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Abstract: In this work, a novel polyoxometalate template-based strategy was applied to construct
the bi-metal-doped CdS photocatalysts. NiMo6 polyoxometalate template precursor was applied
for the preparation of Ni, Mo co-doped CdS photocatalysts (NiMo-CdS). The structures of the
materials were explored by XRD, SEM, HRTEM, HAADF, element mapping, XPS, Raman spectrum
and UV-vis DRS. Moreover, the results of the UV-vis spectrum showed that NiMo-CdS exhibited an
enhanced performance on light absorption. The results of photocatalytic hydrogen evolution from
water splitting demonstrated that the NiMo-CdS showed higher efficiency on hydrogen evolution
than noble-metal Pt-doped CdS. The reason could be ascribed to the enhanced light absorption
ability and charge separation after Ni and Mo were introduced, which could also act as co-catalysts.
The apparent quantum yield (AQY) efficiency could reach 42% at 365 nm. This work proposed a
novel and inexpensive method to synthesize the bi-metal (Ni, Mo) decorated CdS photocatalysts for
efficient hydrogen evolution from water splitting.
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1. Introduction

Photocatalytic water splitting has been proposed since Honda and Fujishima first reported it in
1972 [1]. Afterward, it ignited a majority of interests in photocatalytic water splitting for hydrogen
production. Past decades have witnessed the development of photocatalysis on the materials and
the intrinsic mechanisms [2–5]. Among them, TiO2 was regarded as one of the most traditional
materials [6–8]. However, the limitations constrained its application since it could only absorb the
UV-light that occupied only 4% of the full arc solar spectrum. Furthermore, the low carrier mobility
also makes efficiency lower than 1%. Therefore, it was urgent to explore the novel materials which
could absorb the irradiation light from a wide range, like visible light, or even infrared light.

CdS, which could absorb visible light, has suitable energy band structures for photocatalytic
hydrogen production from water splitting. In recent years, several works have reported CdS-based
materials for hydrogen evolution [9–12]. The strategies could be mainly summarized as morphology
design, solid solution method as well as heterojunction construction. Consequently, a majority of
composites, like CdS/Co9S8 [13], ZnS/CdS [14], MnS/CdS [15], g-C3N4/CdS [16] and BiVO4/CdS [17],
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have been synthesized successfully and applied for photocatalytic hydrogen production, which was
enhanced evidently after utilizing the mentioned strategies.

For promoting the photocatalytic activity, another critical factor was the co-catalysts in CdS-based
photocatalysts, which also played an essential role in the procedure of photogenerated carrier transfer.
MoS2, which mainly has two different phases of 1T and 2H [18], was considered as the efficient
co-catalyst in CdS-based materials [9,11]. Although large works have devoted much effort to the
MoS2-CdS-based materials, some researchers proposed that 1T MoS2-CdS has a superior performance
than 2H MoS2-CdS. Therefore, obtaining a higher concentration of 1T-MoS2 in MoS2 co-catalysts was
an urgent work and has ignited interest in the design of the photocatalysts [19–21].

Our previous study also investigated the properties of Ni-based co-catalysts with CdS as the
photocatalysts, like Ni, NiO and Ni(OH)2. The results showed that NiO species were tightly dispersed
on the surface of CdS, which could enhance the photocatalytic performance [22–24]. Afterward,
the 1T and 2H mixed phase of MoS2 coupled with CdS as the photocatalyst also was synthesized [11].
The results exhibited an excellent activity on photocatalytic hydrogen evolution. However, suppose
that the Ni-based co-catalysts and 1T-MoS2 with a higher concentration could serve as the co-catalysts
simultaneously, it will be favorable for the enhancement of the charge separation and light absorption
and thus, improve the photocatalytic activity.

Recently, Huang et al. has presented a novel method to stabilize the 1T-MoS2, which gained an
ascendant performance in electrochemical hydrogen evolution [10]. In this work, the polyoxometalate
was used as a template to synthesize the NiO/1T-MoS2 composites. If this synthetic strategy could be
applied in the construction of photocatalysts, the Ni, Mo co-doped CdS could be fulfilled via a simple
method. However, relative works were rare. Consequently, in this work, NiO/1T-MoS2 as a co-catalyst
was prepared via the polyoxometalate template-based method in one-step. The results exhibited that
the MoS2 was mainly composed of the 1T phase and thus the photocatalytic ability was evidently
improved. The AQY efficiency could reach 42% at under 365 nm. This work proposed a novel method
for the construction of co-catalysts with non-noble metal in particulate photocatalytic water splitting,
especially for the 1T-MoS2 preparation strategy.

