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Abstract: Phenol is an important chemical compound since it is a precursor of the industrial production
of many materials and useful compounds. Nowadays, phenol is industrially produced from benzene
by the multi-step “cumene process”, which is energy consuming due to high temperature and
high pressure. Moreover, in the “cumene process”, the highly explosive cumene hydroperoxide is
produced as an intermediate. To overcome these disadvantages, it would be useful to develop green
alternatives for the synthesis of phenol that are more efficient and environmentally benign. In this
regard, great interest is devoted to processes in which the one-step oxidation of benzene to phenol is
achieved, thanks to the use of suitable catalysts and oxidant species. This review article discusses
the direct oxidation of benzene to phenol in the liquid phase using different catalyst formulations,
including homogeneous and heterogeneous catalysts and photocatalysts, and focuses on the reaction
mechanisms involved in the selective conversion of benzene to phenol in the liquid phase.

Keywords: benzene; phenol; selective oxidation; homogeneous (photo)catalysts; heterogeneous
(photo)catalysts

1. Introduction

Phenol (hydroxybenzene) was discovered in coal tar and, under ambient conditions, appears as a
white crystalline solid with a characteristic odor. It is an important industrial commodity, typically
obtained from benzene. The use of phenol has been increasing due to its importance as a raw material
from which to obtain other products [1]. The conversion of benzene to phenol possesses great relevance
since phenol is a solvent and an intermediate of other kinds of industrial production, being a precursor
of many materials and useful compounds [1]. Some examples of the usage of phenol are reported in
the following:

(1) PHENOLIC RESINS: by the reaction of phenol or substituted phenol with formaldehyde,
phenol–formaldehyde resins or phenolic resins can be obtained. The first example was Bakelite
as a commercial synthetic resin [2].

(2) POLYCARBONATES (a very pure phenol feed is required): polycarbonates are thermoplastic
polymers containing carbonate groups in their chains [3].

(3) EPOXY RESINS: epoxy phenolic resins are resins modified at the phenolic hydroxyl group to
include an epoxide functional group. This addition increases the ability of the resin to crosslink,
creating a stronger polymer [4].
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(4) INTERMEDIATE FOR CAPROLACTAM (nylon production): caprolactam is a monomer for nylon
production. Among the routes for its manufacture, one is via cyclohexanone and cyclohexanone
oxime. Cyclohexanone can be prepared either from phenol or from cyclohexane. The phenol
route is a two-stage process, in which the first stage foresees the reaction among phenol and
hydrogen in the presence of a nickel catalyst at around 180 ◦C to form cyclohexanol, subsequently
dehydrogenated at around 400 ◦C in the presence of a copper catalyst to yield the cyclohexanone [5].

The cumene process (also known as the Hock process) is the most important industrial process
for the simultaneous production of phenol and acetone starting from benzene and propylene [6].
Oxygen from air and small amounts of a radical initiator are also reactants required for the process.
The cumene process is very complex, as it consists of several stages, passing through the formation of
hydroperoxide (a very reactive substance that can give runaway phenomena), which allows the indirect
production of phenol and acetone [7]. The process has three main reaction steps plus, furthermore,
a step of concentration of cumene hydroperoxide, and they are as follows: (i) production of cumene;
(ii) conversion of cumene to cumene hydroperoxide; (iii) concentration of cumene hydroperoxide;
(iv) hydrolysis of cumene hydroperoxide [1].

The scheme of the reactions is reported in Figure 1.
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The production of cumene (isopropylbenzene) is a Friedel–Crafts reaction and occurs by the
reaction between benzene and propene, using an acid catalyst [8].

In one process, benzene and propene (3:1 mole ratio) are passed over an acid catalyst. The excess
benzene acts to limit the polyalkylations and the by-reactions of the oligomerization of propene.
The zeolite is more environmentally friendly than traditional acid catalysts. The problems are related
to selectivity because isomers can be produced with respect to cumene [8].

The second step, the conversion of cumene to cumene hydroperoxide, involves the use of air to
give the hydroperoxide in the presence of small quantities of a radical initiator (benzoyl peroxide,
for example) in slightly basic conditions.

The reaction is autocatalyzed by cumene hydroperoxide. The reaction is carried out at temperatures
between 77 and 117 ◦C and 1–7 atm pressure, to hold the system in the liquid phase.

After the concentration of the cumene hydroperoxide, performed usually with an evaporator at
the descendent film, the third and final reaction is the decomposition of cumene hydroperoxide by
mixing with sulfuric acid at 40–100 ◦C to give, after neutralization, phenol and propanone (acetone).
Then, the products are separated through distillation columns.

The economics and effectiveness of this process are related to the market of acetone, apart from
phenol. Often, much more phenol is needed than the propanone that is produced at the same
time. Moreover, this multistage process has a low overall yield (less than 5%), requires high energy,
and the formation of by-products such as acetophenone, 2-phenylpropan-2-ol, and α-methylstyrene is
encountered [9].

Today, almost 95% of the worldwide phenol production is based on the “cumene process”,
despite the previously mentioned drawbacks, which are poor ecology, the formation of an explosive
intermediate (cumene hydroperoxide), high capital investment, high acetone production as a co-product,
which results in an oversupply in the market, and a multistep characteristic which makes it difficult
to achieve high phenol yields with respect to benzene feed [10]. Therefore, it is highly desirable to
develop alternative synthetic processes of phenol which are more efficient and environmentally benign.
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In fact, in this regard, great interest is devoted to the process in which the direct oxidation of benzene
to phenol is achieved, thanks to the use of suitable catalysts and oxidant species.

Therefore, this review aims to summarize the catalytic and photocatalytic formulations studied
to date for the direct conversion of benzene to phenol in the liquid phase. It is worthwhile to note
that, to the best of our knowledge, only a few review articles on this topic, mainly devoted to the
role of oxidant molecules (O2 or H2O2) [11,12], to the use of molecular sieves [13], and to the use
of nano-biomimetic metal oxide catalysts [14], are present in the literature. Additionally, until now,
no review which summarizes photocatalyst formulations suitable for the direct oxidation of benzene
to phenol in the liquid phase has been developed.

2. Homogeneous and Heterogeneous Catalysts for the One-Step Catalytic Oxidation of Benzene
to Phenol in Liquid Phase

As highlighted above, the development of a process able to synthesize phenol from benzene
in a one-step reaction with high benzene conversion and high phenol selectivity is highly desired,
both from environmental safety and economical points of view [11].

Theoretically, the high conversion of benzene to phenol through oxidation reactions (Figure 2)
is possible, but the experimental results evidence that this goal is difficult to achieve. The more
investigated process is the direct hydroxylation of benzene using N2O [15], O2 [16], H2O2 [17,18],
and a mixture of O2 and H2 [19] as oxidant species.
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Figure 2. One-step catalytic oxidation of benzene to phenol using different oxidants.

