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Abstract: Oxygen reduction reaction (ORR) has attracted considerable attention for clean energy
conversion technologies to reduce traditional fossil fuel consumption and greenhouse gas emissions.
Although platinum (Pt) metal is currently used as an electrocatalyst to accelerate sluggish ORR
kinetics, the scarce resource and high cost still restrict its further scale-up applications. In this
regard, biomass-derived carbon electrocatalysts have been widely adopted for ORR electrocatalysis in
recent years owing to their tunable physical/chemical properties and cost-effective precursors. In this
minireview, recent advances of the optimization strategies in biomass-derived carbon electrocatalysts
towards ORR have been summarized, mainly focusing on the optimization of pore structure and
active site. Besides, some current challenges and future perspectives of biomass-derived carbon
as high-performance electrocatalysts for ORR have been also discussed in detail. Hopefully, this
minireview will afford a guideline for better design of biomass-derived carbon electrocatalysts for
ORR-related applications.

Keywords: biomass-derived carbon; oxygen reduction reaction; electrocatalyst; optimization
strategies; heteroatom doping

1. Introduction

The electrocatalytic activity of oxygen reduction reaction (ORR) significantly determines the
performance of current energy conversion and storage devices, including various fuel cells and
metal–air batteries [1–3]. Due to the sluggish kinetics of the ORR process, electrocatalysts have usually
been required to accelerate the reaction rates and decrease the overpotentials [4]. Currently, platinum
(Pt)-group metal (PGM) based materials have been broadly utilized and regarded as the most effective
electrocatalysts for ORR catalysis [5,6]. However, the disadvantages of scarce resource, high-cost and
poor durability greatly limit their further scale-up applications [7]. In this regard, a great number of
efforts have concentrated on the development of cost-effective and high-performance candidates to
replace the state-of-the-art PGM-based electrocatalysts [8–10].

Up to now, transition metal compound based and heteroatom doped metal-free carbon-based
materials are two representative types of PGM-free electrocatalysts for ORR [11,12]. For example,
transition-metal-nitrogen-carbon (M-N-C), transition metal oxides (TMOs), nitrides (TMNs),
and phosphides (TMPs) based carbon hybrids [13–16], such as single-atom transition-metal-doped
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(Fe, Co, Mn, etc.) [17,18], have been well accepted as the promising candidates to replace PGM-based
electrocatalysts. In these transition-metal-based electrocatalysts, Mx-Ny sites [19,20] or pyridinic
and graphitic-N [21] have been recognized as the main active sites. Recently, different kinds
of carbon materials (carbon nanotube, graphene, carbon nanofiber, etc.) have been developed
as high-performance ORR electrocatalysts due to high electronic conductivity, excellent stability,
tunable morphology, and facile functionality [22]. Although investigations into carbon nanotube and
graphene as electrocatalysts have attracted significant attention for ORR electrocatalysis, scaled-up
application of such carbon nanomaterials is still limited by high cost or deficient activity [23–25].
Fortunately, more and more inexpensive methods have been proposed to prepare graphene with high
quality. For example, Tour and coworkers have developed a less expensive approach using six easily
obtained raw-carbon-containing materials including cookies, chocolate, grass, plastics, cockroaches,
and dog feces to grow graphene directly on the back of a Cu foil at 1050 ◦C under H2/Ar flow [26].
In recent years, designing efficient carbon electrocatalysts with sustainable and abundant biomass
materials as precursors have been rapidly emerged owing to their cost-effective fabrication and
environmentally friendly [27]. At present, various biomass materials have been reported as promising
precursors to synthesize porous carbon, such as sugar [28], lignocellulose [29], animal biomass [30,31],
natural cattail fibers [32], haddock peel [33], dandelion seeds [34], mulberry leaves [35], chitosan [36],
gelatin [37], chitin [3] etc. Besides the commonly used method of thermal decomposition to prepare
biomass-derived carbon electrocatalysts, several strategies including activation [38], hydrothermal
carbonization [39,40], molten salt carbonization [41] and template method [42,43] have been proposed.
Except for their renewable and sustainable properties, rich heteroatoms composition and inherited
porous structure are two desirable features [30,32]. Biomass with natural pore structures and abundant
active sites are promising to afford a tailorable template for electrocatalyst synthesis. However, it should
be noted that the structural features and chemical composition of biomass would be different from
region to region, thus resulting in a diverse performance.

