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Abstract: Gasification processes require the use of cheap and sustainable raw materials, as well as 

the optimization of the process, for a suitable commercial use. Cistus Ladanifer (rockrose) could be a 

suitable raw material for this purpose, as it grows spontaneously in Mediterranean regions, and 

might contribute to the economic development of these areas. In this research, a study about 

catalyzed gasification of CistusLadanifer biochar was carried out. The aim was to characterize the 

gaseous phase and to carry out a kinetic study. The experiments were carried out in a thermobalance 

connected to a gas chromatograph to quantify the exhaust gas. The operating variables studied were 

the initial carbon mass, temperature, steam partial pressure, the kind of catalyst (ionic or cationic), 

catalyst concentration and the method to incorporate the catalyst (impregnation or mixture). As a 

result, impregnation was the most effective way to mix the raw material and the catalyst, with K+ 

and CO32− as the most active cations and anions used in this experience, respectively. Temperature 

and steam partial vapor showed a positive effect on conversion and gas yield. The use of ideal 

models for gas-solid reactions showed acceptable results for the kinetic study. 
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1. Introduction 

The steady decrease in oil reserves, as well as the subsequent problems related to the use of this 

kind of energy source, has made the search of alternative energy sources necessary, as fossil feedstock 

cannot be regenerated whereas in renewable energy sources this fact is possible [1,2]. Among these 

sources, wastes from biomass play an important role due to their renewable nature. In that sense, 

many international organizations (such as the European Union) encourages the use of renewable 

energies [3]. This way, gas emissions and the subsequent greenhouse effect can be mitigated [4,5]. 

There are many ways and raw materials for the energy use of biomass [6]. Nevertheless, 

gasification processes, both at medium and large-scale, seem to offer the most attractive options. 

Moreover, gasification carried out in non-oxidizing conditions, decreases the emission of pollutants 

and, as a consequence, contributes to palliate the greenhouse effect [5,7]. 

Wastes from biomass are more reactive than mineral coals, both in the case of pyrolysis and 

gasification. For instance, steam gasification rate for biomass is 4 to 10 times higher than in the case 

of lignite [7,8]. This high reactivity of biomass is a consequence of its chemical and physical 

properties. Thus, volatile content of biomass (80–90%) doubles the corresponding value for mineral 

coals. Hydrogen/carbon and oxygen/carbon molar ratios are in the range of 1.3–1.5 and 0.5–0.8, 

respectively [6,7]. These ratios are substantially higher than those related to coals, with ranges 

between 0.8–0.9 and 0.1–0.3, respectively [7]. Finally, biochar from biomass, especially from woody 
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biomass, has a high levels of porosity, with values between 40 and 50% (expressed in% volume of 

pores to the total volume of the sample) and pore size distributions between 20 and 30 μm, whereas 

mineral coals show porosities between 2 and 18% and pore sizes from 5 Åformicropores to 5–20 ηm 

for mesopores. Total pore volume and BET Surface show similar trends, reaching for biochar values 

of 0.6–0.8 mL·mL−1 and 500–2000 m2·g−1, respectively, whereas for mineral coals total pore volume is 

between 10−1 and 10−2 mL·g−1and BET surface area hardly reach values between 10–20 m2.g−1 [6,8].As 

a consequence, biochar gasification, due to its higher reactivity, can be an important way to develop 

new energy sources and chemical products. 

Although gasification with air is a very common process, it is not suitable when high hydrogen 

quantities are required. For that purpose, it is necessary to use steam as a rising agent. Thus, steam 

gasification has raised interest due to the fact that it produces high amounts of hydrogen [9]. This 

gaseous fuel can be used in fuel cells, contributing to a new technology for clean electricity production 

[10]. Among other advantages, steam gasification produces a gas with a high heating value, reduces 

the diluent effect of nitrogen when air is used and, economically, it does not require the use of oxygen 

for gasification. However, steam gasification is a more complex process and endothermic. In this case, 

there is no possibility of using the heat required for the process from partial combustion of biomass, 

as in the case of gasification with air or oxygen [8–10]. 

Heat requirements of steam gasification can be mitigated by the use of catalysts that reduce the 

temperature required to carry out the process at a suitable reaction rate. For this reason, researchers 

have shown great interest in the mechanism and kinetics related to catalysts including alkaline, alkali 

earth or transition metals [11]. However, in practice, most gasification processes are not catalyzed 

due to problems related to costs and catalyst recovery [12]. Thus, it is necessary and useful to try and 

look for cheap catalysts in order to reduce energy costs of gasification [13]. 

The commercial development of gasification processes requires the use of a cheap and abundant 

raw material. Thus, the use of agricultural and forestry wastes is a suitable option [14–17]. Another 

possibility is to produce the raw material through non-food crops or the collection of biomass 

spontaneously generated in the countryside [18]. In that sense, gum rockrose (Cistus Ladanifer) is a 

flowering plant, very abundant in Mediterranean regions such as Extremadura (Spain), 

spontaneously growing in scrublands. The properties of its extracts or essential oils have been widely 

studied in the literature, offering antifungal, antibacterial and antioxidant activity [19–22]. However, 

to the best of our knowledge, this plant (or its wastes as herbaceous biomass) has not been extensively 

used for energy use. 

Considering the above, and as a continuation of previous research works [23–25], a study about 

catalyzed steam gasification of pyrolyzed rockrose biochar was carried out. The aim of this work was 

to characterize the gaseous phase in order to assess its energy use, as well as the determination of the 

influence of some operating variables and a kinetic study. 