In all cases, the thermodynamic analysis (carried out utilizing the data reported in Table 1)
indicates that the reaction is irreversible and 100% conversion is feasible.

Table 1. Standard heat of reaction (∆H◦) and standard Gibbs free energy (∆G◦) for benzene, phenol,
and for the different oxidant species.
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In all cases, the thermodynamic analysis (carried out utilizing the data reported in Table 1) 
indicates that the reaction is irreversible and 100% conversion is feasible. 

Table 1. Standard heat of reaction (∆𝐻𝐻°) and standard Gibbs free energy (∆𝐺𝐺°) for benzene, phenol, 
and for the different oxidant species. 

 Component ∆H° at 298 K (kJ/mol) ∆G° at 298 K (kJ/mol) 

Reagent 
Benzene (l) 48.99464 124.34848 
Benzene (g) 82.92688 129.66216 

Oxidant 

H2O2 (l) −136.10552 −105.47864 
N2O (g) 82.04824 104.1816 

O2(g)   
H2(g)   

Product 
Phenol (s) −165.01696 −50.4172 
Phenol (g) −96.35752 −32.88624 

H2O −285.82996 −237.178408 

In particular, high selectivity to phenol could be achieved using N2O as oxidant, but high reaction
temperature is required and sources of N2O are limited. On the other hand, air or oxygen is easily
available. Among the oxidant agents, hydrogen peroxide is the most considered oxidant since water
is the only by-product and the process is simple, green, and economic [13]. On the other hand,
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the hydroxylation reaction of benzene with the presence of only the oxidant is very slow and not able
to oxidize benzene into phenol [20].

For this reason, to develop this process, it is essential to identify the right catalyst capable
of guaranteeing high selectivity to phenol together with a high conversion of benzene. The main
driving force of the development of new, efficient oxygenation catalysts is to selectively hydroxylate
the non-activated C–H bonds of the benzene molecule in order to reduce the steps required in the
preparation of phenol [21]. However, the direct introduction of hydroxyl into the benzene molecule
is very difficult because of the low reactivity of aromatic C−H bonds and the strong nucleophilicity
of hydroxyl free radicals [22]. Additionally, phenol is more reactive than benzene, resulting in
further oxidation reactions of phenol and, consequently, the selectivity worsens [23], as also recently
underlined in a paper dealing with the catalytic conversion of benzene to p-benzoquinone [24].
Therefore, the formulation of effective catalysts for phenol production, with a good yield and a high
selectivity to the desired product, is highly desirable.

Numerous homogeneous catalysts have been tested [25–27], such as high active Co complexes [28],
Ni complexes [29], Cu-based complexes [30–34], as well as nitrogen- [35,36] or oxygen-ligated [37,38]
iron complexes. Additionally, Os complexes were discussed as non-trivial catalysts for benzene
oxidation (oxidation with H2

16O2 under 18O2 gave phenol that did not contain the 18O isotope),
pointing out “Os=O” as oxidizing species responsible for phenol formation [39].

Very interesting results were reported using ionic liquids with hydrogen peroxide as oxidant and
ferric tri (dodecanesulfonate) as a catalyst in an aqueous solution [25]. In particular, thanks to the
presence of 1-n-octyl-3-methylimidazolium tetrafluoroborate as an ionic liquid, enhanced benzene
conversion (54%) together with significant phenol selectivity (90%) were observed after 6 h and at a
reaction temperature of 50 ◦C. Additionally, the authors showed that, in the absence of ionic liquid,
lower conversion and selectivity were achieved because of the formation of hydroquinone and biphenyl
as by-products, underlining that the aqueous–ionic liquid biphasic reaction system is able to enhance
both the benzene conversion and phenol selectivity [25]. Moreover, it was underlined that the ionic
liquid containing the catalyst may be separated from the products in the aqueous phase by a simple
decantation step [25].

H5PV2Mo10O40 polyoxometalate (POM) as a homogeneous catalyst is able to oxidize benzene to
phenol at room temperature in the presence of only O2 as the oxidant molecule at 170 ◦C for 6 h [40].
With these operating conditions, hydroxylation to phenol took place. However, they underlined that
the oxidation of benzene is possible even at room temperature and that phenol can be formed thanks
to the formation of a benzene radicaloid species (Figure 3) in the presence of H2SO4 aqueous solution
via an electron transfer mechanism and the subsequent oxidation reaction promoted by O2 present in
the reaction medium [40].
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Amphiphilic poly(ionic liquid) (PIL)/Wells–Dawson-type phosphovanadomolybdate (V-POM)
ionic composites were also studied in benzene hydroxylation with H2O2, showing a phenol yield of
37.3% with a selectivity of 100% [41].
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Other interesting homogeneous catalysts for the hydroxylation of benzene to phenol are a series of
first-row transition metal complexes with Schiff base ligands or with readily available acetylacetonate
ligands, which were studied for the hydroxylation of benzene to phenol at 50 ◦C in acetonitrile,
using hydrogen peroxide as the oxidant [42]. In this context, Fe(II) complex with the N4 Schiff base
ligand allowed the achievement of phenol selectivity and benzene conversion equal to 98% and
64%, respectively [42]. On the other hand, Fe(II) and Fe(III) acetylacetonate complexes evidenced
96% selectivity to phenol, but with a lower benzene conversion (20–22%). Therefore, the reported
results evidenced that phenol was the main reaction product, without the formation of biphenyl as a
by-product, suggesting that the reaction does not take place through a free radical mechanism [36].

A solution different to homogeneous catalysis is based on the development of solid catalysts,
which offer more efficiency together with high stability under the reaction conditions. Heterogeneous
catalysts, if compared to homogeneous catalysts, have some advantages, such as catalyst recovery and
recycling, which is the primary goal in view of the possible industrialization of the process. Different
studies deal with the oxidation of benzene to phenol by using a transition metal oxide (such as Ti, V,
Mn, Fe, Co, Cr, Mo) supported on a different metal oxide (such as Al2O3, SiO2, and TiO2). Among
them, it was reported that vanadium-based compounds exhibited excellent catalytic activity towards
the hydroxylation of benzene to phenol [43]. For example, as reported in Table 2, Shijina et al. analyzed
the oxidation reaction carried out over supported vanadia. The experimental results evidenced that,
at 60 ◦C, the activity increases, with an increase in vanadia content up to 13.8%. After monolayer
dispersion, i.e., above 14% V2O5, the percentage conversion of benzene decreased [44]. However,
the weak interaction of V and support leads to the leaching of active phases from the support [45].
Furthermore, for example, in the case of vanadium supported on Al2O3, the presence of stable V2O5

disfavors the redox cycle between V5+ and V4+ [46], reflected in the low catalytic activity.