There have been several valuable reviews on the achievements of biomass-derived carbon
electrocatalysts including their preparation, physicochemical properties and ORR applications [25,44–47].
However, the progress focusing on the optimization strategies of pore structure and active site for oxygen
electroreduction has not been specifically summarized yet. Moreover, this research field is developing
rapidly. Therefore, it is highly essential to provide a timely review as well as in-depth understanding of
optimization strategies on ORR performance by considering them in entirety (Figure 1). In this timely
review, we have comprehensively discussed the performance evaluation of ORR process, optimization
strategies of pore structures and active sites in biomass-derived carbon electrocatalysts for oxygen
electroreduction. First, the performance evaluation of biomass-derived carbon electrocatalysts in ORR
process has been presented, which is theoretical foundation, and some critical parameters including
onset potential, half-wave potential, limiting current density and Tafel slope have been highlighted.
Then, several recent advances of commonly used optimization strategies of pore structures and active
sites to enhance the electrochemical performance have been systematically discussed, such as (i)
physical activation, chemical activation, template activation and self-activation, (ii) nitrogen doping,
phosphorus doping, boron doping, and multiple doping. Such aforementioned optimization strategies
greatly improve the electrocatalytic activity of biomass-derived carbon electrocatalysts, which hold
a promising potential for ORR-related applications. In addition, the current challenges and future
prospects of biomass-derived carbon electrocatalysts for ORR have also been discussed in detail.
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Figure 1. Schematic overview of three important aspects for the development of advanced biomass-derived
carbon electrocatalysts for oxygen reduction reaction (ORR).

2. Performance Evaluation of Biomass-Derived Carbon Electrocatalysts for ORR

To reliably evaluate the ORR performance of biomass-derived carbon electrocatalysts [37],
constructing a general and standard procedure is highly necessary. So far, the widely adopted method
to assess the intrinsic activity of catalysts is based on the rotating disk electrode (RDE) and rotating ring
disk electrode (RRDE) measurement [48]. Such method is capable of avoiding the mass transfer concerns
and thus affording a stable ORR kinetic current density (jk), because the working electrode rotates at a
high speed during the evaluation process (Figure 2a) [44]. Typically, ORR measurement is carried out in
a three-electrode system, in which the electrocatalyst is the working electrode, an Ag/AgCl or Hg/HgO
electrode is the reference electrode, and a Pt wire is the counter electrode [49]. The electrocatalysts
are usually dispersed in solvent with Nafion as binders to form a uniform slurry. Then the slurry is
drop-casted on glassy carbon (GC)-based RDE or RRDE [50]. Of note, the quality of drop-casting film
and loading amount of electrocatalyst directly affects the ORR kinetics. Therefore, uniform catalyst
films and appropriate catalyst mass loadings on the electrode are essential to obtain an accurate ORR
performance, including onset potential (Eonset), half-wave potential (E1/2), limiting current density (jL)
and Tafel slope parameters [51]. A positive shift of Eonset or E1/2, large jL, and small Tafel slope indicate
high ORR activity and fast ORR kinetics, respectively [52].

Generally, two ORR pathways have been proposed: one is the direct four-electron (4e−) reduction
pathway, the other is the indirect two-electron (2e−) peroxide pathway (Figure 2b) [44]. O2 can be
directly reduced to H2O through the 4e− pathway with a rate constant k1; alternatively, it can also
be reduced to adsorbed hydrogen peroxide (H2O2,ad) through the 2e− pathway with a rate constant
k2 (HO2

− in alkaline medium and H2O2 in acidic medium). The amount of H2O2 was calculated
according to Equation (1). Subsequently, H2O2,ad could either be electrochemically reduced to H2O
with a rate constant k3, or could be chemically decomposed to O2,ad with a rate constant k4 on surface,
and desorbed into electrolyte with a rate constant k5. The suitable electrocatalyst drives the ORR process
towards direct 4e− reduction pathway, which requires high current efficiency and fewer peroxide
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species [53]. The selectivity of the electrocatalyst is usually described with the number (n) of transferred
electrons, which can be calculated by K-L equation and RRDE measurement [54]. The number (n) was
calculated according to Equation (2).

