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Abstract: TiO2 has been widely used as a photocatalyst and an electrode material toward the
photodegradation of organic pollutants and electrochemical applications, respectively. However,
the properties of TiO2 are not enough up to meet practical needs because of its intrinsic disadvantages
such as a wide bandgap and low conductivity. Incorporation of carbon into the TiO2 lattice
is a promising tool to overcome these limitations because carbon has metal-like conductivity,
high separation efficiency of photogenerated electron/hole pairs, and strong visible-light absorption.
This review would describe and discuss a variety of strategies to develop carbon-doped TiO2

with enhanced photoelectrochemical performances in environmental, energy, and catalytic fields.
Emphasis is given to highlight current techniques and recent progress in C-doped TiO2-based materials.
Meanwhile, how to tackle the challenges we are currently facing is also discussed. This understanding
will allow the process to continue to evolve and provide facile and feasible techniques for the design
and development of carbon-doped TiO2 materials.
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1. Introduction

Environmental pollution and energy crisis have been the most urgent issues in recent years [1–5].
Photocatalysis is a promising strategy to alleviate, and even work out these problems because it
could efficiently decompose organic pollutants or produce chemical energy using semiconductors and
renewable solar energy [5–7]. Titanium dioxide (TiO2), as one kind of nontoxic, high stable, and low-cost
materials, has received special interest in environmental, catalysis, and energy areas [8–11]. However,
the photocatalytic efficiency of pure TiO2 is not enough up to meet practical needs because of its wide
bandgap (~3.2 eV), and the fast recombination of photoinduced charge pairs, leading to a considerable
energy consumption, poor visible-light photocatalytic activity, and low quantum efficiency [9,12,13].
Therefore, how to significantly promote charge separation is of significance in meeting practical needs.

Tremendous efforts have been devoted to varying the morphology, structure, and chemical
composition of TiO2 by doping metal and/or nonmetal elements, surface sensitization, and coupling
with narrow band-gap semiconductors [8,12–14]. Among these strategies, metal doped TiO2 usually
suffers from photocorrosion, poor stability, low doping amount, and no noticeable change in the
band gap of TiO2 [8,14–16], while TiO2 is coupled with other semiconductors, the additional cost
and undermined stabilization have also disadvantageous effects on the practical employment of TiO2

composites [15]. Notably, non-metal doping has attracted much more interest of investigators than
metal doping in improving the photoelectronic performances of TiO2 and in shifting its absorption
edge to the long wavelength region [13,14]. Especially, carbon doped TiO2 manifests promising
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advantages beyond other non-metal doping, which may be ascribed to following aspects [12,14,17–20]:
(1) carbon holds metallic conductivity; (2) carbon serves as a trapping center and transport channel for
photogenerated electrons, promoting separation efficiency of photoinduced electron/hole pairs; and (3)
carbon can also act as a sensitizer to sensitize TiO2 under visible light irradiation, thus aggregating a
number of thermal energy, facilitating charge transfer from the bulk of TiO2 into oxidation reaction sites,
and further generating lots of active species. Notably, carbon is always indicated that it can be permeated
to the lattice of TiO2 so as to substitute a lattice O or Ti atom, and then form a Ti–C or C–O–Ti bond,
which produces a hybrid orbital just above the valence band of TiO2 and bestows a significant
enhancement in visible-light driven photocatalytic activity. Therefore, coupling TiO2 with carbon
materials including activated carbon [21,22], carbon nanofibers [23,24], carbon nanotubes [25–27],
carbon sphere [28,29], carbon dot [30,31], graphene [32–34], and carbon doping [8,9,14,35] have been
widely investigated and proved to hold significant potential over other types of modification methods
in environmental, energy, and biomedical fields.

Among carbon materials, carbon doping has been attracting special interest because the
introduction of carbon atom causes an electron coupling effect between carbon and TiO2 or introduces a
localized occupied state into TiO2 to narrow the bandgap of TiO2 [8,9,14]. For example, Zegeye et al. [36]
developed hybrid carbon-doped TiO2/S composite as a positive electrode material for lithium-sulfur
batteries, manifesting enhanced cycle stability and rate performance. Our groups designed and
constructed several carbon-doped TiO2-based materials such as C-doped TiO2 hollow spheres [14],
C-doped TiO2 single-crystal nanorods [8], and hierarchical SiO2@C-doped TiO2 hollow spheres [9].
Further investigation found that the as-synthesized carbon-doped TiO2 materials manifested superior
photocatalytic performance toward the degradation of organic pollutants (RhB-. MB, MV, 4-NP, etc.).