2. Results and Discussion 

As it was pointed out, the operating variables studied were temperature, steam partial pressure, 

kind of catalyst (cationic and anionic part), catalyst concentration and catalyst addition. The influence 

of each of them is explained down below. 

2.1. Influence of Catalyst Addition 

Different studies have been carried out, by using sodium, potassium, magnesium, and calcium 

carbonates. These catalysts, as it was pointed out, have been added to the biochar through two 

procedures: impregnation and physical mixture. In both situations, the results were compared to 

those obtained in an experiment carried out without any catalyst (control sample). For the set of 

experiments where the catalyst was added through physical mixture, the results obtained 

(conversion and gas generation) hardly improved the results obtained without catalyst. On the 

contrary, when the samples were prepared by impregnation, both conversion and gas generation 

were clearly higher than in the case of control samples. These results pointed out that impregnation 

produced a better catalyst distribution in the pores of the material and, as a consequence, a higher 
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effectiveness was achieved. All the catalysts studied, except for magnesium carbonate, showed this 

same trend. In the case of the latter, as it can be seen in Figure 1, no catalytic effect was observed, and 

the obtained results were similar to those related to the non-catalyzed experiment. The typical 

behavior of magnesium carbonate could be due to the low stability of this salt, whose decomposition 

point is around 200 °C, and due to its low solubility (1 g·L−1). For this reason, (low catalytic activity), 

the results for both preparation procedures were similar. Nevertheless, and taking into account the 

general behavior, impregnation was the method used for further experimentation. 

 

Figure 1. Influence of the cationic part of the catalyst (anion used: carbonate; temperature: 800 °C; 

steam partial pressure: 0.51 atm; catalyst concentration: 5%). Conversion defined as (m0 − mt)/(m0 − 

ma), where mo is the initial mass, mt the mass at a time t and ma the ash mass. 

2.2. Influence of the Kind of Catalyst 

As mentioned above, the influence of the anionic and cationic part of the catalyst was studied. 

The cations used were sodium, potassium, magnesium, and calcium, whereas the anions used were 

carbonate, chloride, nitrate, acetate and fluoride. In all cases, according to the results obtained in the 

previous section, impregnation was used to prepare the samples with catalysts. 

As it was described earlier, weight loss was recorded over time. From these data the conversion 

of the process can be determined (Figures 1 and 2) and, therefore, its subsequent monitoring. Another 

possibility can be through gas analysis. Thus, apart from nitrogen, which was used as the carrier gas, 

other gases such as H2, CO and CO2 were detected. Due to the fact that the latter way can be 

considered more intuitive, the influence of operating variables was studied according to the gas 

evolved. 
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Figure 2. Influence of the anionic part of the catalyst (cation used: sodium; temperature: 800 °C; steam 

partial pressure: 0.51 atm; catalyst concentration: 5%). Conversion defined as (m0 − mt)/(m0 − ma), 

where mo is the initial mass, mt the mass at a time t min and ma the ash mass. 

Figure 1 and Table 1 show the influence of the cationic part on conversion and mole generation 

over reaction time, respectively. As it can be seen, catalysts with Na and K were the most effective 

ones, with a similar behavior. In contrast, Ca and Mg showed lower values. Concerning Mg, mole 

generation was lower than in the case of control sample. The higher effectiveness of Na and K can be 

due, firstly, to the high solubility of the corresponding salts used as precursors for sample 

impregnation. On the contrary, Ca and Mg carbonates, as it is well known, are basically insoluble. As 

the results obtained with Na and K are similar, and taking into account that sodium salts are much 

cheaper than potassium salts, the former was selected to carry out the study of the effect of the anionic 

part, whose results are shown in Figure 2 and Table 2. It can be observed that sodium carbonate 

showed the best results, followed by sodium fluoride. Sulfate and nitrate showed medium values 

and, finally, chloride and acetate provoked conversion values that were similar to those of the control 

sample. As a consequence, and considering the two set of experiments carried out and cost 

considerations (for a possible commercial use), sodium carbonate was chosen as the most suitable 

catalyst for the study of the influence of the rest of operating variables. Apart from solubility (which 

was already commented), the best behavior for sodium carbonate could be related to its basicity. 

Indeed, according to Wen [26], during the reaction of carbonate, complexes that are electron donor-

acceptor can be generated, which are able to absorb gas and can react with H2O to form an 

intermediate product that in turn, reacts with CO to regenerate carbonate. In that sense, Otsuka and 

Tomita [27] proposed a cyclical mechanism carbonate-oxide from which they justify the catalytic 

activity of different cations based on their ease of exchange between carbonate and oxide. This 

exchange, which is favored by the solubility of the precursor salt, is easier for alkaline metals (Na and 

K) than in the case of alkaline earth metals (Mg and Ca). In addition, concerning Mg, this exchange 

is negligible due to the instability of MgCO3 at the temperatures at which the experiments were 

carried out. Conversion (Figure 1) and gas generation results (Table 1) seem to align with the basicity 

of cations, as conversion and gas generation were similar for Na and K, whereas for Ca both 
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parameters decreased and in the case of Mg, due to the abovementioned reasons, did not show any 

catalytic activity. 

Table 1. Gas mole generation at 60 min of reaction. Influence of the cationic part of the catalyst (initial 

mass of biochar: 500 mg; anion used: carbonate; temperature: 800 °C; steam partial pressure: 0.51atm; 

catalyst concentration: 5%). 