H2O2(100%) = 200×
IR/N

ID + IR/N
(1)

n = 4×
ID

ID + IR/N
(2)

where ID is the disk current, IR is the ring current, and N is the collection efficiency (≈0.24–0.5).
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Figure 2. (a) The rotating ring disk electrode (RRDE) configuration: glassy carbon (GC)-disk is
used as a substrate to load electrocatalysts for ORR, and Pt-ring is used to detect the produced
peroxide species from electrocatalyst layer. (b) General ORR mechanism via direct four-electron (4e−)
reduction and indirect two-electron (2e−) peroxide pathways. Reproduced with permission [44].
Copyright 2020, Wiley-VCH.

3. Optimization Strategies of Pore Structure

Since ORR only occurs at the solid–gas–liquid (electrocatalyst-O2-electrolyte) triple-phase
boundary regions, interconnected hierarchical pores in biomass-derived carbon electrocatalysts are
beneficial to the penetration of electrolyte and mass transfer, resulting in excellent ORR activity [55,56].
Appropriate porosity and microarchitecture have the ability to increase the amounts of triple-phase
boundary region, thus maximizing the utilization of active sites. As a convenient method to increase
the exposed active surface, activation has been adopted for carbon electrocatalysts to adjust the
meso-/micropore proportion [57]. According to the mechanism, activation processes can be classified
to physical activation, chemical activation, template activation and self-activation [58]. In this section,
we have summarized such commonly used optimization strategies of pore structure, which is important
for ORR performance.

3.1. Physical Activation

Physical activation strategy mainly involves N2, oxidizing atmosphere and H2O steam activation,
which contributes to the formation of a porous structure owing to the removal of carbon atoms at
high temperatures [38,59]. The development of porosity in the physical activation process includes the
following three mechanisms: (i) the generation of new pores at the inaccessible early stage; (ii) the
formation of new pores with the removal of ordered carbons; and iii) the increase of pore size [45,60].
For instance, by using fresh sheep-horn as precursor, Mu and coworkers synthesized a nitrogen (N),
sulfur (S) codoped three-dimensional (3D) porous carbon nanosheet (NSG) electrocatalyst via an in
situ physical activation method (Figure 3a) [61]. The electrocatalytic performance of N, S dual-doped
graphene was obtained with an Eonset of −0.22 V vs. SCE (Pt/C −0.18 V), E1/2 of −0.23 V (Pt/C −0.19 V),
jL of 5.41 mA cm−2 (Pt/C 5.34 mA cm−2) at −1.0 V, and 3.52−3.83 of transferred electrons in alkaline
medium. In addition, the long-term stability and resistance to CO poisoning and fuel oxidation
intermediates were both superior to Pt/C. The catalytic properties of activated N, S dual-doped
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graphene are significantly enhanced due to the beneficial role of the simultaneously doped N and S,
and the effect of 3D porous morphology with large surface area (319.93 m2 g−1) to expose more active
sites after activation. When used as a high-performance electrocatalyst for ORR, the E1/2 and jL for
NSG is even more positive than commercial Pt/C, demonstrating a remarkable electrocatalytic activity
of NSG.

In an activated biomass-derived carbon, pore structure is dependent on several parameters
including carbonization temperatures and times, activating agents, post-treatments, etc. [62]. H2O steam
and CO2 are two commonly used activation agents, which can react with carbon to produce H2 and
CO gases, respectively [63,64]. To achieve a high specific surface area of biomass-derived carbon
electrocatalyst, the reaction between activation agents and carbon is required to occur inside of carbon
atoms [65]. Therefore, choosing appropriate synthesis conditions is necessary for the removal of
carbon and development of porosity. Although physical activation is an effective strategy to prepare
biomass-derived carbon with high yield and bulk density, it is still unable to regulate the electronic
structure and surface chemistry properties of carbon, which hinders further application to some
extent [66].

3.2. Chemical Activation

Compared with the physical activation method, chemical activation is a one-step strategy that
involves the impregnation of biomass precursors with activation agents prior to pyrolysis at the
desired temperature and inert atmosphere [67]. In this specific method, biomass precursors are usually
treated with dehydrating chemicals such as ZnCl2, ZnO, H3PO4, KOH and alkaline carbonates,
then are treated by carbonization and a further washing step to remove the residual activation agents
and by-products [45]. Although such a strategy has been adopted for several years, the activation
mechanisms are still elusive [58]. Taking KOH activation as an example, three possible mechanisms
have been proposed: (i) the abundant micro/mesopores are generated via redox reactions between
K-containing species (KOH, K2CO3, K2O) and the carbon matrix at high temperature [68]; (ii) the water
vapor at high temperatures can increase porosity due to its gasification [69]; and (iii) the metallic K
would intercalate into the carbon skeleton to expand the interplanar spacing, thus resulting in a highly
porous structure [70].

