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Figure S1. Generated t-SNE spaces [1] (one for each HHDH) using the 20th most kinetically-relevant 

tICA dimensions [2]. The t-SNE space is then clusterized with HDBscan algorithm [3]. Each cluster is 

colored differently on the t-SNE space. A representative structure from each cluster is then used for 

further tunnel analysis. 
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Figure S2. Tunnel T1 representation from the CaverAnalyst [4] calculations for the HheC X-ray 

structure considering either the C-terminal part of the neighbour monomer (results in purple) or 

without (i.e. monomeric structure shown in blue). T1 obtained in both cases are rather similar and the 

computed bottleneck radius (BR) are 2.28 and 2.30 Å for the structure with and without the C-terminal 

part, respectively. 

 

Figure S3. Schematic representation of a selected decision tree from the random forest classifier for 

HheA2. Input features are the most important “closest-heavy” distances involved in T2 formation (at 
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any point, computed using CaverAnalyst), whereas the target variable is the presence or absence (T/F) 

of the tunnel T2. After shuffling the dataset and splitting it in 80% training/ 20% prediction sets, the 

score (i. e. accuracy) is 0.88. 

 

Figure S4. Schematic representation of a selected decision tree from the random forest classifier for 

HheB. Input features are the most important “closest-heavy” distances involved in T2 formation (at 

any point, computed using CaverAnalyst), whereas the target variable is the presence or absence (T/F) 

of the tunnel T2. After shuffling the dataset and splitting it in 80% training/ 20% prediction sets, the 

score (i. e. accuracy) is 0.94. 
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Figure S5. Schematic representation of a selected decision tree from the random forest classifier for 

HheC. Input features are the most important “closest-heavy” distances involved in T2 formation (at 

any point, computed using CaverAnalyst), whereas the target variable is the presence or absence (T/F) 

of the tunnel T2. After shuffling the dataset and splitting it in 80% training/ 20% prediction sets, the 

score (i. e. accuracy) is 0.83. 
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Figure S6. Schematic representation of a selected decision tree from the random forest classifier for 

HheD2. Input features are the most important “closest-heavy” distances involved in T2 formation (at 

any point, computed using CaverAnalyst), whereas the target variable is the presence or absence (T/F) 

of the tunnel T2. After shuffling the dataset and splitting it in 80% training/ 20% prediction sets, the 

score (i. e. accuracy) is 0.80. 
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Figure S7. Schematic representation of a selected decision tree from the random forest classifier for 

HheG. Input features are the most important “closest-heavy” distances involved in T2 formation (at 

any point, computed using CaverAnalyst), whereas the target variable is the presence or absence (T/F) 

of the tunnel T2. After shuffling the dataset and splitting it in 80% training/ 20% prediction sets, the 

score (i. e. accuracy) is 0.90. 
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Figure S8. Bar plots showing for each HHDH studied the 10th most relevant features (Residue 

contacts based on closest-heavy distances) according to the feature importance extracted with a 

Random Forest Classifier. 
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