Catalyst (H2Moles)·1000 (CO Moles)·1000 (CO2Moles)·1000 

Without catalyst 

(control) 
21.92 6.63 8.00 

Na 37.02 25.78 6.10 

K 41.71 25.64 7.68 

Ca 28.31 12.24 7.76 

Mg 20.10 8.21 5.80 

Table 2. Gas mole generation at 60 min of reaction. Influence of the anionic part of the catalyst (initial 

mass of biochar: 500 mg; cation used: sodium; temperature: 800 °C; steam partial pressure: 0.51atm; 

catalyst concentration: 5%). 

Catalyst (H2Moles)·1000 (CO Moles)·1000 (CO2Moles)·1000 

Without catalyst 

(control) 
21.92 6.63 8.00 

Carbonate 37.02 25.78 6.10 

Chloride 19.64 9.16 5.10 

Nitrate 34.07 14.08 4.34 

Sulfate 26.54 15.82 5.47 

Fluoride 35.69 23.69 6.08 

Acetate 20.49 13.02 4.38 

2.3. Influence of Temperature 

Five experiments at different temperatures (between 700 and 900 °C) were carried out, with an 

initial mass of around 500 mg and steam and nitrogen partial pressures of 0.51 and 0.49 atm, 

respectively. The catalyst used was sodium carbonate and its concentration was 5% w/w. 

Table 3 shows the influence of temperature on mole generation at the end of the experiment, 

including a mass balance. Mole generation was variable and, as it can be observed, mole 

accumulation increased with temperature, especially in the case of hydrogen. Another remarkable 

fact was the increase in CO/CO2 ratio, which points out a lower carbon dioxide generation at high 

temperatures. Consequently, temperature had a positive effect up to 850 °C. Surprisingly enough, 

there was a decrease in gas generation at 900 °C. This could be explained by the fact that the melting 

point of sodium carbonate takes place at 1127 K (854 °C) and, as it is known, it also implies 

decomposition of the salt. As a consequence, the melting and thermal decomposition of this salt 

implied a catalytic activity loss, showing a reaction rate similar to control samples. Under these 

circumstances, the experiment at 900 °C was ruled out for the following study, due to the poor 

performance of the catalyst at that temperature. According to the reasoning followed from Equation 

(1) to Equation (4), Equation (5) was obtained, from which ∆H2 was calculated.  

Table 3. Mole generation and the subsequent balance. Influence of temperature (initial mass of 

biochar: 500 mg; catalyst: sodium carbonate; steam partial pressure: 0.51atm; catalyst concentration: 

5%). 

T, °C (H2Moles)·1000 (CO Moles)·1000 (CO2Moles)·1000 ΔH2 

700 12.70 4.53 4.66 −1.15 

750 23.79 11.15 6.51 −0.38 

800 37.02 25.78 6.10 −0.96 
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850 50.02 29.56 9.28 1.90 

900 31.19 19.39 5.85 0.1 

The basic reaction of the carbon-steam system is the one shown in Equation (1).On the other 

hand, initially, three important reactions should be considered: water gas shift reaction (2), carbon 

monoxide methanation (3) and biochar hydrogasification (4). Considering the results obtained, it can 

be stated that reaction (3) and (4) did not take place under these experimental conditions, as methane 

was not detected in the evolved gases obtained in no case. Other reactions,such asthe Boudouard 

equilibrium reaction (2CO  CO2 +C), could not take place if experimental conditions and high steam 

partial pressures are considered [11]. In that sense, it should be taken into account that steam partial 

pressure at the experimental conditions used in this experience were around 0.5 atm, and the partial 

pressures of CO and CO2 were around 0.05 atm. In addition, the Boudouard reaction is exothermic. 

Therefore, at the reaction temperatures of these experiments (around 1000 K) the balance will shift in 

CO production. Thus, considering the above, andtaking into account the considerable amounts of CO 

and CO2, it is clear that both reactions described in Equations (1) and (2)are the main reactions in the 

process, and their importance depended on the experimental conditions used. 

C + H2O ⮀ CO + H2ΔH = 130.29 kJ (1) 

CO + H2O ⮀ CO2 +H2ΔH = −40.38 kJ (2) 

CO + 3H2 ⮀ CH4 + H2O (3) 

C + 2H2 ⮀ CH4 (4) 

Considering Equations (1) and (2), and taking into account the stoichiometric ratio of H2, CO 

and CO2, Equation (5) was obtained. Thus, considering that according to Equation (1), “n” moles of 

CO and “n” moles of H2 are generated; and supposing that from “n” moles of CO generated in 

Equation (1), “x” CO moles react according to Equation (2) and, as a consequence, “x” moles of CO2 

and “x” moles of H2 are generated; in the chemical balance there would be “n + x” moles of H2 

(generated in Equations (1) and (2)), “x” moles of CO2 (generated in Equation (2)) and “n − x” moles 

of CO (generated in Equation (1) minus the moles reacting in Equation (2)). Thus, Equation (5) is 

obtained, as follows: 

Moles of H2 (n + x) = Moles of CO (n − x) + 2·moles of CO2 (2·x) (5) 

According to this equation a gas balance can be established, which should be fulfilled in the 

absence of other reactions. In that sense, Table 3 shows the results of this balance for the set of 

experiments considered. It can be observed that the balance was reasonably fulfilled, not showing for 

the worst case (850 °C) an error of 4%. Consequently, these results seemed to confirm that Reactions 

(1) and (2) took place in the process, almost exclusively. Concerning these two reactions, CO/CO2 

mole ratio evolution with temperature can provide information about the relative importance of both. 