Except for KOH activation, ZnCl2 activation is another typical strategy used for chemical
activation [71]. Owing to the Lewis acid feature, the ZnCl2 agent has the capability to facilitate
the dehydration and aromatic condensation reaction of biomass precursors at low temperatures
and high temperatures, respectively [72]. Recently, Gao and coworkers developed a general ZnCl2
activation strategy to successfully prepare a N,O codoped carbon electrocatalyst with hierarchical
porosity [73]. The prepared N0.54–Z3/M1-900 sample exhibits a high ORR activity in terms of Eonset of
0.94 V vs. reversible hydrogen electrode (RHE) and E1/2 of 0.824 V. In chronoamperometric responses
test, 97.4% of the original current density is retained for the N0.54–Z3/M1-900 electrode after 24 h,
whereas the commercial Pt/C catalyst electrode shows much higher current loss of 15% after only
8 h. These results suggest that the electrocatalytic activity strongly depends on the hierarchically
pore architectures and nitrogen active sites in the carbon matrix. As shown in Figure 3b, such a
strategy can be easily applied to synthesize other biomass-derived carbon materials owing to a versatile
dehydration-aromatization-condensation carbonization mechanism. Intriguingly, chemical activation
is capable of significantly increasing the specific surface area and pore volume of biomass-derived
carbon due to the high degree of carbon etching.
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Figure 3. (a) Schematic illustration for the synthesis of nitrogen, sulfur-doped graphitic carbon (NSG)
electrocatalyst via physical activation strategy. Reproduced with permission [61]. Copyright 2016,
American Chemical Society. (b) Schematic illustration for the synthesis mechanism of biomass-derived
carbon electrocatalysts via chemical activation strategy. Reproduced with permission [73]. Copyright
2019, Royal Society of Chemistry. (c) Schematic illustration for the synthesis of alfalfa-derived nitrogen,
phosphorus-doped carbon (NPC) electrocatalyst via template activation strategy. Reproduced with
permission [74]. Copyright 2019, American Chemical Society. (d) Schematic illustration for the synthesis
process, (e) high-resolution transmission electron microscopy (HRTEM) image, and (f) energy-dispersive
X-ray (EDX) mapping of sludge flocs-derived N-doped mesocellular graphene foam (SF-NMGF) via
self-activation strategy. Reproduced with permission [75]. Copyright 2015, Royal Society of Chemistry.

3.3. Template Activation

Template activation strategies, including hard template and soft template, have been widely
employed to modulate the pore structures of biomass-derived carbon electrocatalysts for ORR [58].
The morphologies of hard templates greatly determine the obtained architectures of the final
electrocatalysts, such as zero-dimensional (0D) ordered mesoporous carbon sphere, two-dimensional
(2D) carbon nanosheet, and 3D hierarchical carbon monolith, etc. [76–78]. Briefly, introducing hard
templates in biomass precursors can generate a large number of mesopores in the resulting carbon
skeleton. N-doped porous carbon (NPC) derived from alfalfa, for example, has been synthesized
through a facile copyrolysis method using a CaCO3 hard template (Figure 3c). In their preparation,
CO2 gases can be in situ generated from a CaCO3 template at high temperature, thus forming abundant
pore structures. Unfortunately, the use of hard templates is time-consuming and expensive, which is
the largest challenge for large-scale application. As comparison, soft templating strategies including
block copolymers, surfactants and micelles have also been employed to manufacture biomass-derived
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carbon electrocatalysts [79]. The soft-template activation avoids the disadvantage of removing template
step, thus simplifying the production procedure of porous carbon.