2. Results and Discussions

The powder X-ray diffraction (XRD) patterns of x%(NiMo6)@CdS-τ (x = 5, 7.5, 10, τ = 12, 24, 36 h)
composites are shown in Figure 1a–f, respectively. Although, after modification with variable amounts
of NiMo6 precursor and variable hydrothermal time, all XRD patterns turned out to be similar and all
peaks of pristine CdS could be obviously detected in Figure 1a,c,e, according to Jade card No.01-0783.
It implies that the introduction of Ni and Mo shows little influence on the bulk CdS structure. Despite
this, Ni, Mo co-doping increases the lattice constant of the CdS structure, resulting in a small peak
shift towards a lower angle, as shown in Figure 1b,d,f. Nonetheless, the crystalline structure of Ni
and Mo species was still uncertain from the above XRD patterns, and hereafter, identified by X-ray
photoelectron spectrum (XPS) measurements that will be discussed later.

The morphology characterizations of x%(NiMo6)@CdS-24 h were investigated by scanning electron
microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) as depicted in
Figures 2a–i and 3a–g, respectively. It can be seen in Figure 2 that polyhedral CdS particles exposing
terrace facets on the corners were decorated with stacked thin slices. Comparing Figure 2a,d,g,
the average crystal size of CdS, which was estimated from SEM images, exhibited a decreasing trend
with the increasing hydrothermal time. In Figures 3 and 4a,b, a detailed understanding of crystal
structure and morphology was provided by HRTEM measurements equipped with bright field (BF)
and high-angle annular dark-field (HAADF) modes. As illustrated in Figure 3a–c, bulk polyhedral CdS
particles were loaded with stacked structures that were speculated as NiO/MoS2 layers according to
Reference [10]. Furthermore, in Figure 3d,e, two specified areas highlighted by the square were targeted
at the stacked layers (Figure 3g) and the interfacial region (Figure 3f), respectively. More specifically,
the lattice distances in these two regions were measured. In the interfacial region (red square box 1),
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two lattice fringes with the space of 0.210 and 0.317 nm, corresponding to the (200) plane of NiO
(Jade card No.47-1049) and (101) plane of CdS (Jade card No. 65-3414) respectively, were observed in
Figure 3f. The amplified HRTEM image of the stacked structure (yellow square box 2) in Figure 3g
showed the coexistence of 0.210 and 0.940 nm spacing lattice fringes [25], which were referred to as
NiO and 1T-MoS2, respectively. Through the identification of lattice constant in amplified HRTEM
images, a preliminary conclusion that the composite of 1T-MoS2 doping with NiO was decorated as
the layer structure on bulk CdS particle has been raised so far. Moreover, the chemical composition
and element distribution of stacked structures were further determined by element mapping. It is
worth noting in Figure 4 that the stacked structures marked in a circle were mainly composed of Mo
and S elements, whereas no Cd element was found. Besides, the Ni element was also observed in
the red circle and bulk particle simultaneously, which can be considered that Ni atoms dope in MoS2

and bulk CdS particle with a uniform distribution. The HRTEM mapping results also supported the
speculation of NiO/1T- MoS2 structure.
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Figure 1. (a–f) XRD patterns of CdS modified with x%NiMo6 precursor after different hydrothermal 
time, τ. Full patterns ranging from 10 ° to 80 °: (a) x = 5, (c) x = 7.5 and (e) x = 10, and amplified patterns 
ranging from 20 ° to 40 °: (b) x = 5, (d) x = 7.5 and (f) x = 10. 
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Figure 1. (a–f) XRD patterns of CdS modified with x%NiMo6 precursor after different hydrothermal
time, τ. Full patterns ranging from 10◦ to 80◦: (a) x = 5, (c) x = 7.5 and (e) x = 10, and amplified patterns
ranging from 20◦ to 40◦: (b) x = 5, (d) x = 7.5 and (f) x = 10.
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For the purpose of unveiling the definite crystalline structure of NiMo-containing stacks on the
CdS surface, the 5%(NiMo6)@CdS-24 h sample was probed by X-ray photoelectron spectrum (XPS)
measurements. As indicated in Figure 5a, two characteristic signals referred to as Cd2+ 3d5/2 and Cd2+