As it was commented, this ratio increased with temperature. Thus, according to the values shown in 

Table 3, the abovementioned ratio went from 1 at 700 °C to a range between 3 and 4 for higher 

temperatures. These results seemed to indicate that at low temperatures, Reaction (2) would shift to 

carbon dioxide production and, as a consequence, the CO generated in Reaction (1) would be 

converted to generate CO2 and H2. At high temperatures, and due to the exothermic nature of 

Reaction (2), the chemical equilibrium would shift toward carbon monoxide production, showing a 

certain composition of both gases. 

Regardless the theoretical considerations previously stated and the kinetic study (that will be 

discussed later on), one of the aims of biochar gasification, from a practical point of view, is the 

production of gases for their energy use. Table 4 shows a wide range of results concerning conversion, 

gas production and their corresponding high heating values. As observed, there was a considerable 

increase in gas yield and conversion with temperature, which is in accordance with the relationship 

between temperature and reaction rate. 
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Table 4. Conversions, yields and heating values of the gases obtained in catalytic gasification. 

Influence of temperature. 

Parameter 700 °C 750 °C 800 °C 850 °C 

Conversion (%) 20.0 39.4 78.2 95.3 

Gas yield 
0.68 1.25 2.09 2.51 

(kg/kg biochar fed) 

Gas yield * 
3.68 3.44 2.91 2.86 

(kg/kg biochar converted) 

High heating value 
10.01 10.71 11.57 11.38 

(MJ/m3 N) 

High heating value 
9.31 19.21 35.13 42.54 

(MJ/kg biochar fed) 

High heating value 
50.5 53 48.82 48.55 

(MJ/kg biochar converted) 

Notes: Reaction time: 60 min. Initial mass of biochar: 500 mg. Conversion defined as (m0 − mt)/(m0 − 

ma), where mo is the initial mass, mt the mass at a time t and ma the ash mass. Heating values calculated 

in dry basis and nitrogen-free conditions. * This value represents the amount of gas that could be 

obtained for 100% conversion. 

Regarding high heating values (in dry bases and nitrogen-free conditions), when the calculation 

basis was m3 N, the results slightly differed among themselves. When the calculation basis was 1 kg 

of biochar fed, high heating values considerably increased with temperature as a consequence of the 

increase in gas yield. Finally, with the calculation basis of 1 kg of biochar converted, gas yield showed 

slight changes, without a defined trend. Obviously, the latter values corresponded to the highest 

energy that could be obtained from the evolved gases during the gasification process, as it was 

defined for a conversion of 100%. 

Concerning the influence of temperature on the material balance of the process, this balance can 

be established taking into account thermogravimetric or gas composition data. Weight loss through 

thermogravimetry has been calculated as the difference between the initial weight of biochar and its 

weight at a certain time of reaction. On the other hand, weight loss through gas composition was 

calculated as follows: Considering that there are no volatile compounds in the initial biochar, its 

weight loss should be related to the difference between the initial biochar mass and C mass contained 

in CO and CO2 evolved. Thus, it should be taken into account, for each reaction time, the accumulated 

moles of CO and CO2 that have been evolved, and determine the mass of C contained in these moles. 

These amounts can be determined at different reaction times through gas chromatography. In Figure 

3, a comparison between both data sets is shown. As it can be noted, the balance was fulfilled for all 

the temperature values, and both curves almost overlapped. 
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Figure 3. Material balance of the process. Influence of temperature. Comparison between weight loss 

through thermogravimetry and according to the carbon content in the gas evolved. 

2.4. Influence of Catalyst Concentration 

Five experiments were carried out, using sodium carbonate as a catalyst, at different 

concentrations (from 2.5 to 10% w/w). The reaction temperature was kept at 800 °C, and the steam 

partial pressure was 0.51 atm. Table 5 shows the gas generation at the end of the experiment and the 

corresponding material balance. 

Table 5. Gas moles generation and the corresponding balance. Influence of catalyst concentration 

(initial mass of biochar: 500 mg; catalyst: sodium carbonate; steam partial pressure: 0.51 atm; 

temperature: 800 °C). 

Catalyst 

Concentration (%) 
(H2Moles)·1000 (CO Moles)·1000 (CO2Moles)·1000 ΔH2 

0 21.92 6.63 8.00 −0.70 

2.5 25.72 16.00 5.04 −0.36 

5.0 37.02 25.78 6.10 −0.96 

7.5 30.37 21.77 5.49 −2.38 

10.0 28.31 20.89 4.83 −2.24 

After considering the results in Table 5, a positive effect of catalyst concentration was observed 

up to 5%. For the experiments carried out at 7% and 10%, lower values were obtained. In effect, a 

saturation effect could have taken place, due to the pore obstruction by the catalyst, making the access 

of steam to biochar difficult and, subsequently, decreasing the reaction rate [12,13]. As a consequence, 

for this study, it was assumed that the optimum catalyst concentration was 5%, choosing this value 

to carry out further experiments. Notwithstanding the above, the catalyst effect was positive in all 

cases, exceeding the moles generated in the control sample (non-catalyzed). Concerning the gas 

balance, it was reasonably fulfilled in all cases; even in the most unfavorable conditions (catalyst 

concentration of 7.5 and 10%) the errors did not exceed 6 or 7%. 
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2.5. Influence of Steam Partial Pressure 

Four experiments with different steam partial pressures (from 0.23 to 0.58 atm) were carried out. 

