
One-Pot Biocatalytic Preparation of Enantiopure Unusual α -Amino Acids from α -Hydroxy Acids via a Hydrogen-Borrowing Dual-Enzyme Cascade

Fei Liu⁺, Junping Zhou⁺, Meijuan Xu, Taowei Yang, Minglong Shao, Xian Zhang^{*}, and Zhiming Rao^{*}

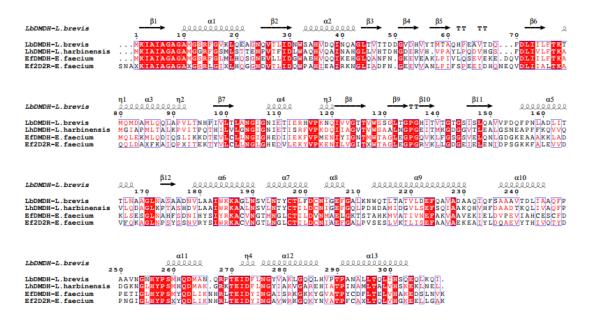
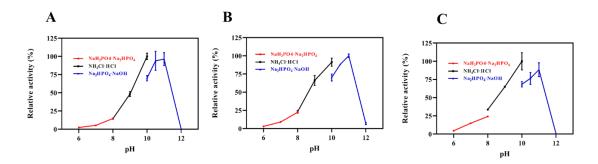
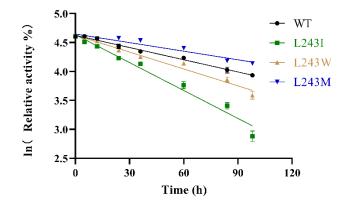
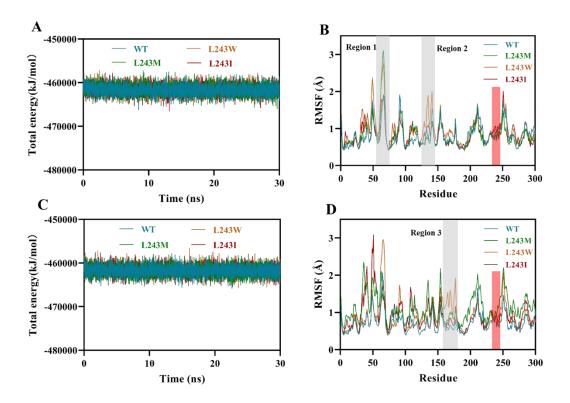

- ¹ The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; liufei1110@outlook.com (F.L.); zhoujp116@sina.com (J.Z.); xumeijuan@jiangnan.edu.cn (M.X.); yangtw@jiangnan.edu.cn (T.Y.); mlshao@jiangnan.edu.cn (M.S.)
- * Correspondence: zx@jiangnan.edu.cn (X.Z.); raozhm@jiangnan.edu.cn (Z.R.); Tel: 86-0510-85916881 (Z.R.); Fax: 86-0510-85918516 (Z.R.)
- ⁺ Authors contributed equally to this study.

Figure S1: SDS-PAGE analysis of the expression of D-hydroxy acid dehydrogenases from different sources. Lane M is the standard marker protein. CK *E. coli*-pET-28a, Line 1 *E. coli*-pET-28a-*Lb*MDH, Line 2 *E. coli*-pET-28a-*Ef*MDH, Line 3 *E. coli*-pET-28a-*Pa*DLacDH, Line 4 *E. coli*-pET-28a-*Pa*2D2R, Line 5 *E. coli*-pET-28a-*Sa*DLacDH.

Figure S2: Optimum pH of D-hydroxy acid dehydrogenase from different sources. (**A**) *Lb*MDH from *Lactobacillus brevis*; (**B**) *Ef*2D2R from *Enterococcus faecalis*; (**C**) *Sa*DlacDH from *Staphylococcus aureus*; (**D**) *Pa*DlacDH and (**E**) *Pa*2D2R from *Pseudomonas aeruginosa*.

Figure S3: Multiple-sequence alignment of D-mandelate dehydrogenase with other D-hydroxy acid dehydrogenase from *Lactobacillus harbinensi* and *E. faecium* by the help of software Clustal X and Espript 3. Conserved residues were indicated by intense red color.

