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A) Kinetic Investigation of the Reaction Network 

Table S1. Optimized kinetic parameters for the reaction network of the dehydrogenation of propane. 

Parameter Opt. Value 
95% Confidence 

Intervals 
Unit 

A1 −11.002 ±2.9% - 

A2 −12.551 ±1.2% - 

A3 −10.390 ±2.7% - 

A4 −9.012 ±2.7% - 

B1 15.976 ±19.5% - 

B2 13.456 ±2.0% - 

B3 11.667 ±6.6% - 

B4 11.777 ±4.4% - 

a1 0.500 ±14.4% - 

a2 1.130 ±1.7% - 

a3 0.814 ±10.8% - 

a4 0.725 ±8.9% - 

b2 1.051 × 10−4 ±6954% - 

b3 0.212 ±11.7% - 

b4 0.170 ±10.6% - 

Table S2. Preexponential factors and activation energies for the reaction network of the 

dehydrogenation of propane derived from the optimized parameters (Table S1). 

Parameter Opt. Value Unit 

𝑘0,1 2.151 𝑚𝑜𝑙 𝑘𝑔−1 𝑠−1 𝑃𝑎−𝑎5  

𝑘0,2 0.044 𝑚𝑜𝑙 𝑘𝑔−1𝑠−1 𝑃𝑎−(𝑎1+𝑏1) 
𝑘0,3 0.064 𝑚𝑜𝑙 𝑘𝑔−1𝑠−1 𝑃𝑎−(𝑎2+𝑏2) 
𝑘0,4 0.283  𝑚𝑜𝑙 𝑘𝑔−1𝑠−1 𝑃𝑎−(𝑎3+𝑏3) 
𝐸𝐴,1 94976 𝐽 𝑚𝑜𝑙−1 

𝐸𝐴,2  80908 𝐽 𝑚𝑜𝑙−1 
𝐸𝐴,3 70147 𝐽 𝑚𝑜𝑙−1 
𝐸𝐴,4 70813 𝐽 𝑚𝑜𝑙−1 
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B) – C) Catalyst Deactivation/ Regeneration  

Akaike Information Criterion 

Since models can only try to approximate the effects measured in experimental data, a reliable 

methodology for model selection is desirable [1]. A well-known tool for model selection and 

statistical inference is the coefficient of determination 𝑅2 , which is known to be inadequate for 

nonlinear problems but still widely used in scientific literature [2]. An alternative way for model 

discrimination introduced by Akaike is the Akaike Information Criterion (𝐴𝐼𝐶), that is based on 

information theory [3]:  

𝐴𝐼𝐶 = 2𝑝 − 2𝑙𝑛 (𝐿) (S1) 

This criterion includes the number of parameters of the tested model 𝑝 and the numerical value 

of the log-likelihood at its maximum point 𝑙𝑛 (𝐿). This value can be calculated in the case of a 

nonlinear fit with normally distributed errors with the help of the residuals from the nonlinear least-

squares fit 𝑅𝑆𝑆𝑜𝑝𝑡 and their number 𝑛 [1]. 

𝑙𝑛(𝐿) = 0.5 (−𝑛 (ln(2𝜋) + 1 − ln(𝑛) + ln ∑ 𝑅𝑆𝑆𝑜𝑝𝑡

𝑛

𝑖=1

)) (S2) 

In application the AIC is computed for every candidate model and the one with the smallest 

value is chosen. This model is supposed to be closest to the unknown reality that generated the 

measured data. Since the number of parameters is included, this criterion does not favor models with 

numerous parameters that offer only a slight increase in precision. It has to be noted, that not the 

absolute value but rather the differences in AIC values among the candidate models is important. If 

the candidate set does not include a sufficient model also a low AIC value does not guarantee a good 

fit of the measured data [1].  

For an easier comparison, a so called Akaike weight of model 𝑖 can be calculated [1,2](equation 

S3) 

𝑤𝑖(𝐴𝐼𝐶) =
𝑒−0.5∙∆𝑖(𝐴𝐼𝐶)

∑ 𝑒−0.5∙∆𝑘(𝐴𝐼𝐶)𝐾
𝑘

 (S3) 

∆𝑖(𝐴𝐼𝐶) describes the difference between model 𝑖 and the model with the lowest AIC value, 

while 𝐾 represents the overall number of the models compared. These values can be interpreted as 

the weight of evidence for the respective model. This procedure normalizes the values in a way that 

the sum of 𝑤𝑖  gives 1, and thus makes the results easier to interpret. 

The model discrimination in this contribution is based on the Akaike weights 𝑤𝑖  of the 

respective model 𝑖. 