In the past several years, many encouraging achievements have been exhibited in the
research area of TiO2-based materials. Especially, carbon-doped TiO2 composites have attracted
an increasing attention in environmental and energy science because they can exhibit sizeable potential
superiorities as adsorbent, support, and sensitizer, promoting photogenerated electrons migrating to
semiconductors [7,37]. In this review, we systematically summarize the currently available synthesis
strategies and applications of carbon-doped TiO2 materials. Notably, we further highlight recent
progress in the design and construction of carbon-doped TiO2 composites with a multifunctional
nature. Finally, challenges and outlooks are outlined and discussed, identifying prospective areas for
related research in this field.

2. Characterization Techniques for the Formation of Carbon Doping

2.1. XPS Analysis

Carbon-doped TiO2 is that carbon element is incorporated into the lattice of TiO2 by replacing
some of the lattice titanium or oxygen atoms, forming Ti−O–C or Ti−C bond, respectively. Therefore,
X-ray photoelectron spectroscopy (XPS) measurement was widely used to obtain the information of
Ti−O–C or Ti−C bond because XPS has a perfect match of its probe length (about 10 nm) to the size of
particles, and exhibits its ability to probe the chemical identity of the elements present [38]. Therefore,
the binding energy of C1s according to XPS analysis is considered as a solid evidence to confirm the
formation of carbon doping [8,9,14,39–42], as shown in Table 1. This section focuses on addressing and
discussing the difference of two chemical bonds (Ti−O–C or Ti−C band) as an evidence to distinguish
whether carbon is incorporated into the lattice of TiO2, adsorbed on the surface, or the interstitial
position of the TiO2 lattice.
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Table 1. The C1s peak and typical synthetic method of C-doped TiO2 materials.

Catalyst C1s Peak Synthesis Methods Reference

Carbon@TiO2 hollow spheres Ti–O–C bond Template-derected method [12]
Carbon-TiO2 nanotubes Ti–O–C bond Template-derected method [13]

Carbon-doped TiO2 on TiC structure Ti–O–C bond TiC calcination [15]
C-doped TiO2 Ti–O–C bond Sol-microwave [43]

Carbon-Doped TiO2 /MCF-F Ti–O–C bond Hydrothermal synthesis [5]
TiO2/NCQD composites Ti–O–C bond TiC calcination [44]

Fe3O4@C@F-TiO2 Ti–O–C bond Hydrothermal synthesis [45]
Pd/TiO2-C Ti–O–C bond Solvothermal synthesis [46]

C-doped TiO2 nanoparticles Ti–C bond Hydrothermal synthesis [47]
C-doped TiO2@g-C3N4 nanospheres Ti–C bond Hydrothermal synthesis [48]

C-TiO2 modified g-C3N4 Ti–C bond TiC calcination [49]
MC-Meso C-doped TiO2/S Ti–C bond Hydrothermal synthesis [36]

N & C doped TiO2 supported Pt Ti–C bond Hydrothermal synthesis [50]
C-TiO2/g-C3N4 composite Ti–C bond TiC calcination [51]

C–H–TiO2 Ti–C bond TiC calcination [40]
Carbon-doped TiO2 nanorods Ti–C bond Template-directed method [8]

SiO2@C-doped TiO2 hollow spheres Ti–C bond Template-directed method [9]
C-doped Hollow TiO2 Ti–C bond Template-directed method [14]
C-doped porous TiO2 Ti–C bond Template-directed method [42]