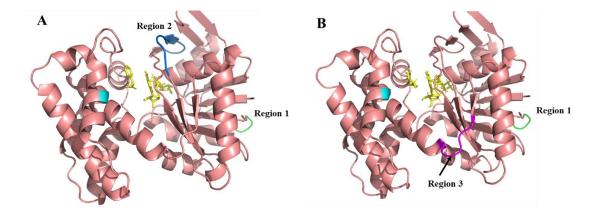

Figure S4: Optimum pH of variants of LbMDH. (A) Mutation L243M; (B) L243I; (C) L243W

Figure S5: The exponential fitting curves of the data points of thermostability analysis. Thermal stability analysis of wild-type *Lb*MDH and variants were performed at 40 °C. Error bars showed the standard deviation and data were collected from three independent experiments.

Figure S6: Structure analysis of *Lb*MDH and the variants by MD simulation. (A) Total energy of *Lb*MDH and the variants with NAD and D-mandelic acid; (B) RMSF of *Lb*MDH and the variants with NAD and D-mandelic acid; (C) Total energy of *Lb*MDH and the variants with NAD and D- α -hydroxybutyric acid; (D) RMSF of *Lb*MDH and the variants with NAD and D- α -hydroxybutyric acid. The grey shadowed regions 1, 2, 3 represent the loops. The red shadowed region was where the 243 residue is.

Figure S7: Structure analysis of *Lb*MDH and the variants. (A) The structure of *Lb*MDH compound with NAD and D-mandelic acid; (B) the structure of *Lb*MDH compound with NAD and D- α -hydroxybutyric acid. The structure was displayed with different colors: the carbon backbone marked in salmon, the 243 residue marked in cyan, region 1 (residues from 62-68) marked in green, region 2 (residues from 135-144) marked in marine, region 3 (residues from 175-179) marked in magenta.

Primers	Primer sequences 5'-3'
<i>Lb</i> MDH-F	GGGTCGCGGATCCGAATTCATGAAAATCGCCATTGCGGG
<i>Lb</i> MDH-R	CTCGAGTGCGGCCGCAAGCTTTCAAATCTGCTTCAGCTG
<i>Ef</i> 2D2R-F	TGGGTCGCGGATCCGAATTCATGAAAATAGCAATTGCAGG
<i>Ef</i> 2D2R-R	CGAGTGCGGCCGCAAGCTTTTATTTACGTTCAAACTA
PaDlacDH-F	TGGGTCGCGGATCCGAATTCATGCGCATCCTGTTCTTCAG
PaDlacDH-R	CGAGTGCGGCCGCAAGCTTTTAGGCCCGGACCCGATTGCG
Pa2D2R-F	TGGGTCGCGGATCCGAATTCATGACCTGGCATATCCTCGG
Pa2D2R-R	CGAGTGCGGCCGCAAGCTTTTAGCGGTCGGGCAAACCGCG
SaDlacDH-F	GGGTCGCGGATCCGAATTCATGACAAAAATTATGTTCTTTG
SaDlacDH-R	CTCGAGTGCGGCCGCAAGCTTTTAATTTAAACGTGTTTC

 Table S1: Primers used for cloning of D-hydroxy acid dehydrogenase

Note: The bold type shows the site of restriction enzymes *EcoR* I and *Hind* III.

Primers	Primer sequences 5'-3'
V127A-F	CGGCACGACG <i>GCC</i> TGGTCCTCCG
L189A-F	GAAGGCGGGCCCAACAGCGTGC
L189W-F	GAAGGCGGGCTGGAACAGCGTGC
L193A-F	CAACAGCGTGGCGAATACGTACTG
L193W-F	CAACAGCGTGTGGAATACGTACTG
I204A-F	CGACTGCAATGCCGGCGAGTTCGG
L243A-F	CGTCACCGATGCCATTGCCGCGC
L243W-F	CGTCACCGATTGGCGCGCGC
Q247A-F	CTGATTGCCGCGGCCCTTTCCGGCCG
Q247W-F	CTGATTGCCGCGTGGTTTCCGGCCG
L243X-F	CGTCACCGATNNNATTGCCGCGC
28a-R	GCCTTACTGGTTAGCAGAATG

Table S2: Primers used for site-directed and saturated mutagenesis

Note: Mutation sites are shown in bold and italic. Saturated mutation sites were substituted NNN

(N=A/G/C/T).