3d3/2, of which binding energy was located at 404.8 and 411.5 eV respectively, both exhibited a 0.2 eV
blueshift in comparison with pure CdS [9,18,26]. The S 2p spectrum in Figure 5b was deconvolved
into three characteristic peaks appearing at 161.2, 162.5 and 164.5 eV, which can be assigned to S2−

2p3/2, S2− 2p1/2 [9,18,27] and S2
2− [28], respectively. Similarly, compared with pure CdS, these peaks in

the S 2p spectrum showed a slight blueshift ranging from 0.1 to 0.4 eV. The blue shift of Cd 3d and S
2p spectrum resulted from the decoration of NiMo-containing composite that slightly changed the
chemical state of bulk CdS.

The Mo 3d spectrum in Figure 5c was characterized by three main peaks referred to as Mo4+

3d5/2, Mo4+ 3d3/2 and Mo6+, implying the existence of Mo4+ species in (NiMo6)@CdS. Furthermore,
the peaks of Mo4+ 3d5/2 and Mo4+ 3d3/2 appeared at 229.0 and 232.3 eV respectively, which were in
accordance with bare 1T-MoS2 published in previous reports [9,18] and no additional Mo4+ signal was
observed. That said, it is 1T-MoS2 rather than 2H-MoS2 or other Mo-containing compounds that were
modified on bulk CdS particles, exactly falling in line with the anticipation through this template-based
synthetic strategy.

On the contrary, according to our group’s previous work [11], 1T and 2H phases of MoS2 can
coexist as the mixed-phase in MoS2@CdS composites. It seems to inevitably generate a mixed phase
of MoS2 while modifying CdS photocatalyst [9,26]. By contrast, the above observation of pure
1T-MoS2 phase could be ascribed to the dopant Ni, which might facilitate the transformation from
the coexistence of 1T- and 2H-MoS2 to a mere 1T-MoS2 phase. According to the previous study,
NiMo6 precursor was introduced as the template to fabricate the NiO/1T-MoS2 composite structure
that was decorated on CdS particles, where 1T-MoS2 was stabilized by NiO species [10]. Meanwhile,
due to the n-type doping, Mo atoms donate electrons to Ni atoms (n-type dopants) and act as the
positive charge centers, resulting in the upshift in Mo 3d spectrum, as same to the similar upshift in
Cd 3d spectrum. Besides, the appearance of Mo6+ species can be attributed to partial oxidation of
Mo4+ in the synthesis procedure [10,18,29]. The above findings indicate an intriguing possibility that
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NiO/1T-MoS2@CdS photocatalysts were successfully prepared by the introduction of NiMo6 precursors
into the CdS photocatalyst.
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Raman spectra were conducted to obtain further insight into the phase of MoS2 on the surface
of CdS. As illustrated in Figure 5d, two intensive peaks of the Raman shift which appeared at 152.4
and 218.2 cm−1 [30] were detected, respectively. It further substantiates the existence of the 1T-MoS2

phase, whereas no observation of the 2H-MoS2 phase was found. It keeps in agreement with the
XPS analysis discussed above. Surprisingly no obvious peak referred to 1T-MoS2 was observed in
10%(NiMo6)@CdS sample, which inferred that 1T-MoS2 was almost covered by excess NiO once the
amount of NiMo6 precursor increased over 10%.

As the first step of the three main steps in photocatalysis, the optical absorption of photocatalysts
is of necessity to enhance photocatalytic performance [31], which can be reflected by UV-vis diffuse
reflection spectrum (UV-vis DRS). As illustrated in Figure 6a, pure CdS and 10%(NiMo6)@CdS-24 h
samples had an approximate band edge position at nearly 515 and 555 nm, respectively. The absorption
band edge positions of 5% and 7.5%(NiMo6)@CdS-24 h samples were at around 540 nm. According
to the Tauc plot method, the band gap of semiconductor catalysts was calculated. As presented in
Figure 6b, the 10%(NiMo6)@CdS-24 h sample had a band gap at around 2.24 eV, which was narrower
than 5% (2.32 eV), 7.5%(NiMo6)@CdS-24 h samples (2.28 eV) and pure CdS (2.40 eV). Moreover, the light
absorption ability of 5%(NiMo6)@CdS-24 h composite was superior to the pristine CdS photocatalyst
and NiMo6 precursor in Figure 6c,d. Therefore, the modification with NiO/1T-MoS2 on bulk CdS
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photocatalyst broadened the absorption of the light wavelength range [27,32]. The enhancement
of absorption ability can be attributed to the heterojunction among NiO, 1T-MoS2 and CdS [32,33].
Additionally, the tailing region of light absorption was intensified, which could be ascribed to the
increasing amount of MoS2 with a broad absorption range in visible light [34,35].
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Figure 6. (a,c) UV-vis DRS and (b,d) band gap of x%(NiMo6)@CdS-24 h composites compared with
pure CdS and NiMo6 precursor.

