the temperature-dependent catalytic activity for EOR.
Also noteworthy is that most carbon-based support materials may corrode at high temperatures [97] or
harsh environments [85], which significantly reduces the catalyst stability. Therefore, it is important
to develop alternative support materials with high stability and corrosion resistance during the EOR
process. Recently, many non-carbon-based support materials, such as metal oxides, hydroxides,
carbides, and sulfides, have also received considerable research interests due to their additional
contribution to catalytic performance and excellent stability in alkaline and/or acid solutions. Studies
have found that the addition of metal oxides, for example TiO2, in catalysts can improve their long-term
stability during ethanol oxidation [98]. In particular, PdRu nanocrystals supported on TiO2 exhibit
ultrahigh stability towards EOR in alkaline electrolyte [32], which is owing to the collective effects of
(i) incorporation of oxyphilic Ru in Pd-based catalysts, (ii) utilization of TiO2 as the support material,
and (iii) interaction between Ru and TiO2. The scheme of the synergistic effects between Ru and
TiO2 is presented in Figure 6a. As most metal oxides have inferior electrical conductivity, they are
generally mixed with commercial carbon black (Vulcan XC-72R) to form composite supports, such as
MnO2/carbon black [77] and Ni-SiO2/carbon black [99] for the integration of efficient anode catalysts.

Transition metal carbides, especially W2C and Mo2C, possess superior electrical conductivity and
ultrahigh chemical and thermal stabilities and have been considered as promising support materials
in electrocatalytic fields [70,100,101]. Ternary PtAuSn catalysts supported on W2C present much
higher catalytic activities towards EOR in acid solution and at increasing temperatures of up to 70 ◦C
when compared to PtAuSn/C catalysts [70]. This mainly benefits from the W2C-induced bifunctional
mechanism and the additional charge transfer from W2C support to alloy catalysts. Moreover, Mo2C
nanoparticles-supported Pd catalysts also show advanced catalytic performance and durability for
EOR in alkaline media [102]. Further, Ni insertion in Mo2C was found to suppress the aggregation of
Mo2C nanoparticles. In addition, MXene has emerged as a promising 2D material and support material
for catalysts due to its outstanding stability and high electrical conductivity. The typical formula of
MXene is Mn+1XnTx where M denotes a transition metal such as Mo, V, Nb, Ti and Ta, X represents C
or N, and Tx refers to the functional groups on the surface such as –O, –OH and –F [15]. Wang et al.
utilized Ti3C2Tx MXene nanosheets as the support materials of ternary porous PtRhFe nanospheres
(denoted as PtRhFe-NPS@MXene) which show advanced activity and stability for EOR [28] (Figure 6d).
The morphologies of MXene support and PtRhFe-NPS@MXene are shown in Figure 6b,c. Apart from
the beneficial effects of porous structures and enhanced interaction between the MXene support and
metal-based catalysts, the abundant termination groups on the MXene surface can promote the electron
exchange with the PtRhFe alloys.
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Figure 6. (a) The schematic diagram of the synergistic effects between Ru and TiO2. Reproduced
with permission from [32]. Copyright 2019, Royal Society of Chemistry. (b) TEM image of the
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Another analogue of graphene, MoS2, has been explored as a support material in ethanol
oxidation. The outer-layered sulfur atoms usually serve as the most active parts of MoS2 that can easily
anchor metal-based nanoparticles, thus increasing the catalytic sites. Recently, MoS2 nanoflowers were
synthesized as the support via a hydrothermal method, and were then subjected to the electrodeposition
of Pt nanoparticles [76]. The obtained Pt/MoS2 catalysts show larger ESCA and higher peak current
density in comparison to commercial Pt/C. This can be attributed to reduced energy barrier in
MoS2-supported Pt that facilitates ethanol dissociation as manifested by the calculation of density
functional theory (DFT). Further, the 2D metal hydroxides, such as porous Ni(OH)2 nanoflakes, have
evolved as promising support materials in Pt-based catalysts due to their high electrical conductivity
and abundant active sites involved [34].