2.1.1. The Existence of Ti–O–C Bond

XPS measurement was usually employed to obtain the chemical state and binding energy of
carbon-doped or carbon-decorated TiO2 composites, ascertaining fundamental information on the
interaction between C dopant and TiO2 [5,8,35,40,41,48,50–53]. When carbon is doped into the TiO2

lattice by replacing the lattice titanium, the Ti–O–C bond can be observed in the C1s spectra, as shown
in Figure 1. Therefore, many investigators believe that the existence of the Ti–O–C bond can be effective
evidence for ascertaining carbon doping in their as-synthesized TiO2-based materials [16,36,37].
For example, Qi et al. [5] prepared carbon-doped TiO2/MCF-F composite according to the observation
of Ti−O−C bonds in XPS spectra of C1s. Li et al. [54] reported a novel method for the preparation of
carbon-doped TiO2 composites according to the formation of the Ti−O−C bond located at 288.4 eV.
Similarly, S. Ivanov and coworkers [55] insisted that the existence of the Ti−O−C structure could
be used as evidence for confirming the formation of C-doped TiO2. However, the existence of the
Ti−O−C bond is not completely ascribed to the existence of carbon doping. In most cases, surface
and/or interstitial amorphous carbonate dopants in the TiO2 lattice also result in the formation
of Ti–O–C [15,40,41] because carboxyl or oxygen-containing carbon in GO sheets exhibits strong
covalent binding ability to TiO2 [12,41,56], narrowing band-gap energy and prompting its visible light
absorption. Accordingly, the existence of the Ti–O–C bond is not solid evidence for ascertaining carbon
incorporated into TiO2 lattice, but it might be considered as a result of specifically interstitial carbon
doping. Undoubtedly, more convincing evidence is required for confirming the formation of carbon
doping in the TiO2 lattice [39,53].
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2.1.2. The Existence of Ti–C Bond

When carbon is doped into the TiO2 lattice by replacing lattice oxygen, Ti–C bond can be seen
in the XPS spectra of C1s, as shown in Figure 2. it has been proved that the appearance of the Ti–C
bond is considered as a solid evidence for confirming the formation of carbon doping in TiO2-based
materials [35,36,50]. For example, Dhanasekaran P. and coworkers ascertained the formation of carbon
doped titanium oxide according to the peak at 282.7 eV (Ti–C bond) [50]. Recently, Wang et al. [35]
successfully constructed carbon-doped TiO2 nanotubes by referring the binding energy of 282.0 eV
in the XPS spectra of C1s. Unlike Ti–O–C bond, the existence of Ti−C is the only result of carbon
replacing oxygen in the TiO2 lattice. Clearly, the existence of the Ti–C bond can be used as the
most direct evidence for identifying the formation of carbon doping, as introduced in our previous
workers [8,9,14,42]. Similarly, the absence of the Ti−C bond is considered as carbon decorated TiO2

other than carbon doped TiO2, suggesting that carbon species do not substitute oxygen species and
dope into the TiO2 lattice as reported in many publications [7,12,16,18,57–60].

Catalysts 2020, 10, x FOR PEER REVIEW 4 of 16 

 

When carbon is doped into the TiO2 lattice by replacing lattice oxygen, Ti–C bond can be seen in 
the XPS spectra of C1s, as shown in Figure 2. it has been proved that the appearance of the Ti–C bond 
is considered as a solid evidence for confirming the formation of carbon doping in TiO2-based 
materials [35,36,50]. For example, Dhanasekaran P. and coworkers ascertained the formation of 
carbon doped titanium oxide according to the peak at 282.7 eV (Ti–C bond) [50]. Recently, Wang et 
al. [35] successfully constructed carbon-doped TiO2 nanotubes by referring the binding energy of 
282.0 eV in the XPS spectra of C1s. Unlike Ti–O–C bond, the existence of Ti−C is the only result of 
carbon replacing oxygen in the TiO2 lattice. Clearly, the existence of the Ti–C bond can be used as the 
most direct evidence for identifying the formation of carbon doping, as introduced in our previous 
workers [8,9,14,42]. Similarly, the absence of the Ti−C bond is considered as carbon decorated TiO2 
other than carbon doped TiO2, suggesting that carbon species do not substitute oxygen species and 
dope into the TiO2 lattice as reported in many publications [7,12,16,18,57–60]. 

 

Figure 2. The existence of Ti–C bond in the XPS spectra of C1s (a) [14] and (b) [8]. 