These steam partial pressureswere achieved by mixing known water and nitrogen flows, which were 

vaporized. Nitrogen flow was for all cases 50 mL/min, whereas steam flow was variable (15–50 

mL·min−1), depending on the partial pressure of the experiment. In any case, the maximum pressure 

of the gasifier was 1 atm, as the system was open to the atmosphere (as it can be seen in Figure 4).The 

reaction temperature was 800 °C, using sodium carbonate (5% concentration) as a catalyst. 

As expected, steam partial pressure had a positive effect on conversion and, therefore, in gas 

generation. In Table 6 the mole generation for H2, CO and CO2 at the end of the experiment is shown. 

Also, the results of the mole balance obtained by using Equation (5) are shown. Thus, an increase in 

mole generation was observed with steam partial pressure. This increase was different depending on 

the gas used.CO mole generation considerably increased at low steam partial pressures, stabilizing 

at high values, whereas the increase in CO2 generation was steady with steam partial pressure. This 

fact points out the growing importance of Reaction (2) (water gas shift) as steam partial pressure rose. 

Regarding mole balance, it can be observed that it is fulfilled in all cases, not exceeding an error of 

3%. As a consequence, Reactions (1) and (2) were, again, involved in the process. In both reactions, 

water acts as a reagent and, therefore, an increase in its partial pressure makes that the reaction shifts 

toward product generation, i.e., H2 production is increased. 

Table 6. Moles generated and their corresponding balance.Influence of steam partial pressure (initial 

mass of biochar: 500 mg; catalyst: sodium carbonate, 5% at 800 °C). 

PH2O, atm (H2Moles)·1000 (CO Moles)·1000 (CO2Moles)·1000 ΔH2 

0.23 18.56 11.32 3.52 0.2 

0.44 30.96 21.52 4.86 −0.28 

0.51 37.02 25.78 6.10 −0.96 

0.58 37.91 22.58 8.19 −1.05 

Table 7 shows the data corresponding to the influence of steam partial pressure. As can be seen, 

a considerable increase in conversion and gas yield was produced with steam partial pressure when 

the biochar fed was considered. The result is logical, and it is in accordance with the increase in 

reaction rate when the concentration of one of the reactants is increased (steam in this case). When 

converted biochar is considered, the differences are not significant and this fact can be due to the 

slight changes observed for the evolved gas. 

Table 7. Conversions, yields and heating values obtained for the catalytic gasification of rockrose 

biochar. Influence of steam partial pressure. 

Parameter 0.23 atm 0.44 atm 0.51 atm 0.58 atm 

Conversion (%) 35.70 62.00 78.20 77.44 

Gas yield(kg/kg biochar fed) 1.03 1.68 2.09 2.05 

Gas yield(kg/kg biochar converted) 3.15 2.94 2.91 2.87 

High heating value(MJ/m3 N) 11.36 11.62 11.57 11.19 

High heating value(MJ/kg biochar fed) 17.25 28.49 35.13 32.95 

High heating value(MJ/kg biochar 

converted) 
52.56 49.97 48.82 46.26 

Notes: Reaction time: 60 min. Conversion defined as (m0 − mt)/(m0 − ma), where mo is the initial mass, 

mt the mass at a time t min and ma the ash mass. Heating values calculated in dry basis and nitrogen-

free conditions. 

Concerning the high heating values (again, in dry basis and nitrogen-free conditions), a behavior 

similar to the experiments about the influence of temperature was observed. Thus, when the 

calculation basis was 1 m3N, the values were very similar, which points out that gas composition 
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hardly changed with steam partial pressure. When biochar fed was considered to be the basis, the 

changes in HHV were significant and it was due to the higher gas generation, i.e., the higher 

conversion of the process. Finally, compared to a kg of biochar converted, the differences were not 

excessively significant. 

The mass balance obtained by weight loss (through thermogravimetry) and by the carbon mass 

from the evolved gases (CO and CO2) was fulfilled, showing characteristics that were similar to those 

inferred from the experiments about the influence of temperature. 

2.6. Kinetic Study of the Process 

Gasification is usually considered to be an irreversible reaction. When it comes to solids with 

high ash content it can be assumed, as a first approximation that the particle size remains constant 

during the process. Under this circumstance (constant particle size), two models are usually applied: 

the shrinking core model and the uniform conversion model. On the other hand, in very porous solids 

or with low ash content, the particle volume decreases during the reaction, giving rise the shrinking 

particle model (leaching) [28,29]. Table 8 shows the equations for these models (Equations (6)–(10)), 

pointing out the main stage and the meaning of the slope. As it can be seen, only two of them 

(Shrinking core model with prevalence of the chemical reaction, Equation (7) and the uniform 

conversion model with prevalence of the chemical reaction, Equation (9)) corresponded to real kinetic 

constants. In the rest of cases, the parameter in the presenting expressions was the mass transfer 

coefficient, kg, (Equations (6) and (10)) or diffusivity, De, (Equation (8)). Also, as it can be observed, 

catalyst concentration was included in all the equations, with an order of reaction “n”. As one of the 

aims of this study was to determine the real kinetic constants and compare them with the obtained 

ones through the use of the real model that is proposed later, Equations (7) and (9) would be 

especially considered. 

Table 8. Ideal models of reaction. Kinetic equations for gas-solid reactions [28,29]. 

Model Equation  Slope 

Shrinking core model. 

Prevalence of gaseous 

diffusion. 

� =
�

τ
 (6) 

1

τ
=

3������[���]�

���
 

Shrinking core model. 