Accumulated hydrogen evolution of x%(NiMo6)@CdS-τ samples was recorded as illustrated
in Figure 7a–f. Typically, loading noble metal Pt as a co-catalyst on CdS photocatalyst enhances
the photocatalytic performance. As shown in Figure 7e, (NiMo6)@CdS samples with non-noble
metal all displayed a remarkable improvement in photocatalytic activity, which was comparable or
even superior to the optimal Pt-CdS in the literature [36]. With regard to the hydrothermal time, τ,
in Figure 7b–d, the (NiMo6)@CdS-24 h sample was endowed with the best photocatalytic performance.
It infers that the (NiMo6)@CdS-24 h sample was prepared in suitable particle size and modified with a
uniform distribution of NiO/1T-MoS2 after moderate hydrothermal time of 24 h, which accounts for
its outstanding activity compared with the other hydrothermal times. Furthermore, as we can see in
Figure 7a, the 5%(NiMo6)@CdS sample exhibited the highest photocatalytic activity with a hydrogen
evolution rate of 348.5 µmol/h, whereas 7.5% and 10%(NiMo6)@CdS samples showed a relatively
lower rate of 301.1 and 253.7 µmol/h, under the same hydrothermal time of 24 h. This difference of
photocatalytic performance between variable precursor amounts can be explained by the influence
of the modification with the special layer structure of NiO/1T-MoS2, which is clarified as mentioned
below. Additionally, combined with the analysis of optical absorption, Figure 7f showed that the
5%(NiMo6)@CdS sample performed an excellent photocatalytic activity within the visible light region.
Photocatalytic stability was evaluated by intermittent test sequences and each sequence consisted
of the consecutive hydrogen measurement for 5 h. After one test sequence, the photocatalysts were
reused through suction filtration and drying in a vacuum. Then, the photocatalytic reactor with
photocatalysts inside was evacuated again and then irradiated for the next round. As illustrated
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in Figure 8a, the 5%(NiMo6)@CdS-24 h composite maintained a relatively stable photocatalytic
performance through three cycles. In the last stability test cycle, the average hydrogen evolution per
hour had decreased to approximately 90% compared to the initial cycle. In Figure 8b, the XRD pattern of
the after-test sample was conducted in comparison with the before-test one. As illustrated in Figure 8b,
there was no obvious difference in the characteristic peaks, which indicated that the photo-corrosion
phenomenon was not observed from the XRD result and the main structure of CdS was maintained.
Therefore, the photocatalytic performance reduction can be attributed to the mass loss of photocatalysts
in the suction filtration and drying process. As mentioned above, the introduction of NiO species
could stabilize the 1T-MoS2 structure, which could probably result in the stable photocatalytic activity
of NiMo-CdS samples. However, the intrinsic stabilization mechanism of NiMo-CdS photocatalysts
needs to be further explored in future research.
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Figure 7. (a–f) Photocatalytic hydrogen evolution performance: 50 mg catalysts dispersed in 100 mL
aqueous solution containing 20 vol% of 0.05/0.07 mol/L Na2S/Na2SO3. (a) Variable x% amounts of
NiMo6, (b–d) with variable hydrothermal time of 12, 24 and 36 h in series of (b) 5%, (c) 7.5% and
(d) 10%(NiMo6)@CdS composites. (f) Comparison between full arc spectrum and visible spectrum.
All the hydrogen evolution measurements were conducted under irradiation within the visible spectrum,
except for (f).
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before and after photocatalytic measurements.