2.2. EPR Analysis 

Generally, electron paramagnetic resonance (EPR) analysis was widely used to evaluate the 
formation of defect sites in carbon or other dopants doped TiO2-based materials because EPR can 
characterize the unpaired electrons or paramagnetic centers [40,61,62]. If carbon doping was formed 
in the TiO2 lattice, a stronger EPR signatable 1l at g  =  2.003  ±  0.001 was more able to be observed 
than that of pure TiO2 or undoped TiO2, which could be ascribed to the unpaired electron trapped on 
surface oxygen vacancies, proving that carbon element could be incorporated into the crystal lattice 
of TiO2-based materials [40,61]. 

3. Strategies for the Synthesis of C-Doped TiO2 Materials 

Various strategies including hydrothermal technique, template strategy, thermal oxidation of 
TiC, and sol–gel process have been introduced to construct carbon-doped TiO2 materials with 
enhanced photoelectrochemical performances [16,17], as shown in Table 1. This section would pay 
attention to the description and discussion of synthetic methods involved in developing C-doped 
TiO2-based materials.  

3.1. Hydrothermal Method 

As a simple and mature method, the hydrothermal technique has been widely used to construct 
C-doped TiO2 materials because the morphology and structure of products are easily controlled by 
changing hydrothermal conditions [36,39,40,63]. In a typical hydrothermal synthesis, TiO2 precursor 
and carbon source are dispersed or dissolved in acidic or alkaline solution, and then the mixture is 
transferred into a Teflon-lined autoclave, sealed, and heated in an electric oven (100–180 °C), forming 
crystallized C-TiO2 structure. Finally, C-doped TiO2 is successfully synthesized by removing organic 
residues via calcination under an air atmosphere. For example, mesoporous C-doped TiO2 was able 
to be prepared via one-pot hydrothermal synthesis using TiCl4 and sucrose as TiO2 precursor and 

Figure 2. The existence of Ti–C bond in the XPS spectra of C1s (a) [14] and (b) [8].

2.2. EPR Analysis

Generally, electron paramagnetic resonance (EPR) analysis was widely used to evaluate the
formation of defect sites in carbon or other dopants doped TiO2-based materials because EPR can
characterize the unpaired electrons or paramagnetic centers [40,61,62]. If carbon doping was formed
in the TiO2 lattice, a stronger EPR signatable 1l at g = 2.003 ± 0.001 was more able to be observed
than that of pure TiO2 or undoped TiO2, which could be ascribed to the unpaired electron trapped on
surface oxygen vacancies, proving that carbon element could be incorporated into the crystal lattice of
TiO2-based materials [40,61].
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3. Strategies for the Synthesis of C-Doped TiO2 Materials

Various strategies including hydrothermal technique, template strategy, thermal oxidation of TiC,
and sol–gel process have been introduced to construct carbon-doped TiO2 materials with enhanced
photoelectrochemical performances [16,17], as shown in Table 1. This section would pay attention to the
description and discussion of synthetic methods involved in developing C-doped TiO2-based materials.

3.1. Hydrothermal Method

As a simple and mature method, the hydrothermal technique has been widely used to construct
C-doped TiO2 materials because the morphology and structure of products are easily controlled by
changing hydrothermal conditions [36,39,40,63]. In a typical hydrothermal synthesis, TiO2 precursor
and carbon source are dispersed or dissolved in acidic or alkaline solution, and then the mixture
is transferred into a Teflon-lined autoclave, sealed, and heated in an electric oven (100–180 ◦C),
forming crystallized C-TiO2 structure. Finally, C-doped TiO2 is successfully synthesized by removing
organic residues via calcination under an air atmosphere. For example, mesoporous C-doped TiO2 was
able to be prepared via one-pot hydrothermal synthesis using TiCl4 and sucrose as TiO2 precursor and
carbon source, respectively [36]. Aragaw et al. [53] introduced the preparation of Sn-C codoped single
crystal TiO2, in which SnCl4 and glucose were used as tin and carbon dopant precursors, respectively.
Qi D and coworkers reported C-doped TiO2/MCF-F photocatalyst using silica mesoporous cellular
foam (MCF) as host material and glucose as carbon source. Recently, our group in situ constructed
C-doped TiO2 single-crystal nanorod using CPS@TiO2 as TiO2 precursor and carbon dopant source [8],
this preparation process and morphology are more clearly illustrated in Figure 3.
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In addition to being a one-pot and mature technique, hydrothermal method is advantageous
in tuning the structure, morphology, and physical–chemical performances of final TiO2 materials
by changing TiO2 precursor and hydrothermal conditions. Especially, hybrid functional TiO2-based
materials can be designed and constructed by adding other required species. Although the whole
preparation process seems to be very simple, each step including the selection of the titanium
dioxide precursor, hydrothermal condition, washing, and calcination presents a decisive role in tuning
the morphology, structure, property, and yield of C-TiO2 materials [63].
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3.2. Template-Directed Method