Table 2. Main catalytic formulations for the one-step catalytic oxidation of benzene to phenol in
liquid phase.

Catalyst t (h) T
(◦C) P (atm) Operating Conditions

Benzene
Conversion

(%) X

Phenol
Yield
(%) η

Selectivity
to Phenol

(%) Sp

Ref.

CuO/Al2O3 - 80 1
80 vol% acetic acid,

benzene: 22.5 mmol;
ascorbic acid: 4 mmol.

- 1.2 - [47]

V/Al2O3 - 30 4
80 vol% acetic acid;
benzene: 5.6 mmol;

ascorbic acid: 1 mmol.
- 8.4 - [48]

V2O5–Al2O3 6 60 1

Catalyst: 0.2 g (14 wt%V2O5);
benzene: 1.46 mmol;

acetonitrile: 4 mL; H2O2:
11.68 mmol.

13 - 100 [44]

Fe3+–Al2O3 6 60 1
Catalyst: 0.20 g; acetonitrile:
4 mL; benzene: 1.24 mmol;

H2O2: 6 mmol.
12 12 - [21]

Ru/SiO2
Rh/SiO2
Pd/SiO2
Ir/SiO2
Pt/SiO2

- 20 1

Catalyst: 0.5 wt.-%
metal/SiO2:1.0 g;

H2/O2 = 3;
benzene: 20 mL;

acetic acid: 25 mL.

- -

0
99.7
88.2
64.5
63.9

[49]

Ru/SiO2
Rh/SiO2
Pd/SiO2
Ir/SiO2
Pt/SiO2

- 60 1

Catalyst: 0.5 wt.-%; metal:
20wt.-%; V2O5/SiO2: 1.0 g;

H2/O2: 3;
benzene: 20 mL;

acetic acid: 25 mL.

- -

100
100
99.7
100
100

[49]

0.1%V/SiO2 - 70 1

Catalyst: 0.204 g;
benzene: 40 mmol

benzene/H2O2
mole ratio: 1; acetonitrile: -

mL.

10 - 81 [50]

Fe5V2.5Cu2.5/TiO2 4 30 1

Catalyst: 0.2 g;
benzene: 11 mL;
benzene/H2O2

mole ratio: 0.5; acetonitrile:
40 mL.

9.8 7.154 73 [51]
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Table 2. Cont.

Catalyst t (h) T
(◦C) P (atm) Operating Conditions

Benzene
Conversion

(%) X

Phenol
Yield
(%) η

Selectivity
to Phenol

(%) Sp

Ref.

FePt/TiO2
(5%;1%) 4 30 1

Catalyst: 0.2 g;
benzene: 11 mL;
benzene/H2O2

mole ratio: 0.5; acetonitrile:
40 mL.

6.5 5.92 91 [52]

V/MCM-41
[Si/V = 1/9.4] 6 60 1

Catalyst: 0.05 g;
benzene: 6 mL;
benzene/H2O2

mole ratio: 1/1.15; acid acetic:
6 mL.

1.4 - 93 [53]

4%Cu/MCM-41 1.6 30 1

Catalyst: 0.05 g;
benzene: 1 mL;
benzene/H2O2

mole ratio: 1/2; acid acetic:
7.5 mL.

21 19.7 94 [18]

Ti-MCM-41
[Si/Ti = 25] 3.5 65 1

Catalyst: 0.05 g;
benzene: 0.045 mol;

benzene/H2O2
mole ratio: 1/3; acetone: 15 g.

98 - >95 [54]

VOx/FeSBA-15
VOx/CoSBA-15
VOx/NiSBA-15
VOx/CrSBA-15
VOx/MnSBA-15
VOx/ZnSBA-15
VOx/AgSBA-15
VOx/CuSBA-15

5 80 1

Catalyst: 0.05 g;
benzene: 1mL; solvent (acetic

acid/H2O v/v): 36 mL;
ascorbic acid: 11.9 mmol.

-

12.8
11.3
15.8
10.2
17.2
17.9
18.1
24.7

- [55]

Fe/SBA-16 8 65 1

Catalyst: 0.1 g;
benzene: 1 mL;

H2O2: 2 mL;
acetonitrile: 20 mL;

12.1 11.7 96.4 [56]

1.4wt%Cu(II)-NaY 6 70 1
Catalyst: 0.025 g;

benzene: 0.02 mol;
H2O2: 0.02 mol.

33.2 - 100 [57]

Graphene
(CCG) 16 60 1

Catalyst: 0.02 g;
benzene: 130 mg;

H2O2: 2.4 mL;
acetonitrile: 1.2 mL.

17.8 17 > 99 [58]

4.2V/NC-600 3 70 1

Catalyst: 0.02 g;
benzene: 0.4 mL;

H2O2: 1.4 mL;
acetic acid: 5 mL.

27.7 26.8 96.7 [59]

4V/MCN-S 3 70 1

Catalyst: 0.02 g;
benzene: 0.4 mL;

H2O2: 1.4 mL;
acetic acid: 5 mL.

38.2 36.7 96.1 [60]

Fe3O4/CMK-3 4 60 1

Catalyst: 0.02 g;
benzene: 1 mL;

H2O2: 2 mL;
acetonitrile: 6 mL.

18 - 92 [61]

10V/mp-C3N4 3 60 1

Catalyst: 0.06 g;
benzene: 1.5 mL;

H2O2: 3 mL;
acetonitrile: 6 mL.

18 18 93 [62]

Ce0.07-0.07V-g-C3N44 70

Catalyst: 0.04 g;
benzene: 1 mL;
H2O2: 3.5 mL;

acid acetic: 10 mL.

33.7 32.3 95.9 [63]

Cr/g-C3N4-300 7 65

Catalyst: 0.04 g;
benzene: 3.36 mmol;

H2O2: 1.2 mL;
acetonitrile: 2 mL.

31.1 30.9 99.5 [64]

FeCl3/eg-C3N4 3 60 1

Catalyst: 0.05 g;
benzene: 11.2 mmol;

H2O2: 3 mL;
acetonitrile: 5 mL.

22 22 99 [65]

Fe-TBAPy 3 60 1

Catalyst: 0.05 g;
benzene: 11.2 mmol;

H2O2: 3 mL;
acetonitrile: 5 mL.

- 64.5 92.9 [66]

Cu-SA/HCNS 12 60

Catalyst: 0.05 g;
benzene: 0.4 mL;

H2O2: 6 mL;
acetonitrile: 6 mL.