3.4. Self-Activation

Unlike other activation methods mentioned above, the self-activation method has the unique
advantage of no additional activation reagents, which can further decrease the cost and simplify the
process [80]. The self-activation method usually involves two possible mechanisms. One is a physical
self-activation process, which utilizes the emitted gases from biomass precursors at high temperatures
for the activation of carbon [81]. The other is a chemical self-activation process, which employs some
inorganic compounds that already exist in biomass precursors to activate carbon in situ [82]. Kong and
coworkers have prepared a N-doped meso-cellular graphene foam (SF-NMGF) by employing sludge
flocs as carbon and nitrogen sources, where numerous microorganisms in biomass precursors can serve
as templates to produce pore structure (Figure 3d) [75]. As shown in Figure 3e,f, numerous mesocellular
pores are identified in graphene nanosheets with interleaved structure, which is beneficial to mass
transfer in ORR. The resultant SF-NMGF had a large Brunauer-Emmett-Teller (BET) surface area of
370 m2 g−1, a pore volume of 0.69 cm3 g−1 and pore diameter of 15 nm. It demonstrates an excellent
catalytic activity with an Eonset only negatively shifted by 50 mV compared to commercial Pt/C,
a jL of 5 mA cm−2, a four-electron transferred electrons process, superior operational stability and
methanol-tolerance in comparison with Pt/C in alkaline electrolyte. The excellent catalytic performance
could be a result of (1) the high percentage of graphitic-N in the SF-NMGF, and (2) the foam-like
mesopores with a large surface area and the graphitic framework with uniform N-doping, which both
offer a high probability of exposure of the active sites. In this particular strategy, in situ emitted gases
from biomass during the carbonization process can effectively etch carbon frameworks. Therefore,
compared with other activation methods, the self-activation approach is more fitting to large-scale
production and industrial requirements.

4. Optimization Strategies of Active Site

It has been widely accepted that the ORR electrocatalytic activities of carbon catalysts are
greatly dependent on their spin densities and atomic charge [25]. Up to now, some carbon materials
with graphitic structure and abundant edge-plane sites have been confirmed to be active in ORR
electrocatalysis [83–85]. However, the majority of pristine carbon electrocatalysts possess inferior
performance in aqueous electrolytes due to their unsatisfactory active sites [86]. Typically, active sites
in carbon-based materials (especially carbon nanomaterials) include intrinsic carbon defects (existed in
the conjugated network without any dopants, such as edges, vacancies, holes or topological defects),
extrinsic defects (mainly heteroatoms or single metal atoms doping) and combination sites between
each other [87–90]. As we known, the intrinsic defect sites in architectures greatly affect physicochemical
properties of carbon nanomaterials, and the introduced intrinsic carbon defect sites in carbon
frameworks can directly serve as the potential active sites [90]. Since “defect sites” are a big topic,
with regard to this minireview, the optimization strategy of active sites discussed in this paper
only involves the aspect of heteroatoms doping. Recently, introducing heteroatoms to the molecular
backbone of biomass-derived carbon materials has been reported as an effective optimization strategy for
the enhancement of ORR activity [91,92]. Such heteroatoms are capable of breaking the electroneutrality
of pristine carbon, creating additional charge sites for O2 adsorption, and efficiently utilizing the π

electrons of carbon skeleton. In this section, we have summarized some commonly used optimization
strategies of active site, which is another important factor for the enhancement of ORR performance.
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4.1. Nitrogen Doping

The atomic size of nitrogen (N) and carbon is similar, but the electronic configuration of them is
much different. Consequently, N doping in pristine carbon molecules has the capability to alter the
electronic structure and minimize the lattice mismatch simultaneously [93]. Normally, the N dopant
in carbon nanostructure can be divided into four parts: pyridinic N, pyrrolic N, graphitic N and
quaternary N [94]. Interestingly, some biomass precursors containing abundant N element can be
directly used to fabricate N-doped carbon electrocatalysts [95–97]. For example, Wang and coworkers
have developed a cost-effective SiO2 template-assisted approach for the fabrication of shrimp-shell
derived N-doped carbon electrocatalysts (Figure 4a) [98]. The prepared 3D N-doped porous carbon
obtained at 800 (NPC-800) with a surface area of 360.2 m2 g−1 exhibits excellent catalytic activity in
alkaline medium with an Eonset of −0.06 V vs. Ag/AgCl (Pt/C −0.03 V), an E1/2 of −0.21 V (Pt/C −0.17 V)
and a jL of 5.3 mA cm−2 (Pt/C 5.5 mA cm−2) at −0.4 V vs. Ag/AgCl. It also displays superior durability
and high methanol tolerance in alkaline medium than the commercial Pt/C catalyst. It has been found
that pyridinic N and quaternary N moieties with electron-withdrawing ability function as the active
centers for ORR electrocatalysis. However, the activity origin of catalytic mechanism of N-doped
carbon electrocatalysts for ORR is still unclear due to the difficulty of precisely synthesizing the form
of N dopant in biomass-derived carbon materials.