Compared with solid/nonporous titanium dioxide nanoparticles, hollow/porous TiO2 materials
are more attractive because of a higher surface area and multiple interparticle scattering [14,64].
Precise control of the particle size, hollow/porous structure, and shell thickness of TiO2 spheres has
been a pursuing object because it is a key factor determining their properties [14]. In general, two main
methods are introduced to prepare hollow TiO2 spheres. One is template-free technique to construct
hollow TiO2 spheres via physical phenomenon [65]. Although the strategy can realize one-pot and
large-scale production, a distinguished disadvantage is the concomitant production of TiO2 spheres
with an ill-shaped and fragile structure [13,14]. Another is the template-directed method that effectively
tunes the shell and pore size of hollow TiO2 spheres, overcoming the disadvantage of the template-free
technique [14]. For example, Zou et al. [48] prepared C-doped hollow TiO2 spheres using carbon sphere
as a template. Matos and coworkers reported an easy and ecofriendly method to develop pristine
anatase phase of C-doped TiO2 using a biomass-derived molecule as a biotemplate [66]. Ji et al. [13]
constructed C-doped TiO2 nanotubes using surface-sulfonated polystyrene as a template through
calcination. Our group introduced an in situ synthetic method for the development of hierarchical
SiO2@C-doped TiO2 spheres with a uniform hollow structure using cationic polystyrene spheres as
templates, as shown in Figure 4 [9], and then the facile strategy was further broadened to prepare
various functionalized C-doped TiO2 materials including C-doped hollow TiO2 [14], C-doped porous
TiO2 [42], and C-doped TiO2 single-crystal nanorods [8]. Although the template-directed method can
develop various C-doped TiO2 materials with a regular and tuned morphology at the nano- and/or
microscale via controlling the structure of templates [63], its extensive applications may be limited
because of the preparation cost and insufficient characterization of templates.
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3.3. TiC Calcination

Titanium carbide (TiC) holds many fascinating properties including fast electron transfer,
easy modification, and superior stabilization [15,44], making it more potential for the construction of
C-doped TiO2 materials via simple calcination because of its high visible-light absorption efficiency and
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fast charge transfer. Yang et al. [15] prepared a C-doped layer on the TiC nanosphere with efficient visible
light-photocatalytic H2 production through in situ calcination of TiC. Figure 5 clearly demonstrated
the preparation process, morphology, and structure of the as-synthesized porous C-doped TiO2.
Li et al. [54] reported C-doped TiO2 multiple-phase composites exhibiting excellent ionic and electronic
conductivity through the calcination of TiC at 600 ◦C for 10 h. Unfortunately, it is very difficult in
preparing functionalized C-doped TiO2 with controlled morphology, size, and hollow/porous structure
via the calcination of TiC nanoparticle. Therefore, it is very necessary to combine other promising
strategies for the development of C-doped TiO2 materials with controllable structure and properties.Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 
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Figure 5. Preparation process (a), SEM (b), TEM (c), and SAED pattern (d) of porous
C-TiO2 nanostructure. Reprinted with permission from Ref. [15].