Additionally, porous non-noble metals, such as porous Ni, Ni foam, and porous Co, are also
among the potential support materials for Pt- and Pd-based catalysts [46,103], as the porous features
can favor the mass and electron transfer between catalysts and electrolytes. For instance, porous
trimetallic PtRhCu nanoboxes fabricated via a galvanic reduction method (Figure 7a) exhibit superior
catalytic activity and stability for EOR [98]. The EOR peak current for Pt54Rh4Cu42 nanoboxes reaches
4090 mA mgN

−1 which is ~2-fold and 4-fold higher than that of Pt58Cu42 nanoboxes and commercial
Pt black, respectively. The significant enhancement in the activity and durability of Pt54Rh4Cu42

nanoboxes mainly benefits from the synergistic effects of composition optimization and microstructure
control. In particular, the hollow and porous structures (as shown in Figure 7b,c) function as both
support materials and active frameworks that facilitate the mass transfer and atomic utilization. Similar
self-supported porous catalysts have also been reported recently, such as porous PdRh nanobowls
(Figure 7d,e) synthesized by a facile one-pot hydrothermal method [103].
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Figure 7. (a) Schematic diagram of the preparation process for PtRhCu nanoboxes. (b) HAADF-STEM
image and (c) TEM image of PtRhCu trimetallic nanoboxes. Reproduced with permission from [98].
Copyright 2018, WILEY-VCH. (d,e) TEM images of PdRh nanobowls. The inset in (d) refers to the size
distribution histogram. Reproduced with permission from [103]. Copyright 2019, The Royal Society
of Chemistry.

Besides this, growing demands for flexible electrodes have arisen with the rapid development
of wearable electronics. Most of the aforementioned studies focus on developing advanced
catalysts supported by rigid electrodes. Recently, flexible electrodes have aroused great interests
among the electrochemical community, such as the carbon cloth utilized as flexible electrodes in
supercapacitor [104], hydrogen evolution [105], and ethanol oxidation [106]. The carbon fiber
cloth-supported PdCo nanotube arrays have been synthesized as a promising high-performance
flexible electrocatalysts with superior catalytic activity and stability during EOR [106]. Moreover,
polydimethylsiloxane (PDMS), a widely used flexible substrate in electrochemistry, has been applied
in ethanol oxidation recently. Ag nanowires with electro-deposited Pd were drop-casted on the
PDMS substrate to achieve the Pd/Ag/PDMS flexible electrodes [25]. The schematic diagram for the
preparation process is shown in Figure 8a. The uniformly distributed Pd nanoparticles on Ag nanowires
(Figure 8b) were found to accelerate the adsorption of active substances, which can further improve the
charge transfer for EOR [27]. The flexible Pd/Ag/PDMS electrodes show stable current densities when
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subjected to bending or twisting for up to 2500 cycles (Figure 8c). The mechanical robustness feature
empowers the flexible electrodes with broadened applications under harsh mechanical environments.Catalysts 2019, 9, x FOR PEER REVIEW 13 of 22 
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3. Development of Non-Noble Metal Catalysts for EOR

As summarized above, intensive efforts have been directed to developing highly efficient and
stable noble metal-based catalysts by composition control and structure modulation. When considering
the practical application, the limited earth abundance and high cost become the main concerns for
noble metal-based catalysts. To date, effective strategies, such as partial substitution of Pt/Pd by
non-noble metals and decreased loading via novel structure design, have been explored to reduce the
overall cost of anode electrodes. For example, the favorable role of nickel incorporation in Pt-based
catalysts is mainly attributed to the surface catalytic activity of Ni. Further, the complete replacement
of noble metals with non-noble alternatives (such as Fe, Co, and Ni) has found promising applications
in ethanol oxidation due to the relatively high electrocatalytic activity and low cost [107–109].