4.2. Phosphorus Doping

Phosphorus (P) exhibits a larger atomic size and lower electronegativity (2.19) than pristine carbon
(2.55), which gives rise to a stable combination between P and C atoms [99]. Therefore, P element has
been broadly studied as a promising dopant to substitute sp2 carbon atom and modulate electronic
configuration. Yang and coworkers have developed P-doped carbon hollow spheres (P-CHS) through
a hydrothermal method, in which biomass glucose, tetraphenylphosphonium bromide and anionic
surfactant sodium dodecyl sulfate are selected as carbon source, P source and soft template, respectively
(Figure 4b) [100]. As shown in Figure 4c–e, C, O and P elements are uniformly distributed in the
skeleton of P-CHS, indicating P atoms are successfully doped into the carbon nanostructure. The results
confirmed the charged sites P+ and/or asymmetric spin density in carbon atoms induced by doping
were the catalytic sites for the ORR [101,102]. The study reveals that P content is crucial for the
improvement of the ORR activity of carbon owing to the large distortion and partial destruction of
the sp2-carbon network [103] caused by the high content P doping since P has a much larger covalent
radius (107 ± 3 pm) than C (73 ± 1 pm). Even so, the of P-CHS catalyst exhibits an inferior ORR
activity, whose Eonset and E1/2 are about 78 mV and 52 mV lower than that of Pt/C. Despite a great
number of efforts on P-doped biomass-derived carbon have been developed as efficient ORR catalysts,
their performances are still underwhelming compared to N-doped carbon materials, probably because
P sites limit the desorption of ORR intermediates and thus decrease the reaction kinetics [104].
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Figure 4. (a) Schematic illustration for the synthesis of N-doped carbon electrocatalyst. Reproduced
with permission [98]. Copyright 2016, Royal Society of Chemistry. (b) Schematic illustration for the
synthesis, and the elemental mapping of C (c), O (d), P (e) in P-doped carbon electrocatalyst. Reproduced
with permission [100]. Copyright 2015, Elsevier. (f) Schematic illustration for the synthesis of B-doped
carbon electrocatalyst. Reproduced with permission [105]. Copyright 2016, Royal Society of Chemistry.
(g) Schematic illustration for the synthesis, and (h) elemental mapping of C, N, P in N,P co-doped
carbon electrocatalyst. Reproduced with permission [106]. Copyright 2016, Royal Society of Chemistry.

4.3. Boron Doping

Owing to lower electronegativity than P and C elements, boron (B) doping into biomass-derived
carbon can also break the electroneutrality of pristine carbon, thus creating a good microenvironment
for ORR process [107]. Generally, B atoms doping into carbon structures are in the form of BC2O,
BCO2, B4C and BC3 [108]. The B4C and B3C species change the valence band structure and improve
the density of states close to the Fermi level of carbon-based materials, which could enhance the
electronic conductivity of the carbon material [109]. Furthermore, the B4C and B3C species introduced
in carbon lattice increase the number of hole-type charge carriers and the electron density of nearby
active carbon sites, which is helpful to improve the conductivity and electrochemical activity of the
B-doped carbons [110]. In the past decade, B-doped carbon materials prepared from biomass have
been thoroughly investigated as electrocatalysts for ORR, which exhibits superior methanol and
CO tolerances than commercial Pt/C [111]. However, the overall performance of B-doped carbon
materials is still insufficient in comparison with N-doped carbon. Yang and coworkers have reported
a self-assembly approach for the synthesis of B-doped ordered mesoporous carbons (B-OMCs) with
2D hexagonal mesostructured and tunable doping content (Figure 4f) [105]. In their preparation,
phenolic resin and H3BO3 are used as carbon and boron sources, respectively. The obtained B-OMCs
characterized with an Eonset of −0.14 V vs. Ag/AgCl, E1/2 of –0.12 V (negatively shifted compared to
that of the commercial Pt/C), a jL of 5.42 mA cm−2, 3.71–3.85 of transferred electrons, and Tafel slope
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of 78.5 mV dec−1. It has been demonstrated that B-OMC catalyst exhibits an inferior ORR activity
but superior ORR durability, compared with commercial Pt/C electrocatalyst. The enhanced catalytic
performance of the B-OMCs could be ascribed to the synergistic effects of the ordered mesostructure,
specific surface area (470–626 m2 g−1) and moderate boron doping (1.17 wt %).