4. Application of C-Doped TiO2 Materials

4.1. The Removal of Organic Pollutants

Exploiting effective strategies to remove organic pollutants in wastewater is very necessary
according to environmental safety regulations due to increasing concerns about drinking water
safety [67,68]. Photocatalysis has been considered as a promising way to remove organic contaminants
including refractory organic pollutants by using solar energy because it can mineralize various organic
pollutants to produce CO2, H2O, and other harmless small molecules. It is well known that pure TiO2

holds poor visible-light absorption, low quantum yield, and undesired recombination of photogenerated
charges. Notably, C-doped TiO2 not only can effectively promote charge separation, but also can shift
the optical response of TiO2 from UV to visible spectral region, leading to an enhanced photocatalytic
performance for the removal of various organic pollutants (Table 2) [8,9,39,69]. For example, Ji et al. [13]
reported that C-doped TiO2 nanotubes demonstrated much better photocatalytic activity toward
the degradation of UDMH than bare TiO2 under UV and visible light, as shown in Figure 6.
Figure 6c demonstrated its photodegradation mechanism: under light irradiation, photogenerated
electrons transferred more efficiently to conduction band of TiO2 because carbon in the carbon-TiO2

nanotubes could act as an electron trap, inhibiting charge recombination [70,71]. Furthermore, carbon
also could improve adsorption of pollutant molecules, promoting photocatalytic performance because
adsorption was normally the first step in photocatalysis [67,72].
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from Ref. [13].

Yu et al. [39] found that C-doped TiO2 encapsulated with nano-sized graphene manifested
superior visible-light performance for phenol degradation than those of anatase TiO2, P25, and bare
C-doped TiO2. Zhang et al. [5] confirmed that C-doped TiO2/MCFF exhibited good adsorptive ability
and visible-light photocatalytic performance for degrading methyl orange. Our previous works
also ascertained that C-doped TiO2-based materials manifested stronger visible-light performances
toward the removal of various contaminants including rhodamine B (RhB), methylene blue (MB),
and p-nitrophenol [8,9,14]. The enhanced photocatalytic performance may be attributed to the
synergistic effect between C-doping and TiO2, in which carbon can generate electrons under visible
light illumination, and then photoelectrons would be transferred to the contribution band of TiO2,
improving its efficient light harvesting and photocatalytic activity [17,73,74]. It is should be pointed
out that the porous/hollow structure of photocatalysts is very beneficial to increase the surface area of
photocatalyst and promote the contact probability of catalyst and substrate by decreasing diffusion
limitation [9,14,75], which leads to better photocatalytic degradation of organic pollutants.
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Table 2. The photocatalytic performance of C-doped TiO2 materials toward the degradation of
organic pollutants.

Catalyst Pollutants Degradation
Rate Enhanced Performance Reference

Carbon-TiO2 nanotubes Unsymmetrical
dimethylhydrazine 90% 10% for bare TiO2 [13]

Mesoporous C-TiO2
Methylthionine

chloride 100% Improve 10 times than P25 [75]

C-doped anatase TiO2 Methylene blue 90% 3.7 times higher than TiO2 [66]

C-doped ultra-small TiO2 Toluene 85% Less than 60% for bare
USTiO2

[76]

C-doped TiO2/α-Fe2O3
heterojunction Bisphenol A 79% 2.7 times higher than

pristine TiO2
[77]

C-doped TiO2/anatase
(A)/rutile (R) Nonylphenol 41% 8% for undoped TiO2 [78]

C/N-doped TiO2 Microplastics (MPs) 71.77 ± 1.88%
Combined effect of pH and

temperature driving the
photodegradation of MPs

[79]

C-TiO2 Rhodamine B 83.3% (75 min) Around 15.0% higher than
that of P-25 [80]

Carbon doping and
coating of TiO2

Methylene blue 85% 5 times higher than
pristine TiO2

[81]

Carbon-doped TiO2 Caffeic Acid 92% High adsorption and
degradation [82]

N/C co-doped TiO2
Fluoroquinolone
antibiotics (LEV) 95.7% No visible light activity for

Degussa P25 [83]

S, N and C doped
mesoporous anatase

brookite TiO2

Microcystic toxins 100% 12.2% for un-doped TiO2 [84]

TiO2@C microspheres Congo red 94% 2.7 times higher than
N-TiO2

[16]

Carbon-doped TiO2 film Methyl ethyl ketone 94% 41% for P25 [85]