The influence mechanism of the modification with NiO/1T-MoS2 on pristine CdS photocatalyst
can be elucidated from two primary perspectives. Through the polyoxometalate template-based
synthetic strategy with NiMo6 precursor [10], NiO/1T-MoS2 was successfully loaded on the bulk
CdS surface and stacked together to eventually form the thick layer structures. On the one hand,
due to the superior absorption ability of 1T-MoS2 [33–35], the thicker layer structure containing
more NiO/1T-MoS2 can absorb a larger proportion of the incident light, which in turn suppresses the
excitation of photo-induced electron and hole pairs inside CdS photocatalysts and further diminishes
the total photocatalytic efficiency of the NiO/1T-MoS2@CdS composite. In other words, the excessive
coverage of NiO/1T-MoS2 restrains the optical absorption of bulk CdS photocatalyst and hence the
total photocatalytic performance is bound to reduce to some extent. On the other side, the effective
photocatalysis reacts in the prerequisite that the photo-excited carriers separated inside the bulk
CdS particle successfully transfer to the surface of Ni/1T-MoS2 layer structures, where the interfacial
chemical reaction occurs. It is reasonable to speculate that the 1T-MoS2 layer structure as its excellent
conductivity [37,38] enhances the transportation of electrons through its suitable layer structure and
simultaneously inhibits the combination of photo-excited charges in CdS particles. NiO species,
distributed uniformly on the surface of both CdS particles and 1T-MoS2 layers, exhibit high activity in
proton reduction [22,24]. Therefore, NiO and 1T-MoS2 loaded as bi-metal co-catalysts both play a vital
role in promoting proton reduction, ultimately accelerating the hydrogen evolution. Having said that,
the substantial interaction between NiO/1T-MoS2 with bulk CdS need to be further investigated with
in-depth studies, and the migration mechanism of photo-induced electrons inside NiO/1T-MoS2 layers
have not yet been fully clarified.

3. Experimental Methods and Characterizations

3.1. Materials

All chemicals were obtained as analytic reagent chemicals unless otherwise noted. Ammonium
molybdate tetrahydrate ((NH4)6Mo7O24·4H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and
cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O) were bought from Beijing InnoChem technology Co.,
Ltd. (Beijing, China). Thioacetamide (CH3CSNH2) was purchased from Sinopharm Chemical Reagent
Co., Ltd. (Beijing, China). Ultra-pure water with a resistivity of 18.2 MΩ·cm was used throughout all
of the experiments.

3.2. Synthesis of NiMo6 Precursor (NH4)4[NiH6Mo6O24]·5H2O

The NiMo6 precursor (NH4)4[NiH6Mo6O24]·5H2O was prepared based on the modified
experimental procedure in the previous report [10]. 4.2 mmol of (NH4)6Mo7O24·4H2O was dissolved in
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80 mL ultra-pure water and the solution was heated to 80 ◦C and then stirred for 1 h, which was referred
to as Mo-Solution. 4 mmol of Ni(NO)3·6H2O was dissolved in 20 mL ultra-pure water, which was
referred to as Ni-Solution. Next, the latter Ni-Solution was added dropwise to the former Mo-Solution
and was stirred for 5 h at 80 ◦C. Subsequently, 80 mL ultra-pure water was added, after which the
solution was heated to 100 ◦C and stirred for 1 h. Finally, after the solution was naturally cooled down
to room temperature, the obtained NiMo6 products were washed several times by centrifugation with
distilled water and dried at 80 ◦C for 12 h under vacuum.

3.3. Synthesis of x%(NiMo6)@CdS-τ(τ = 12, 24, 36 h)

(NiMo6)@CdS particles with variable amounts of NiMo6 were fabricated by a conventional
hydrothermal reaction method. 36 mmol of CH3CSNH2 was dissolved into 50 mL ultra-pure water
and the solution was sonicated for 5 min. After sonication, the solution was stirred for 1 h. Then,
5 mmol of Cd(NO3)2·4H2O and variable amounts of NiMo6 precursor (x% × 5 mmol NiMo6) were
introduced into the CH3CSNH2 aqueous solution, respectively. After continuous magnetic stirring
for 6 h, the thorough stirring solution was transferred into a 100 mL Teflon-lined stainless-steel
autoclave and heated at 200 ◦C for periods ranging from 12 to 36 h. After being washed 5~6 times by
centrifugation with distilled water and dried at 80 ◦C for 12 h under vacuum, the brownish-yellow
x%(NiMo6)@CdS-τ products were obtained, where x and τ represent the mole fraction of NiMo6

precursor and hydrothermal time, respectively.