86 - 96.7 [67]
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Molecular sieves (such as MCM-41, SBA15, SBA16, NaY) with incorporated transition metals have
attracted much interest because of the high catalytic activity for the oxidation of organic compounds,
such as benzene. Moreover, in this case, the presence of heteroatoms (such as V, Cu, and Fe) in
molecular sieves is able to modify the surface properties so as to obtain highly dispersed and isolated
active sites in the silica framework and, therefore, improving the catalytic activity. Figure 4 presents the
mechanism suggested by Jourshabani et al. [56] over Fe-SBA16. The authors suggested that, compared
with other Fe-based catalysts, the high catalytic activity of the systems may be attributed to SBA-16,
which allows a guaranteed high mass transfer rate of benzene on the Fe/SBA-16 surface.Catalysts 2020, 10, x 8 of 23 
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Figure 4. Proposed reaction mechanism for phenol production in the presence of Fe/SBA-16. Reprinted
with permission from [56]. Copyright (2016) American Chemical Society.

In detail, the authors proposed a reaction mechanism using H2O2 in the presence of Fe/SBA-16,
underlining that only isolated species of Fe3+ are the active phases. H2O2 is activated on Fe/SBA-16
by chemisorption on the surface of the supported Fe, together with the formation of an open
bi-radical form of the iron−peroxo complex. These radicals may coordinate to Fe present in Fe/SBA-16,
forming an iron−peroxo complex. Similarly, a mechanism was proposed by Hu et al. [59] using
vanadium-containing nitrogen-doped mesoporous carbon catalysts. Moreover, the same authors
reported a further increase in phenol yield using carbon materials as the active phase for vanadium.
Carbon materials, due to their high specific area, large pore volume, and hydrophobic surface
properties, represent promising supports for the hydroxylation of benzene to phenol [60]. In particular,
the 4V/MCN-S catalyst (Table 2) exhibited remarkable catalytic performance, with a benzene conversion
of 38.2% and phenol selectivity of 96.1%, along with good reusability. Recently, as reported in Table 2,
metal-doped carbon nitride [62–65] showed improved activity for the hydroxylation of benzene
with H2O2 to phenol but remains unsatisfactory since phenol is further oxidized, forming other
by-products [13].

On the contrary, different results were obtained by Tu et al., who synthesized by the solvothermal
method an Fe-based metal-organic framework (MOF) named Fe-TBAPy (Figure 5).



Catalysts 2020, 10, 1424 8 of 21

Catalysts 2020, 10, x 8 of 23 

 

 
Figure 4. Proposed reaction mechanism for phenol production in the presence of Fe/SBA-16. 
Reprinted with permission from [56]. Copyright (2016) American Chemical Society. 

In detail, the authors proposed a reaction mechanism using H2O2 in the presence of Fe/SBA-16, 
underlining that only isolated species of Fe3+ are the active phases. H2O2 is activated on Fe/SBA-16 by 
chemisorption on the surface of the supported Fe, together with the formation of an open bi-radical 
form of the iron−peroxo complex. These radicals may coordinate to Fe present in Fe/SBA-16, forming 
an iron−peroxo complex. Similarly, a mechanism was proposed by Hu et al. [59] using 
vanadium-containing nitrogen-doped mesoporous carbon catalysts. Moreover, the same authors 
reported a further increase in phenol yield using carbon materials as the active phase for vanadium. 
Carbon materials, due to their high specific area, large pore volume, and hydrophobic surface 
properties, represent promising supports for the hydroxylation of benzene to phenol [60]. In 
particular, the 4V/MCN-S catalyst (Table 2) exhibited remarkable catalytic performance, with a 
benzene conversion of 38.2% and phenol selectivity of 96.1%, along with good reusability. Recently, 
as reported in Table 2, metal-doped carbon nitride [62–65] showed improved activity for the 
hydroxylation of benzene with H2O2 to phenol but remains unsatisfactory since phenol is further 
oxidized, forming other by-products [13]. 

On the contrary, different results were obtained by Tu et al., who synthesized by the 
solvothermal method an Fe-based metal-organic framework (MOF) named Fe-TBAPy (Figure 5). 

 

Figure 5. Mechanism of catalytic benzene hydroxylation by H2O2 in the presence of Fe-TBAPy [66]. 
Published by The Royal Society of Chemistry. 

Figure 5. Mechanism of catalytic benzene hydroxylation by H2O2 in the presence of Fe-TBAPy [66].
Published by The Royal Society of Chemistry.

Fe-TBAPy is built from [Fe(OH)(CO2)2]∞ rod-shaped SBUs (SBUs = secondary building units)
and 1,3,6,8-tetrakis(p-benzoate)pyrene (TBAPy4−). The experimental tests evidenced a high phenol
yield and selectivity equal to 64.5% and 92.9%, respectively. These results demonstrated the possibility
to formulate MOFs possessing enhanced catalytic activity for benzene hydroxylation. However, even if,
in the last few years, significant progress has been achieved, the catalytic performance is still limited
by the intrinsic drawbacks of the employed catalysts. For example, the hydrophilicity of the catalyst’s
surface worsens the adsorption of non-polar benzene on its surfaces and, on the contrary, favors the
adsorption of polar phenol molecules, with consequently low benzene conversion and poor phenol
selectivity [17]. Moreover, in some cases, the leaching of active species during the reaction is one of the
main causes of deactivation of the catalyst [68].

3. Homogeneous and Heterogeneous Photocatalysts for the One-Step Catalytic Oxidation of
Benzene to Phenol in Liquid Phase

The selective hydroxylation of benzene to phenol by means of photocatalysis using different
oxidizing agents including O2 [69], N2O [70], or H2O2 [71] was the object of several research papers.

For this purpose, both homogeneous and heterogeneous photocatalysts were studied, although
the latter evidenced some drawbacks. More specifically, in a homogeneous system, it is difficult to
separate the catalyst from the reaction products [72]. In the case of homogeneous systems, Fenton’s
reaction is a well-known homogeneous oxidation process in which Fe2+ is used as a catalyst and
hydrogen peroxide as oxidant [73]. However, this process requires acidic conditions that lead to
corrosion phenomena [74], and also more than 40% of the used hydrogen peroxide is consumed by
side reactions [75].

Moreover, the literature reported the selective oxygenation of benzene to phenol with an
oxygen-saturated acetonitrile solution containing benzene water and at ambient conditions using
3-cyano-1-methylquinolinium ion (QuCN+) as a homogeneous photocatalyst, showing a strong
oxidizing ability towards benzene [76]. The hydroxylation of benzene to phenol under UV irradiation
was also studied using alkoxohexavanadate anions and quinolinium ions, achieving high phenol
selectivity (>99 %) together with a good yield (around 50%) [77].