Prevalence of chemical 

reaction.  
1 − (1 − �)

�

� =
�

τ
 (7) 

1

τ
=

������[���]�

���
 

Shrinking particle model 

(leaching). Prevalence of 

chemical reaction. 

Shrinking core model. 

Prevalence of diffusion 

in ashes. 

1 − 3(1 − �)
�

� + 2(1 − �) =
�

τ
 (8) 

1

τ
=

6������[���]�

����
 

Uniform conversion 

model. Prevalence of 

chemical reaction.  

− ln(1 − �) =  ����
�� (9) ����

�[���]� 

Shrinking particle model 

(leaching). Prevalence of 

gaseous diffusion.  

1 − (1 − �)
�

� =
�

τ
 (10) 

�

τ
=

�������[���]�

���
* 

* Assuming Stokes’ law (kg depending on particle size). CAg is the concentration of reactant A in gas 

phase; τ is the time required for the complete reaction of the particle; kg is the coefficient of mass 

transfer between the fluid and the particle; ρB is the molar density of reactant B in the solid; [Cat] is 

catalyst concentration; n is the reaction order with respect to the catalyst; X is conversion, t is reaction 

time, kS is the first order kinetic constant for the surface reaction; De is the diffusivity of the gaseous 

reactant; kV is the kinetic constant for the reaction for the whole volume; PA is the partial pressure of 

A in gas. 
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The above-mentioned equations were ideal models that imply the presence of individual 

particles in contact with the reagent gas. However, in order to use the most suitable model, it should 

be taken into account both the nature of the raw material and the reactor used to determine the way 

of contact in the gas-solid reaction. For this reason, in the present research work, another model has 

been used, taking into account these circumstances and checking its results in previous studies [23]. 

This model assumes that the particle bed behaves like a macro-particle and that the reaction mainly 

takes place in the surface of the bed. This model is represented in Equation (11), where XB is the 

conversion of the solid, t is reaction time, τ is the time for a complete conversion, and ξ is a 

dimensionless parameter that represents the relationship between the initial height of the bed and its 

radius, as it was indicated in the literature [23] and in Figure 4. 

�� �1 −
ξ

1 − ξ
��� = −

��(1 + ξ)

τ
�   (11) 

 

Figure 4. Representation of the basket and the biochar sample in the reactor [23]. 

Down below, the most representative results obtained by the use of these models are 

commented. 

2.6.1. Ideal Models of Gas-Solid Reaction 

The ideal reaction models specified in Table 8 were applied to all the experiments. To sum up, 

Table 9 shows the slopes of the lines obtained by least squares adjustment for the data with different 

temperature values. As previously commented, data corresponding to 900 °C were ruled out due to 

the problems related to catalyst decomposition. Similarly, the results corresponding to the shrinking 

core model with prevalence of diffusion in ashes were removed due to the poor correlation 

coefficients obtained. Also, the average correlation coefficient was determined. According to these 

data, the shrinking core model with prevalence of the chemical reaction or the shrinking particle 

model with prevalence of the chemical reaction (Equation (7)), along with the uniform conversion 

model with prevalence of the chemical reaction (Equation (10)) seemed to offer the poorest results. 

Table 9. Verification of the ideal models for gas-solid reaction. Influence of temperature. 

Equation 
Slope at Different Temperatures * 

Average R2 
700 °C 750 °C 800 °C 850 °C 900 °C 
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(6) 3.472 × 10−3 5.976 × 10−3 12.78 × 10−3 17.24 × 10−3 - 0.995 

(9) 3.832 × 10−3 7.411 × 10−3 22.92 × 10−3 49.33 × 10−3 - 0.955 

(7) 1.236 × 10−3 2.296 × 10−3 6.213 × 10−3 10.91 × 10−3 - 0.979 

(10) 2.391 × 10−3 4.274 × 10−3 10.23 × 10−3 15.44 × 10−3 - 0.992 

* The slopes have been obtained by representing the first part of Equations (6), (7), (9) and (10) over 

time and adjusting by least squares method. 

As it was pointed out in Table 8, only for the models that imply control of the chemical reaction 

can establish a relationship between the slope and the corresponding kinetic constants.For the 

remaining cases, the constants implied were mass transfer coefficients, diffusivities, etc. When it 

comes to kinetic coefficients, their evolution with temperature should adjust to the Arrhenius 

equation, whereas for the mass transfer and diffusivity coefficients that adjustment would not be 

possible. To check that assumption, Table 10 shows the results about the adjustment to the Arrhenius 

equation for the experiments corresponding to Table 9. Paradoxically, in all cases a good adjustment 

was found, according to the correlation coefficients. On the other hand, the activation energies for 

chemical reaction control models, showed order of reaction values that were typical of a chemical 

reaction. 

Table 10. Ideal models for gas-solid reaction. Least squares adjustment of the Arrhenius equation. 

Activation energy determination. 

Model 
Slope 

** 
Intercept 

Correlation 

Coefficient 

Ea, kJ/mol 

* 

Shrinking core model. Prevalence of 

gaseous diffusion. (Equation (6)) 
−12,207 6.88 0.982  

Shrinking core model. Prevalence of 

chemical reaction. (Equation (7)) 
−16,450 10.15 0.988 136.1 

Uniform conversion model. Prevalence 

of chemical reaction. (Equation (9)) 
−19,175 14.03 0.986 158.7 

Shrinking particle model (leaching). 

Prevalence of chemical reaction. 

(Equation (7)) 

−16,450 10.15 0.988 136.1 

Shrinking particle model (leaching). 

Prevalence of gaseous diffusion. 