3.4. Synthesis of Pt-CdS

Pt-CdS photocatalyst was prepared by the photo-deposition method. Typically, with H2PtCl6 as a
precursor, the co-catalyst Pt with a mass ratio of 0.2% compared to the samples, was loaded on pure
CdS photocatalyst via the photo-deposition method, in the presence of 80 mL of methanol solution
(25 vol%). After the suction filtration, all solid samples were dried at 80 ◦C for 12 h in a vacuum and
then the Pt-CdS photocatalyst was collected and obtained as the experimental control group.

3.5. Characterizations

To identify the crystalline phase and the composition of the obtained photocatalysts, powder
X-ray diffraction patterns were measured on an X-ray diffractometer (D8 Advance, Bruker, Karlsruhe,
Germany) equipped with Cu-Kα as the X-ray source at 40 kV voltage and 15 mA current. The diffraction
angle (2θ) range was from 10◦ to 80◦ with a scan speed of 5◦/min. The powder X-ray diffraction patterns
were further analyzed by Jade 6.0 software. The surface morphology of obtained photocatalysts was
unveiled by scanning electron microscopy (SEM) (JSM-6700, JEOL, Tokyo, Japan) and high-resolution
field-emission transmission electron microscopy (HRTEM) with element mapping (TALOS F200X, FEI,
Hillsborough, OR, USA). The chemical composition and electronic state of obtained photocatalysts
were derived from X-ray photoelectron spectroscopy (XPS) conducted by an X-ray photoelectron
spectrometer (AXIS UltraDLD, Kratos, Manchester, UK) with Mg-Kα radiation. Raman spectra
measurement was performed on a dispersive Raman microscope (Senterra R200-L, Bruker Optics,
Karlsruhe, Germany) with the excitation wavelength of 520 nm. The optical absorption property
of obtained photocatalysts was reflected by UV-vis diffuse reflection spectra (DRS) on a UV-Vis
spectrophotometer (UV-2450, Shimadzu, Kyoto, Japan) with BaSO4 as the reference.

3.6. Photocatalytic Activity Measurements

The particulate photocatalytic hydrogen evolution was conducted in a 300 mL Pyrex glass reactor
under irradiation under visible light, using a 300 W Xe-lamp (CEL-HXF300, Beijing China Education
Au-light Co., Ltd., Beijing, China) equipped with an optical filter ranging from 420 to 780 nm, followed
with a closed gas circuit system connected with a vacuum pump and online gas chromatography
(Huaai GC9160, Huaai, Shanghai, China). 50 mg of (NiMo6)@CdS sample was dispersed in an aqueous
solution (100 mL) containing 20 vol% 0.05/0.07 mol/L Na2S/Na2SO3 through the 10 min sonication.
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The photocatalytic reactor was pumped to vacuum to evacuate the dissolved air in the solution.
The photocatalysts were in suspension with continuous magnetic stirring while being exposed to light
irradiation. The amount of hydrogen evolved per hour was determined by the online gas chromatography
equipped with argon as a carrier gas.

4. Conclusions

In summary, a series of Ni, Mo co-doped CdS photocatalysts with non-noble metal such as Pt,
have been prepared by polyoxometalate template-based synthetic strategy with NiMo6 precursor.
1T-MoS2 stabilized by the introduction of NiO together with stacking layer structures was successfully
decorated on the terrace facets of bulk CdS particles. Due to the modification of the special layer
structure, NiO/1T-MoS2@CdS composites exhibited a greater photocatalytic performance than pristine
Pt-loaded CdS, among which the 5%(NiMo6)@CdS sample stood out for its best hydrogen evolution
activity with approximately 348.5 µmol/h, in the presence of Na2S/Na2SO3. The AQY efficiency could
reach to 42% at 365 nm. The above results illustrated that NiO and 1T-MoS2 have a synergistic effect on
enhancing the separation efficiency of photoexcited electron and hole pairs in CdS and facilitating the
interfacial proton reduction, namely hydrogen evolution, at the surface-active site. However, the more
detailed charge transfer procedure through the NiO/1T-MoS2 layer structure still needs clarifying in
future research.
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