Nickel metal is prone to surface oxidation and tends to form NiOOH, especially in alkaline solution,
which can promote the oxidation of CO adsorbed on the surface during EOR process [110]. Interested
readers can refer to the comprehensive review on Ni-based catalysts for ethanol electro-oxidation [14].
Recently, a facile electrodeposition method has been used to prepare Ni nanoparticles as ethanol
oxidation catalysts [111,112]. It was found that the pH value of the NiSO4 bath rather than the Ni ion
concentration strongly affects the EOR activity of electrodeposited Ni nanostructures [111]. The Ni
nanoparticles deposited on graphite electrode from a pH = 5.5 solution exhibit a current density of
1192 mA mg−1 in alkaline solution. To avoid the possible agglomeration of Ni nanoparticles, an anionic
surfactant, sodium dodecyl sulfate (SDS), was involved in the electrodeposition process [112]. When
the SDS concentration equals to the critical micelle concentration (CMC), the obtained Ni nanoparticles
are uniformly distributed. Another effective way to achieve uniformly grown Ni nanoparticles is
the successive ionic layer adsorption and reaction (SILAR) method [113]. This can be applied for
large-area growth of Ni nanoparticles on various substrates. In addition, Ni foam was employed as a
substrate and subjected to in-situ electrodeposition of Au nanoparticles to form three-dimensional (3D)
interconnected Ni/Au foams [110] (Figure 9a–c). The porous Ni foam/Au composite catalysts exhibit
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greatly improved catalytic activity for EOR when compared to Ni foam without Au and Ni foil with
Au deposition. This mainly benefits from the high surface area of Ni foam and the advanced catalytic
behavior of Au nanoparticles. Moreover, porous Ni phosphate has been synthesized and used as an
efficient catalyst for EOR in alkaline media [114,115].
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(a) The typical open-pore cellular structure of Ni foam. (b) The strut structure consists of equalized
grains with an average size of ~10 µm. (c) Further zoom-in image shows the strut surface decorated with
Au nanoparticles by the electrochemical deposition method. The inset demonstrates the uniformly and
separately distributed spherical Au nanoparticles. (d) Linear sweep voltammetry of electro-catalytic
activity of Ni-based electrodes in 0.5 M NaOH solution containing 1.0 M ethanol. The inset reveals the
enlarged view of onset potential. Reproduced with permission from [110]. Copyright 2018, Wiley-VCH.

Other non-precious alloys based on Co and Fe alloys have also attracted considerable attention.
As pristine cobalt is poor in the catalytic performance for fuel cells, it is usually incorporated with other
metals (such as Ni [109], Fe [116], Cd [108] and Cr [117]) to form co-catalysts for ethanol electro-oxidation.
For example, Cd-doped Co nanoparticles encapsulated in graphite shells were synthesized through
a sol-gel method combined with calcination at high temperatures [108] (Figure 10a). The obtained
CoCd/C nanoparticles exhibited a significant improvement in the current density over pristine Co/C
and Pt/C when used as electrocatalysts for EOR in basic media (Figure 10b). The enhanced activity
towards EOR is probably favored by the formation of cadmium oxide layers on the catalyst surface
that can transform to electroactive CdOOH in alkaline solution. Moreover, electrospinning together
with calcination was employed to produce CoCr nanoparticles supported on carbon nanofibers [117].
A current density of 105 mAcm−2 was attained for CoCr/C catalysts with an optimized concentration
of 10 wt% Cr. In addition, trimetallic FeCoNi [116] and CoNiMo [118] have been developed as
promising anode catalysts for EOR. Nakamura et al. synthesized FeCoNi/carbon black via the
impregnation method and employed them as anode catalysts in DEFCs [116]. The FeCoNi/carbon
black catalysts presented the highest current density and the smallest crystalline size, indicating the
positive correlation between EOR activity and amount of active sites on the surface. In contrast to the
high temperature annealing (1100 ◦C) required for the impregnation method, a simple and low-cost
electroless deposition was carried out below 100 ◦C to prepare CoNiMo catalysts on Pd-catalyzed carbon
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substrates (CCS) [118]. The CoNiMo/CCS catalysts demonstrated irreversible ethanol electro-oxidation
behavior in alkaline solution. Their catalyst activities for EOR mainly benefited from the deposited
Co, Ni, and Mo elements, and the contribution from trace amounts of Pd in the support material can
be neglected. Also, the deposited trimetallic catalysts showed more advanced catalytic performance
for EOR than the bimetallic and monometallic catalysts. Furthermore, except for the important
role of additives in Pt- and Pd-based catalysts, non-noble metal oxides can also serve as promising
candidates for ethanol oxidation in DEFCs. The hierarchical TiO2/ZnO nanostructures (Figure 10c)
fabricated by electrospinning and hydrothermal method showed a current density of 37 mAcm−2