As an alternative to homogeneous photocatalysis, the heterogeneous photocatalytic process
could represent a possible green alternative for selective oxidation reactions [78–83]. Among the
semiconductor photocatalysts, TiO2 is the most used material because of its chemical stability and
its high oxidizing ability. It has been reported that the crystalline anatase phase of TiO2 has higher
photocatalytic activity, if compared to rutile TiO2, because the anatase phase has higher levels of
hydroxyl groups on its surface [84]. The anatase TiO2 presents a wide band gap of 3.2 eV and it is
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normally activated under ultraviolet (UV) light [85,86]. When a TiO2 photocatalyst is irradiated with
energy greater than the TiO2 band gap energy, positive charge-holes are generated in the valence band,
while the electrons are promoted in the conduction band. Both positive holes and electrons take part in
oxidation–reduction reactions. In particular, the photogenerated positive hole is able to react with
adsorbed water to produce hydroxyl radicals, whereas the electron can reduce O2, generating strongly
oxidizing superoxide ions. These highly reactive species, such as hydroxyl radicals, are employed for
phenol production from benzene under mild conditions through the photocatalytic process [87].

Table 3 reports some photocatalytic systems studied in the literature for the direct oxidation of
benzene to phenol in the liquid phase.

Table 3. Main photocatalytic formulations for the one-step catalytic oxidation of benzene to phenol in
liquid phase.

Photocatalyst t * (h) Light
Source Operating Conditions

Benzene
Conversion

(%) X

Phenol
Yield
(%) η

Selectivity
to Phenol

(%) Sp

Ref.

nTiO2
mTiO2
mTiO2

2
2
6

Hg lamp
λ > 320 nm

Photocatalyst: 10 mg + nitrogen flow
H2O: 10 mL

benzene: 20 µmol
pH 7

26
23
42

2
19
34

8
83
81

[88]

TiO2 6 450 W Xe
arc lamp

Photocatalyst:25 mg
Benzene: 20 mM
[Fe3+]: 1.47 mM
[Ag+ ]: 0.98 mM
H2O2: 9.4 mM

- <1 96 [9]

Pt-TiO2 1.5 λ > 385 nm
Photocatalyst: 0.2 g
benzene: 0.05 mL

H2O: 4 mL
- 2.1 91 [89]

Au-P25:
in 100 kPa air

in 230 kPa
CO2
P25:

in 100 kPa air
in 230 kPa

CO2

24 Solar
simulator

Photocatalyst: 60 mg
aqueous benzene solution: 20 mL

C0benzene: 600 ppm
dry ice:0-200 mg closed container: 50 mL

13
14
34
31

8
13
7
7

62
89
21
22

[90]

Au-V-TiO2 18

400 W Hg
lamp
λ =

200−400 nm

Photocatalyst: 30 mg
CH3CN: 2 mL

benzene: 1 mL (25 wt%) H2O2: 2 mL
18 16 88 [86]

Pt/WO3-K

a 1
b 4

e 0.25

300 W Xe
lamp

λ>300 nm
c λ >

400 nm

Photocatalyst: 50 mg
C0benzene: 2.5 mmolL−1

H2O: 7.5 mL
279 K

O2
dAr

{
22.2 a

68.9 b

{
79.3 a

73.7 b [91]

Pt/WO3-K
{

26.6 a, c

52.5 b, c

{
83.8 a, c

75.1 b, c

WO3-K 16.4 b 84.6 b

Pt/WO3-Y 40.6a 58.8 a

Pt/WO3-S 32.4 a 48.7 a

Pt/TiO2-P25
{

38.0 a

59.1 b

{
25.9 a

21.8 b{
13.3 a,d

33.8 b,d

{
60.8 a,d

34 b,d

TiO2-P25 85.2 b 20.6 b

Pt/TiO2-M 43 a 31 a

Pt/TiO2-J.


48.5 a

11.5 d,e

38.6 a,d


26.5 a

63 d,e

35.4 a,d

Fe3+

impregnated
TiO2

1–2
125 W Hg

lamp
UV light

Photocatalyst:
50 mg

aqueous benzene
(1 to 20 mM): 5 mL

- 9–15 80–86 [87]
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Table 3. Cont.

Photocatalyst t * (h) Light
Source Operating Conditions

Benzene
Conversion

(%) X

Phenol
Yield
(%) η

Selectivity
to Phenol

(%) Sp

Ref.

Fe-Cr-TiO2 12

450 W
mercury

lamp
λ =

200–400
nm

Photocatalyst:
30 mg

CH3CN: 2 mL
benzene: 1 mL

(25 wt%) H2O2: 2 mL

28 ± 0.5 25.2 ± 0.5 90 ± 0.5 [86]

Fe-V-Cu
supported on

TiO2

4

black light
blue

fluorescent
bulb (8W)

Photocatalyst: 0.2 g
benzene: 11 cm3

benzene/H2O2 mole ratio: 0.5
(30 wt%) H2O2: 30 cm3

solvent: 40 cm3 acetone a, acetonitrile b,
pyridine c

ascorbic acid: 0.5

18.61 a

14.27 b

7.9 c

9.68 a

9.7 b

7.11 c

52 a

68 b

90 c
[92]

LT-550
LT-750

Cu(OH)2/LT-550
Cu(OH)2/LT-750
Cu(OH)2/LT-750a

Cu(OH)2/LT-750b

6 UV light

Photocatalyst: 5 mg
Benzene: 100 µL
CH3CN: 500 µL

H2O: 13 mL
(30 wt%) H2O2: 87 µL

38.7
47.1
42

49.9
a 55.0
b 41

36.3
45.2
40.7
48.4

a 47.9
b 36.5

94
96
97
97

a 87
b 89

[93]

CuPd/g-C3N4 1.5 solar
simulator

Solution A:
-photocatalyst:

20 mg
- deionized water: 30 mL

Solution B:
- benzene: 0.5 mL

- acetonitrile:
30 mL.

(30 wt%) H2O2:
5 mmol added to the two mixed

solutions.