4.2. Electrochemical Application

A variety of experiments have been proved that TiO2 is a very promising electrode
material for electrochemical applications due to its low cost, ideal capacitive response, and good
cyclic stability [42,86–88], however, TiO2 has many disadvantages including low conductivity,
fast charge recombination, and high photochemical stability, leading to a poor electrochemical
performance [48,55,89,90]. The introduction of carbon doping is a potential tool to efficiently improve
the electrical conductivity of TiO2-based materials because carbon holds good corrosion resistance,
cyclic stability, and a long service lifetime during charge/discharge processes [58,86,87], as shown in
Table 3. Shen et al. [86] found that hierarchical carbon-doped TiO2 beads featured higher electronic
conductivity than P25 and anatase TiO2 beads. Our previous work also demonstrated that C-doped
porous TiO2 electrodes [42] increased ion diffusion channels and accelerated ion transfer, leading
to an enhanced electrochemical performance, as shown in Figure 7. Notably, mesoporous/hollow
electrode materials can exhibit high accessible area and ionic transport [11,36,42,58], resulting in
enhanced electrochemical performances. Besides, the synergistic effect of multicomponent materials is
of significance in promoting the electrochemical properties of carbon-doped TiO2 [50,56,91,92].
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Table 3. The photocatalytic performance of C-doped TiO2 materials toward the degradation of
organic pollutants.

Electrode
Materials

Application
Fields Advantage Comparative

Performance Stability Reference

MC-Meso
C-doped TiO2/S

Lithium-sulfur
batteries 802 mAh g−1

530 mAh g−1 for
mesoporous

C-doped TiO2/S

97.1% after 140
cycles [36]

N&C doped TiO2
supported Pt Fuel cells 980 mW cm−2 470 mW cm−2 for

Pt/TiON-1

Durability test
over 50,000

cycles
[50]

Si/TiO2-CC
composite

Lithium-ion
battery 3.21 mAh cm−2

More excellent
areal capacity than

other silicon
composite anodes

Maintain 94.5%
after 100 cycles [92]

Carbon-Doped
TiO2-Bronze
Nanowires

Lithium-ion
Batteries 345 mAh g−1 342 mAh g−1 for

TB-NWs

Maintain 89%
after 1000

cycles
[93]

TiO2@C
nanosheets

Na-ion
batteries 264.9 mAh g−1 170.8 mAh g−1 for

pure carbon
After 100 cycles
at 100 mA g−1 [11]

S/C co-doped
anatase

Lithium ion
storage 210 mAh g−1

Better
electrochemical

performance than
non-doped TiO2

83% capacity
retention for

500 cycles
[56]

C-doped Hollow
TiO2

Supercapacitor 418 F g−1 283 F g−1 for P25
78.1% capacity
retention for
10,000 cycles

[94]

C-doped porous
TiO2

Supercapacitor 485 F g−1 283 F g−1 for P25
~70% capacity
retention for
1000 cycles

[42]Catalysts 2020, 10, x FOR PEER REVIEW 10 of 16 
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5. Summary and Outlook

Although carbon doping can efficiently enhance photoelectrochemical properties of TiO2, it is
still a very challenging task in obtaining a high doping amount of carbon in the TiO2 lattice because
C-doped TiO2 is probably more difficult to be prepared than other non-mental doping [16], especially for
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single crystal or single-crystal-like TiO2 due to its high crystallinity [8,91], which hinders its further
applications in environmental, energy, and catalytic fields. Co-doping with two or more dopants
is a promising way to further enhance the properties of TiO2 compared to their single doped or
undoped TiO2 counterparts due to a strong synergistic effect between these codopants within the
TiO2 matrix [53,95,96]. Zegeye et al. [36] reported that MC-Meso C-dopedTiO2/S showed the best
cycling stability and enhanced electrochemical property for lithium-sulfur batteries. Zhou et al. [7]
found that In2O3 and carbon codoped TiO2 could oxidize Hg0 and manifested higher visible-light
photoactivity compared with P25. Our previous works showed that C/N-TiO2 hollow sphere [95] and
C/Bi-TiO2 single crystal nanorod [97] both exhibited an enhanced photocatalytic performance toward
the removal of refractory organic pollutants. Unfortunately, it is extremely difficult in figuring out the
contribution of carbon doping in codoped TiO2-based materials. On the other hand, how to obtain
uniform dispersion of carbon doping in the TiO2 lattice also remains a big challenge [86]. Therefore,
it is envisioned that future research will provide new insights in optimizing existing strategies and
developing new techniques, which better construct C-doped TiO2 materials with a high doping amount
and controlled distribution of carbon.
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