during EOR [119]. The catalytic performance was mainly influenced by the chemical composition
and the fine nanostructures composed of ZnO nano-branches attached on TiO2 nanofibers. Besides,
mesoporous NiCo2O4 fibers [120] (Figure 10d,e) and NiCo2O4/CNT aerogels [121] also exhibited the
ability of ethanol oxidation in alkaline media.
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Figure 10. (a) TEM image of CoCd/C nanostructures. The inset is the selected-area electron diffraction
pattern of the nanoparticle; (b) cyclic voltammograms for Cd-doped Co/C catalysts, Pt/C (40%) and
pristine cobalt nanoparticles in 1 M KOH solution with 1.0 M ethanol. Reproduced with permission
from [108]. Copyright 2013, Elsevier B.V. (c) SEM image of hierarchical TiO2/ZnO nanostructures.
Reproduced with permission [119]. Copyright 2014, The editorial office of Journal of Materials Science
& Technology. (d) SEM image and (e) TEM image of mesoporous NiCo2O4 fibers. Reproduced with
permission from [120].

4. Outlook and Conclusions

DEFCs have shown unique and attractive advantages over methanol- or hydrogen-based fuel
cells, including abundant sources of ethanol fuel that can be produced from various crops (such as
wheat, sugar-cane, and corn), high energy density of fuels, and relatively low costs in fuel storage
and transportation. In comparison to power generators based on traditional fossil fuels, DEFCs can
significantly reduce the emission of greenhouse gases. These features make DEFCs promising power
devices for applications in portable electronics, transportation fields, and remote areas. The current
review summarizes the recent advances in anodic nanocatalysts for ethanol electro-oxidation that
are mainly based on state-of-the-art Pt, Pd, and non-noble metals. The implementation of both
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composition and microstructure control plays important roles in promoting the electrocatalytic activity
and durability of various candidates for EOR. Furthermore, in combination with the optimization, many
hybrid catalysts have been developed for promising applications in DEFCs [70]. Despite the significant
progress achieved, the anode catalysts for ethanol electro-oxidation still suffer from low efficiency
and durability in converting ethanol to CO2, thereby leaving much room for further improvement to
accommodate the commercial application of DEFCs. The future development and research concerns of
ethanol oxidation may be directed to the following:

Considering the intricate byproducts produced in EOR, it is critical to utilize in-situ test and
observation tools to reveal the dynamic reaction processes, including in-situ Fourier transform infrared
spectroscopy (FTIRS), on-line differential electrochemical mass spectrometry (DEMS) and in-situ
Raman spectroscopy [70,75].

More efforts should be directed to improving the long-term stability of anode catalysts in DEFCs.
Although hybrid architecture design has emerged as an effective strategy to achieve homogeneously
distributed catalysts on support materials, long-period cycling test often results in the inferior contact
between catalysts and support materials. Therefore, post-analysis on morphology and composition is
also required to understand the durability of a catalyst during EOR.

Investigating the temperature-dependent activity of catalysts for ethanol oxidation and finding out
the optimized operational temperature at which the catalysts exhibit the highest conversion efficiency
is also important. Further, it is vital to study the practical service performance by including more
complex factors, such as variations of environment temperature and humidity.
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