98.1 87.8 89.6 [94]

Fe2O3/g-C3N4
Pd/g-C3N4
Cu/g-C3N4
Ni/g-C3N4
Ag/g-C3N4

FePd/g-C3N4
FeCu/g-C3N4
FeAg/g-C3N4
FeNi/g-C3N4
PdCu/g-C3N4
PdNi/g-C3N4
PdAg/g-C3N4
CuNi/g-C3N4
CuAg/g-C3N4
CuAg/g-C3N4

a

CuAg/g-C3N4
b

CuAg/g-C3N4
c

CuAg/g-C3N4
d

CuAg/g-C3N4
e

CuAg/g-C3N4
f

12
12
12
12
12
12
12
12
12
12
12
12
12
0.5
0.5
0.5
3

0.5
0.5
0.5

Visible
light
20 W

domestic
bulb

Photocatalyst:
100 mg

Benzene:1 mmol
CH3CN: 5.0 mL (30 wt%) H2O2:

1.1 mmol
a50 mg of catalyst
b 25 mg of catalyst
c 15 mg of catalyst

d methanol as a solvent
e water as a solvent

f ethanol as a solvent

15
43
39
20
32
70
67
41
29
81
72
77
57
99

99 a

99 b

99 c

86 d

83 e

99 f

− − [95]

mpg-C3N4
3%FeCl3/mpg-C3N4
5%FeCl3/mpg-C3N4
10%FeCl3/mpg-C3N4
20%FeCl3/mpg-C3N4
5%FeCl3/mpg-C3N4

a

5%FeCl3/mpg-C3N4
b

5%FeCl3/mpg-C3N4
c

5%FeCl3/mpg-C3N4
d

5%FeCl3/mpg-C3N4
e

4

100 W
mercury

lamp
λ > 420nm

Photocatalyst: 25 mg
benzene: 4.5 mmol

(30 wt%) H2O2: 0.255 mL
60 ◦C

a T = 25 ◦C
b T = 40 ◦C
c T = 80 ◦C

d H2O2: 0.510 mL
e H2O2: 0.765 mL

2
17
38
23
25
4 a

10 b

21 c

44 d

47 e

−

95
98
97
94
80

99 a

96 b

81 c

85 d

60 e

[75]

g-C3N4
mpg-C3N4

FeCl3
5%Fe-g-C3N4

10%Fe-g-C3N4
20%Fe-g-C3N4Cu-g-C3N4

Ti-g-C3N4
Ni-g-C3N4
Zn-g-C3N4
Fe/SBA-15

g-C3N4/SBA-15
Fe-g-C3N4/SBA-15

4

500 W
Xenon
lamp

λ > 420 nm

Photocatalyst:
50 mg

CH3CN: 4 mL
benzene: 0.8 mL

H2O: 4 mL
(30 wt%)H2O2:

0.51 mL

−

0
2.0
0.5
1.8
4.8
2.5
1.4
0.1
0.1
0.1
1.0
0.1

11.9

− [73]
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Table 3. Cont.

Photocatalyst t * (h) Light
Source Operating Conditions

Benzene
Conversion

(%) X

Phenol
Yield
(%) η

Selectivity
to Phenol

(%) Sp

Ref.

10%Fe-g-C3N4
20%Fe-g-C3N4
30%Fe-g-C3N4

10%Fe-g-C3N4-LUS-1
20%Fe-g-C3N4-LUS-1

4 sunlight

Photocatalyst: 0.05 g
benzene: 1 mL
CH3CN: 4 mL
H2O2: 0.5 mL

T = 60 ◦C

−

6.5
8

10.5
10
16

>90
~90
~ 90
>90
>90

[96]

Fe-CN
TS-1

Fe-CN/TS-1–1 a

Fe-CN/TS-1–2 b

Fe-CN/TS-1–3 c

Fe-CN/TS-1–4 d

Fe-CN/TS-1–5 e

Fe-CN/TS-1–6 f

Fe-CN/TS-1–2 g

Fe-CN/TS-1–7 h

Fe-CN/TS-1–8 i

Fe/TS-1

4

300 W
Xenon
lamp

λ> 420 nm

CH3CN: 4 mL
benzene: 0.8 mL

H2O: 4 mL
(30 wt%) H2O2:

0.51 mL
60 ◦C pH = 7
Fe-CN/TS-1-X

a X = 1 for 10% dicyandiamide/TS-1
b X = 2 for 20% dicyandiamide/TS-1
c X = 3 for 50% dicyandiamide/TS-1

d X = 4 for 100% dicyandiamide/TS-1
e X = 5 for 200% dicyandiamide/TS-1

Fe-CN/TS-1-X
f X = 6 for 5% FeCl3/dicyandiamide

g X = 2 for 10% FeCl3/dicyandiamide
h X = 7 for 20% FeCl3/dicyandiamide
i X = 8 for 50% FeCl3/dicyandiamide

−

1.1
2.4

2.8 a

10 b

8.8 c

1.3 d

0.1 e

1.4 f

10 g

5 h

1.6 i

7.6

− [97]

MIL-100(Fe)
MIL-68(Fe)i 8

Visible
light

irradiation
λ≥ 420 nm

Photocatalyst: 10 mg
H2O2: 0.5 mmol

Solvent: 4 mL
a CH3CN solvent

H2O2:benzene(1:2)
b Acetone solvent
H2O2:benzene(1:2)

c H2O solvent
H2O2:benzene(1:2)

d DMF solvent
H2O2:benzene(1:2)
e CH3CN:H2O (1:1)
H2O2:benzene(1:2)
f CH3CN:H2O (1:1)
H2O2:benzene(3:4)

g CH3CN:H2O (1:1)
H2O2:benzene(2:2)

h CH3CN:H2O (1:1)
H2O2:benzene(3:2)
i CH3CN:H2O (1:1)
H2O2:benzene(3:4)

10.3 a

2.4 b

8.3 c

3.3 d

13.6 e

20.1 f

21.7 g

22.5 h

14i

10.3 a

2.38 b

7.1 c

2.5 d

13.3 e

14.77 f

20.8 g

31.05 h

9.45 i

>99 a

99 b

85 c

76 d

98 e

98 f

96 g

92 h

90 i

[98]

Ti/CNT
Cu/Ti/CNT 0.75

Low-pressure
mercury

lamp

Photocatalyst:
100 mg

benzene: 20 mL
H2O: 20 mL

53.8
68.3

35.1
51.8

65.3
75.8 [99]

Zn-Ti-LDH 3
300 W
Xenon
lamp

Photocatalyst: 20 mg
Benzene: 0.2 mmol

H2O: 20 mL
5.65 4.59 87.18 [100]

Bi2WO6/CdWO4
composite 3

300 W Xe
lamp

λ ≥4 00nm

Photocatalyst:
50 mg

benzene:
0.5 mmol

CH3CN: 3 mL
H2O: 100 µL

O2: 3 mL min−1

5.8 − >99 [72]

QuCN+ ion 1

500 W
xenon
lamp
λ =

290–600
nm

[QuCN+]: 2.0 mM
[C6H6]: 30 mM

[H2O]: 3.0 M
31 30 98 [76]

* t = irradiation time, min.
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Shiraishi et al. considered TiO2 with a mesoporous structure (mTiO2) synthesized through the
surfactant-templating method and aggregation method consisting of the nanosized TiO2 (nTiO2)
particle combination followed by sintering of the particles [88].