4.4. Multiple Doping

Compared with single-heteroatom doping, multiple heteroatoms codoping into biomass-derived
carbon nanostructure can further enhance the ORR activity owing to the synergistic effect between two or
more heteroatom dopants [112]. The multiple heteroatoms impart the formation of multiactive centers
in biomass-derived carbon, which has been confirmed as a promising electrocatalyst. For example,
Wang and coworkers have reported a N and P co-doped hierarchically porous carbon (N,P-HPC)
catalyst, which is synthesized through the pyrolysis of phytic acid, dicyandiamide, and N-doped
carbon derived from cattle bones (Figure 4g) [106]. As shown in Figure 4h, the N and P heteroatoms
are evenly distributed on the N,P-HPC network, indicating a homogeneous distribution of active sites.
After optimization, the obtained N,P-HPC electrocatalyst demonstrated a better ORR performance than
the monoelement doped counterparts. Moreover, the introduction of another dopant can also modulate
the electronic structure [113]. The resultant N, P-HPC exhibited excellent ORR catalytic activity with an
Eonset of 0.924 V (comparable to commercial Pt/C), an E1/2 of 0.853 V (12 mV higher than that of Pt/C),
a kinetic current density of 38.2 mA cm−2 at 0.8 V (1.9-times that of Pt/C), better electrochemical stability
and methanol tolerance in comparison with Pt/C in alkaline electrolyte. The superior performance of
N, P-HPC was attributed to the increased number of active sites, such as pyridinic N and P-C species,
the favorable three-dimensional hierarchically porous structure and the large specific surface area
(1516 m2 g−1). The N, S and P co-doped porous carbon electrocatalyst, synthesized by pyrolysis of
ginkgo leaves, exhibits superior ORR activity to undoped counterpart and two heteroatoms-doped
carbon materials [114]. Obviously, the coordination structure and local environment of heteroatom
dopants play a key role on intrinsic activities of biomass-derived carbon electrocatalysts.

5. Conclusion and Perspective

In summary, we have afforded a comprehensive minireview on the recent advance of
biomass-derived carbon catalysts for oxygen electroreduction. The ORR activity significantly determines
the performance of various energy-conversion devices, such as polymer electrolyte membrane fuel cells,
microbial fuel cells and metal-air batteries. Therefore, biomass materials from different sources have
been widely considered as scalable and sustainable catalysts [115,116]. That pore structure and active
sites affect the physicochemical properties and electrocatalytic performance has been emphasized,
and thus giving a guideline for rational design of biomass-derived carbon materials. Compared with
the state-of-the-art Pt/C catalyst, biomass-derived carbons exhibit some intriguing advantages of lower
production cost, better methanol and CO tolerance, as well as better stability [117,118]. However,
several great challenges still remain for designing active electrocatalysts that exhibit comparable
activity to Pt/C in acidic environment.

Although biomass-derived carbon electrocatalysts show excellent ORR activity in RDE
measurements, it is still difficult to integrate such catalysts into energy conversion devices, especially in
H2-O2 fuel cells. Biomass materials are highly abundant and economical, but there has not been
much progress yet in large-scale applications. Using biomass-derived carbon materials as substrates
to reduce the noble metal loading is a promising strategy, which can simultaneously enhance the
electrocatalytic activity and electrochemically active surface area. Here, we have demonstrated that the
rational design of pore structure and active site plays a crucial role for synthesizing biomass-derived
carbon electrocatalysts with satisfactory physicochemical and electrochemical properties. It is believed
that developing effective and green synthetic methods will be a promising strategy to achieve more
sustainable platforms.
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On the other hand, in order to increase the competitiveness of biomass-derived carbon
electrocatalysts for ORR, enhancing the intrinsic activity through optimizing active sites is urgently
required. Consequently, understanding the catalytic mechanism of active sites and the relationship
between mass transfer and pore structure for ORR process is important [119]. The in-depth investigation
on these mechanisms helps to decide what types of biomass precursors should be chosen and what
preparation methods should be performed. With the rapid development of materials science and
technology, the community should further broaden the practical applications of biomass-derived
carbon electrocatalysts in ORR-related devices, such as water splitting, supercapacitors [120,121],
lithium-ion batteries [122,123], and CO2 reduction, etc. In this way, large volumes of biomass and
biowaste can be truly turned into a valuable resource and a sustainable society can be really established.
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