(Equation (10)) 

−14,155 8.48 0.986  

* Activation energy was only determined for those models where real kinetic constants are implied. 

For these models, the kinetic constant is related with temperature through the Arrhenius equation (k 

= k0·e−E/RT). ** The slopes were obtained by linearization of the slopes given in Table 9, prior 

replacement of the kinetics constants by Arrhenius equation. A posterior adjustment to 1/T provides 

the rest of parameters observed in this table. 

The use of ideal models for the experiments where steam partial pressure changed did not offer 

any remarkable results. In general, data adjustment offered increasing slopes with partial pressure 

and correlation coefficients around the unit in all cases. From experimental data it can be said that 

the order of reaction for steam was the unit. 

Also, the ideal models were applied to the experiments with different catalyst concentrations. 

The adjustment of the lines confirmed the results commented in the study of the influence of 

operating variables. Thus, the slopes increased up to a catalyst concentration of 5%, i.e., the limit from 

which a saturation effect was observed. This fact makes the determination of the order of reaction for 

the catalyst was difficult, as few experimental points can be effectively used for least squares 

adjustment. 

2.6.2. Proposed Model 
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The ideal models for gas-solid reaction imply the presence of individual particles in contact with 

the reagent gas. This situation is different from the one taking place in the gas-solid reactor used in 

this study. For this reason, we have proposed a model, obtaining Equation (11) which might adapt to 

the real situation taking place in the reactor. According to this equation, a depiction of it should imply 

lines passing through the origin, with a slope that equals to –ln(1 + ξ)/τ. Table 11 show the results 

obtained by least squares, for the experiments with different reaction temperatures. As observed, 

considering the correlation coefficients, data fit the proposed model. 

Table 11. Verification of the proposed model. Influence of temperature. 

T, °C 
Slope, –ln(1 + ξ)/τ, 

min−1 
Intercept Correlation Coefficient 

700 2.839 × 10−3 0.0094 0.990 

750 5.283 × 10−3 −0.0058 0.986 

800 14.07 × 10−3 0.0076 0.994 

850 22.97 × 10−3 0.0076 0.994 

The relationship between the slope of the obtained lines (in absolute value) and the kinetic 

parameters of the system is given by Equation (12), a model which was previously used for other 

wastes like eucalyptus char, offering good results [23]: 

ln (1 + ξ)

τ
=

������
� [���]��

���
2�

= ���[���]��   (12) 

where b is a stoichiometric coefficient, ks is the kinetic coefficient, CAg is steam concentration, n is the 

order of reaction for steam, ρB is the molar density of carbon in rockrose biochar, r is the radius of the 

small basket and [Cat]nc is the catalyst concentration with an order of reaction “n.c”. 

When the process was controlled by the chemical reaction, ks is a real kinetic constant and 

therefore Equation (13) can be used. Replacing Equation (13) in Equation (12), and using napierian 

logarithms, Equation (14) was obtained, whose representation allows calculating the activation 

energy of the process. For the latter equation, all the constants in Equation (12) were grouped in A, 

along with all the variables that were kept constant in this experimental set. 

�� = ���
��� ��⁄  (13) 

�� �
ln (1 + ξ)

τ
� = �������

� −  
�

�

1

�
  (14) 

Once the corresponding adjustments to Equation (14) were carried out for the experiments with 

temperature changes, the results obtained were the following: slope, 15,855; intercept: 10.38; 

correlation coefficient, 0.986. Thus, an activation energy of 131.2 kJ/mol was obtained. This value 

could be considered, along with those obtained by the ideal models, logical and typical for a chemical 

reaction.  

The use of the proposed model for the experiments depending on steam partial pressure pointed 

out its good verification, obtaining lines with excellent correlation coefficients. From the 

corresponding slopes it was possible to obtain the order of reaction for steam. For this determination, 

Equation (12) was modified taking into account that for these experiments ks was constant (because 

temperature was kept constant) and that there was proportionality between steam concentration and 

its partial pressure. This way, Equation (15) was obtained, where k is a constant that groups other 

constants and P is the steam partial pressure. 

ln (1 + �)

�
=

������
� [���]��

�� � 2⁄
= ����

�  (15) 

Through the representation of Equation (15), the order of reaction calculated for steam was 1.2, 

i.e., slightly higher than the unit. 

The use of the proposed model in the experiments where catalyst concentration changed showed 

similar results to those obtained by using the ideal models. Indeed, with the corresponding 
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adjustments, the slopes of the lines obtained increased up to a catalyst concentration of 5%. 

Afterwards, these slopes, as a consequence of the obstruction effect, decreased. The adjustment by 

napierian (or natural) logarithms (both for the slope and catalyst concentration) allowed to obtain the 

order of reaction (that is, 1.22). 

3. Materials and Methods 

3.1. Apparatus and Procedure 

The experimental facility used in this study (a cylindrical gasifier with an independent steam 

generator) was described in previous research works [30] and basically corresponds to a downdraft 

gasifier. It consisted of a microbalance (CI Electronic Limited MK-2) and a vertical tubular furnace 

with the corresponding heating and temperature control systems. The microbalance was connected 

to a computer through an RS-232 interface, in order to store weight loss data and to control 

temperature with a thermocouple type K, an analog/digital converter (PC-ADDA-12) and a power 

unit. The feed system for steam consisted of a peristaltic pump that fed water to a steam generator (a 

thermostatic bath with a serpentine where water vaporized). The steam current was mixed with a 

nitrogen flow, obtaining the desired steam partial pressure, and it was introduced to the quartz 

reactor of the microbalance through a cooper pipe which was externally heated to avoid 

condensation. 