In particular, they underlined that the presence of “mesopores” allows a smooth diffusion of
molecules, which is indispensable for the adsorption-driven activity. As can be seen from Table 3,
the use of the TiO2 sample with a mesoporous structure showed a higher yield and selectivity to phenol
(>80%) than TiO2 with a nonporous structure [88].

Yuzawa et al. studied the direct hydroxylation of benzene in water using a Pt/TiO2

photocatalyst [89]. In this photocatalytic reaction system, the selection of the wavelength associated
with the incident light wavelength, exclusion of oxygen, and optimization of platinum loading
amount were important factors to achieve selective phenol production. When Pt/TiO2 was irradiated,
the formation of phenol and small amounts of biphenyl, cyclohexanol, cyclohexanone, and carbon
dioxide were detected according to the following steps (Figure 6):

(1) hydroxylation of benzene with water;
(2) coupling of benzene;
(3) reduction of the produced phenol and successive oxidation of the produced cyclohexanol

to cyclohexanone;
(4) decomposition of benzene with water.
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Despite the fact that the phenol selectivity was high (88%), an excess amount of hydrogen (95 µmol)
was also produced. However, when the irradiation wavelength was longer than 385 nm, higher
phenol selectivity (91%) was obtained with no production of biphenyl, carbon dioxide, and hydrogen.
Thus, the irradiation wavelength appears as a factor to be considered for obtaining the selective
aromatic ring hydroxylation of benzene.

Moreover, it was shown that the presence of air or oxygen effectively promotes complete benzene
oxidation to carbon dioxide and water [101], according to the reaction reported in Figure 7:
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Thus, the absence of oxygen in the reactor is required to achieve high selectivity to phenol.
The relationship between the platinum loading amount and the product yield was also identified.
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The sample with 0.1 wt% of platinum loaded onto the TiO2 surface exhibited the highest phenol
yield. Thus, the optimum Pt amount for phenol production was found to be 0.1 wt% because phenol
selectivity equal to 91% was obtained.

Yusuke et al. reported a versatile way to modify the efficiency and phenol selectivity of
heterogeneous photocatalytic oxidation [90]. They found that the sunlight-induced photocatalytic
oxidation activity of aqueous benzene to phenol on Au/TiO2 nanoparticles was improved when the
reaction was carried out under CO2 atmosphere (230 kPa). In more detail, benzene is directly oxidized
to phenol and the produced phenol is further converted to more oxidized products, such as catechol,
hydroxyquinone, and trihydroxybenzenes, and finally mineralized to CO2. On the contrary, when the
reaction is carried out under CO2 pressure, the presence of carbon dioxide probably suppressed the
successive oxidation of phenol, increasing the yield and selectivity to phenol [90].

Devaraji et al. studied the photoactivity of TiO2, V-doped TiO2, and Au-V-doped TiO2 under
UV irradiation. V-doped TiO2 showed benzene conversion equal to 3% with 100% phenol selectivity
after 6 h of irradiation time [102]. The same authors evidenced that the level of benzene conversion
increased linearly from 3% to 13% by increasing the irradiation time from 6 to 24 h, respectively.
After Au deposition, the photocatalytic activity strongly increased because the incorporation of V in
the TiO2 lattice generated a V5+ energy level below the conduction band of TiO2, which helped to trap
the excited electrons, whereas Au deposited over V-doped TiO2 acted as an electron sink [102].

As an alternative to TiO2 as support for noble metals, WO3 has been considered. In particular,
Pt/WO3 photocatalysts showed much higher selectivity to phenol than commercial TiO2 and Pt/TiO2 [91].
In particular, the photocatalytic reaction using Pt/WO3-K (Table 3) showed the highest selective phenol
production, with ~74% of selectivity and with ~69% of benzene conversion after 240 min of UV
irradiation time. The production of phenol was also observed with the Pt/TiO2 photocatalyst but
the phenol production was saturated within 60 min of UV irradiation, with a noticeable increase
in the CO2 gaseous phase, indicating that there was further oxidation of the generated phenol.
Instead, after 60 min of visible light irradiation (λ > 400 nm), better phenol selectivity (~84%) was
reported with Pt/WO3-K (Table 3).

In the same paper, considering an aqueous benzene solution, it has been reported that hydroxyl
radicals (•OH) are produced through the reaction of photogenerated holes with water molecules
adsorbed on the photocatalyst surface. The hydroxyl radical reacts with benzene to generate
hydroxylated benzene radical, which is then oxidized by a positive hole on the photocatalyst surface
and deprotonated, producing phenol (Figure 8).Catalysts 2020, 10, x 15 of 23 
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Considering the previous papers, it appears that noble metals deposited on the TiO2 surface
act as a good co-catalyst to improve the photoactivity. At the same time, these elements are quite
expensive and, therefore, many efforts have devoted to replacing them with low-cost materials [91].
This led to the design of new, low-cost, and efficient photocatalysts that yield high benzene conversion
and high selectivity to phenol at ambient temperature and pressure. The surface properties of TiO2
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have been modified by metal impregnation in order to increase the phenol production as well as
its selectivity. In this regard, Gupta et al. reported the oxidation of benzene to phenol under UV
irradiation using Fe3+ (at 5 wt%) impregnated on a TiO2 catalyst [87]. The experimental tests revealed
that the optimum selectivity to phenol (80-86%) was achieved during 1–2 h of UV irradiation time.
The enhanced photoactivity of the Fe3+ impregnated on TiO2 is probably caused by the structural
defects induced by the presence of Fe3+ ions on the TiO2 surface [103].

Some interest is also directed towards doping TiO2 with metallic elements to broaden the
absorption spectrum into the visible range. In particular, the TiO2 doping with transition metal ions
like Cr, Fe, and V leads to the generation of a new acceptor level in the conduction band of TiO2,
which acts as an electron trapping center, increasing the number of holes available in the valence band,
and simultaneously promotes the reduction of molecular oxygen to H2O2 during the photocatalytic
reaction. The doping of TiO2 with Fe enhances the photocatalytic activity because it allows an increase
in the electron transfer process and the electron-hole separation, thus minimizing charge carrier
recombination. This minimization of charge carrier recombination is essential for redox reactions [104].

Experimental tests on the photocatalytic oxidation reaction of benzene to phenol under UV or
visible light irradiation were conducted by Perumal et al. [86] using Fe-Cr-doped TiO2. It was shown
that, after 12 h of UV irradiation time, 28% of benzene conversion and 90% selectivity to phenol were
achieved with H2O2 as oxidant (Table 3). These results evidenced that the simultaneous presence of Cr
and Fe in the TiO2 lattice led to higher photocatalytic activity towards phenol production if compared
with Fe-doped TiO2 and Cr-doped TiO2. Additionally, Fe-Cr-doped TiO2 also showed visible light
absorption but low benzene conversion was observed even after 24 h of visible light irradiation,
suggesting that the photocatalytic activity for benzene oxidation depends on the valence band position
of TiO2 and that, under visible light irradiation, a small number of holes were produced as compared
to those generated upon UV light irradiation [105]. Figure 9 shows the possible reaction mechanism on
Fe-Cr-doped TiO2 in which phenol is produced via two reaction paths (path-A and path-B).Catalysts 2020, 10, x 16 of 23 
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In the presence of UV light, electrons are promoted from the valence band (VB) to the conduction
band (CB) In path-A, the trapped electrons in the dopant level can reduce Fe3+ to Fe2+, which then
is able to react with H2O2 and a proton (coming from H2O) to produce a hydroxyl radical and Fe3+.
The hydroxyl radical originates from both water and H2O2 and they attack the aromatic benzene
ring to form hydroxycyclohexadienyl radicals [106]. The photogenerated positive holes in the VB or
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Fe3+ oxidize the hydroxycyclohexadienyl radicals to phenol via a deprotonation process to restart
the photocatalytic cyclic reaction [107]. In path-B, the generated holes in the VB react with benzene
to produce benzene radical ions. These radical ions react with hydroxyl radicals, forming phenol,
probably via deprotonation of an unstable intermediate.

To obtain higher selectivity to phenol as well as better conversion of benzene, the researchers
focused their attention on more complex systems (composite photocatalysts) that showed excellent
photocatalytic performance. In this regard, carbon nitride materials were extensively considered
(Table 3). For example, Zhang and Park studied CuPd bimetallic alloy nanoparticle-coated holey carbon
nitride materials (g-C3N4/CuPd) as photocatalyst [94]. Compared with bare g-C3N4, a significant
increase in phenol selectivity is achieved when CuPd bimetallic alloy nanoparticles are uniformly
dispersed on the support surface. The catalyst containing 0.5 wt% of CuPd bimetallic alloy particles
showed high photocatalytic activity in the oxidation of benzene to phenol (benzene conversion: 98.1%
and selectivity to phenol: 89.6%) after 90 min of solar irradiation, probably linked to the uniform
distribution of CuPd bimetallic alloy nanoparticles and the synergistic effect between CuPd particles
and g-C3N4. These two factors may contribute to the improvement of both solar energy use and
the photo-induced electron-hole pairs, resulting in enhanced performance for the selective benzene
oxidation to phenol [94].

Zhang et al. also focused their attention on the synthesis of phenol under visible light irradiation
using a physical mixture of Fe salts (FeCl3 or FeCl2) and mesoporous carbon nitride (FeCl3/mpg-C3N4).
The reactions were carried out with water–acetonitrile as solvents and H2O2 as oxidant using
FeCl3/mpg-C3N4 samples with different FeCl3 loadings (in the range 3–20 wt%). The 5 wt%
FeCl3/mpg-C3N4 photocatalyst evidenced a benzene conversion of ~38% and a phenol selectivity
equal to 97%. They also investigated the possible mechanism under visible light (Figure 10). In detail,
two main steps are involved in the visible light oxidation of benzene to phenol: the electrons generated
by light irradiation reduce Fe3+ to Fe2+, which is able to decompose H2O2 with the formation of ·OH.
The hydroxylation of benzene by ·OH produces a cyclohexadienyl radical intermediate (A) and then
the positive hole (h+) of mpg-C3N4 oxidizes A to phenol.
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In some cases, metal−organic framework (MOF)-based photocatalysts also evidenced significant
photoactivity under visible light. For example, Wang et al. [98] studied selective benzene hydroxylation
to phenol over two Fe-based MOFs (MIL-100(Fe) and MIL-68(Fe)) under visible light irradiation
using H2O2 as oxidant. MIL-100(Fe) showed much intensive absorption in the visible light region
compared with MIL-68(Fe), which could justify its enhanced photocatalytic performance. In fact,
the MIL-100(Fe) photocatalyst evidenced a benzene conversion equal to 20.1% and higher selectivity to
phenol (98%). Instead, lower benzene conversion (14%) and selectivity to phenol (90%) were observed
over MIL-68(Fe).
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Another studied material was a Zn2Ti-layered double hydroxide (ZnTi-LDH) photocatalyst,
which showed an enhancement of photoinduced charge carrier separation due to the presence of
oxygen vacancies on the LDH surface and an increase in superoxide radicals [100]. The band structure
of the ZnTi-LDH photocatalyst allowed the realization of advanced activity, with selectivity to phenol
equal to 87.18% in water with air as oxidant under UV-vis light irradiation.

4. Concluding Remarks and Perspectives

The one-step oxidation of benzene to phenol in the liquid phase has been extensively studied
from a scientific point of view in recent years due to the importance of phenol in industrial chemistry.
Several catalysts and photocatalysts (both homogenous and heterogeneous) able to work under mild
conditions were proposed in the literature and special attention to the reaction mechanism was also
given in most papers. Despite some catalytic formulations showing significant benzene conversion
and phenol selectivity, it must be taken into account that one of the main difficulties in performing
the selective oxidation of benzene is that the desired product (phenol) is easily over-oxidized to
hydroxyphenols and finally oxidized into carbon dioxide. Therefore, it is still essential to study deeply
and/or to develop new catalytic and photocatalytic materials able to achieve high selectivity to phenol
at high conversion of benzene and, as a consequence, to ensure high phenol yield. One promising
strategy could be the formulation of supports for active phases (photocatalytic or not) with high
benzene adsorption capacity and with low affinity towards phenol in a manner to prevent further
oxidation reactions of the desired product.

Additionally, most catalytic formulations were studied in slurry reactors. Therefore, in response
to the question asked in the title of this review article, there is still a need to consider three main aspects
for the possible industrialization of a catalytic reactor devoted to the one-step oxidation of benzene to
phenol in the liquid phase:

• the immobilization of the catalysts or photocatalysts on macroscopic supports (i.e., the development
of structured catalysts) to avoid the separation of catalyst powders from the liquid phase containing
phenol at the end of the oxidation step;

• the development of structured catalysts or photocatalysts with high stability and which are
easily recyclable;

• the development of novel selective oxidation systems (e.g., highly efficient photoanodes for the
photoelectrocatalytic oxidation of benzene to phenol);

• the design of efficient and low-cost systems to recover the produced phenol from the liquid phase.
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