All the experiments were carried out by using dehydrated samples, prepared as it was indicated 

in the following section, placing the samples in a small stainless steel basket, with a mesh size of 0.4 

mm, hanging on the balance beam. 

Once the temperature of the experiment and the nitrogen flow were established, the system was 

stabilized to remove moisture and volatile compounds, i.e., until the weight of the sample was 

constant. Once the steady state was achieved, the experiment started by introducing steam with the 

corresponding flow. Weight loss data during gasification were recorded every 10 s for 60 min. These 

data were used to obtain TG and different kinetic parameters of the process. Also, from these data it 

is possible to determine the conversion of the process, defined as (m0 − mt)/(m0 − ma), where mois the 

initial mass, mtthe mass at a time t and mathe ash mass. 

Gas evolved during gasification were analyzed in a gas chromatograph (Varian 3900, Palo Alto, 

CA, USA), coupled to a thermal conductivity detector (TCD), supplied with a packed column 

(Carboxen 1000, Sigma Aldrich, St. Louis, MO, USA),60/80 mesh 15 ft length and 1/8 in. internal 

diameter. Argon was used as a carrier gas, and the column temperature varied from 100 to 200 °C. 

Based on gas composition, it is possible to calculate the heating value (HHV), taking into account the 

heat of combustion of each gas. It should be taken into account that HHV is only influenced by two 

gases: H2and CO. Thus, once the moles evolved for each gas are determined, HHV is given by the 

following expression: 

HHVgases = Nº moles of H2·ΔHCH2 + Nº moles of CO·ΔHCCO  

Where ΔHCH2 and ΔHCCO are heat combustions of H2 and CO, respectively. Since HHV was 

determined for different basis, the number of moles is referred to the moles contained in1 m3 N of 

gas, the moles obtained per kg of biochar fed or the moles obtained per kg of biochar converted. 

The quantitative determination of the gases generated has allowed us to calculate the gas yield. 

This yield is the relationship between the mas of gas evolved (H2, CO and CO2) and the mass of 

biochar fed or the mass of biochar converted. 

The experimental design for this experience was included in Figure 5. 
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Figure 5. Experimental arrangement. 

3.2. Rockrose Biochar Production 

As it was indicated, the raw material used for all the experiments was biochar from rockrose 

(CistusLadanifer). These biochars were prepared by pyrolysis of rockrose wood, previously grinded 

and sieved. The experimental facility for pyrolysis is described in previous research works [31]. 

Basically, it consisted of a cylindrical stainless steel reactor, designed to work at atmospheric pressure 

and with all the accessories to control and monitor temperature, gas feed and sampling. Temperature 

for pyrolysis was in all cases 900 °C and the reaction time was 30 min. This time, according to previous 

studies, was enough to guarantee the volatile removal for the subsequent gasification experiments. 

The biochar generated was stored in a desiccator before gasification. 

3.3. Catalyst Addition 

For the sample preparation through impregnation, aqueous solutions of the corresponding salts 

(sodium, potassium, calcium, and magnesium carbonates in order to determine the effect of cation; 

and sodium carbonate, chloride, nitrate, sulfate, and fluoride in order to determine the effect of the 

anion) were used, using in all cases a reagent of analytical quality. A suitable amount of the 

corresponding salt was weighted, diluting to 25 mL with distilled water. This solution (or suspension 

or mixture, depending on the solubility of the salt) was mixed with the suitable amount of biochar 

for 24 h, through stirring. Afterwards, the solution was evaporated at 80 °C for 24 h. Finally, 

temperature increased to 110 °C for 12 h and then the impregnated biochar was collected and stored 

in a desiccator for its subsequent use. 

For the sample preparation through mixing, the suitable amounts of biochar and salt were 

mechanically mixed, storing the resulting mixture in a desiccator. 

In both cases, catalyst concentration was expressed in grams of catalyst per 100 g of biochar. To 

sum up, Figure 6 shows the main experiments carried out for this research study. 
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Figure 6. Experimental design of the research. 

4. Conclusions 

Concerning the steam gasification of CistusLadaniferbiochar, we found the following: 

 The main product of steam gasification of rockrose biochar consisted of a mixture of gases (H2, 

CO and CO2, with H2being the majority gas), presenting a high heating value of 10 MJ/m3N. 

 For catalytic steam gasification of rockrose biochar, impregnation was more effective than the 

simple mixture of biochar and catalyst.  

 The catalytic activity of the different cations used (always used as carbonates) was the following: 

K+>Na+>Ca2+>Mg2+ = Control experiment 

 The catalytic activity of the anions (always as sodium salts) was the following: 

CO3=>F−>SO4=>NO3−>CH3COO−>Cl−= Control experiment 

 The catalyst concentration had a positive effect, up to 5%. Above that value, a saturation effect 

was observed, possibly due to the pore obstruction of the coal by the catalyst.  

 The use of ideal models for the catalytic steam gasification of rockrose biochar showed, in 

general, good results. From these data, and varying temperature, it was possible to calculate the 

activation energy of the process (between 136.1 and 158.7 kJ/mol). It was also possible to 

determine the reaction order regarding steam, showing values close to one, and the reaction 

order regarding the catalyst was equally close to one.  

 The use of the proposed model for catalytic steam gasification showed good results for all the 

series carried out. The activation energy obtained in this case was 131.2 kJ/mol and the reaction 

orders for steam and catalyst was 1.2 in both cases. 
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