Bootstrapping 

For estimating the confidence intervals of the estimated parameters of the deactivation and the 

regeneration kinetics, a bootstrapping algorithm has been used. Bootstrap methods describe 

resampling algorithms [4,5]. The fundamental idea is, that all information about an underlying 

population is contained in an observed sample. Statistics about the underlying population can hence 

be simulated by using random samples from the original sample. Different methods of resampling 

are possible. The resampling method used in this contribution is semi-parametric resampling [6]. It 

involves random resampling of the residuals 𝑟  of a parametric model with the responses 𝑦 =

(𝑦1, … , 𝑦𝑛). A general representation of the model is given in equation S4: 

𝑦 = 𝑔(θ) + 𝑟 (S4) 

Fitting of the model gives the estimate θ̂  of the parameters θ  and a set of residuals 𝑟𝑖 , 𝑖 ∈

{1, … , 𝑛}. The resampling algorithm is as follows. 
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1. Sample with replacement from the residuals 𝑟. The new set of residuals is called bootstrap errors 

𝑟∗ = (𝑟1
∗, … , 𝑟𝑛

∗). 

2. Generate a bootstrap data set 𝑦∗ by adding the bootstrap errors to the model values (equation 

S5):  

𝑦∗ = 𝑔(θ̂) + 𝑟∗ (S5) 

3. Fit the model using the estimated optimal parameters θ̂ and the bootstrap data set 𝑦∗ (equation 

S6) to obtain a bootstrap estimate θ̂∗: 

𝑦∗ = 𝑔(θ) (S6) 

4. Repeat Steps 1 – 3 for 𝐵 = 1500 times to obtain the bootstrap distribution of the estimated 

parameter. 

Based on this parameter distribution the confidence intervals of the estimated parameters can 

be calculated [7]. A non-studentized pivotal method is used [6,8]. This method argues that the 

behavior of the distribution 𝑊 = θ̂ − θ is mirrored by the behavior of 𝑊∗ = θ̂∗ − θ̂. For a known 

distribution 𝑊 it would be possible to find a quantile 𝑤𝛼

2
 such that 𝑃 (𝑊 ≤ 𝑤𝛼

2
) =

𝛼

2
. A two sided 

1 − 𝛼 confidence interval would be  

( θ̂ − 𝑤𝛼
2

, θ̂ + 𝑤
1−

𝛼
2

) (S7) 

Since the “true distribution” W is not known the quantiles 𝑤𝛼

2
 and 𝑤1−

𝛼

2
 are replaced by the 

approximate quantiles 𝑤𝛼

2

∗ and 𝑤
1−

𝛼

2

∗  from the bootstrap distribution 𝑊∗:  

( θ̂∗ − 𝑤𝛼
2

, θ̂∗ + 𝑤
1−

𝛼
2

) (S8) 

In this contribution the 95% confidence intervals have been calculated (𝛼 = 0.05). An advantage 

of bootstrapping methods is their simplicity, which allow to adapt them for a wide range of 

applications. The major disadvantage is that the methods are generally computationally costly. 

Alternative methods to calculate confidence intervals analytically may be more efficient, such as the 

nlparci 1  function implemented in MATLAB®. This function deploys the Jacobian, given by the 

lsqnonlin 2  function that has been used for fitting the models in this contribution (Levenberg-

Marquardt algorithm). Problems arise, when the Jacobian is not invertible3.  

Since bootstrapping algorithms are more robust they have been chosen in this study. 

Nevertheless, the results of the nlparci function can be used for verification of confidence intervals 

estimated by bootstrapping. Table S3 summarizes the confidence intervals estimated by both 

methods for the kinetic parameter of the deactivation of the VOx catalyst with propene. The 

confidence intervals estimated with the different methods are in good agreement, which proofs the 

applicability and validity of the applied methodology for this problem. 

  

 
1 See https://de.mathworks.com/help/stats/nlparci.html for further information 
2 See https://de.mathworks.com/help/optim/ug/lsqnonlin.html for further information 
3 A non-invertible Jacobian might be singular or singular to working precision. nlparci deploys QR 

decomposition to the Jacobian. For a non-invertible Jacobian this results in R being not a full upper 

triangle matrix which can therefore not be inverted.  
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Table S3. Optimized parameters of model C5 to describe the coking behavior of the VOx catalyst 

using propene. 

Parameter Opt. Value 
Confidence Intervals 

Unit  
nlparci bootstrapping 

𝑐𝑚𝑎𝑥  17.695 ±1.61% −1.54% +1.35% % (
kgcoke

kgcat

× 100) 

𝛼 0.275 ±1.94% −2.05% +1.55% - 

𝑘0 9.59 × 105 ±34.44% −29.71% +33.72% (kgcokekgcat
−1 min−1)1−h 

𝐸𝐴 139022 ±1.78% −1.92% +1.35% J mol−1 

h 1.106 ±2.32% −2.79% +1.47% - 

𝑘𝑑𝑒𝑠 3.22 × 10−3 ±3.24% −2.24% +4.09% min−1    

𝑐0 5.994 ±5.21% −4.47% +5.17% % (
kgcoke

kgcat

× 100) 

It has to be noted, that there are other methods for estimating confidence intervals via 

bootstrapping which are described in literature [9].  

As an example, the distribution of the bootstrap parameters θ̂∗  together with the optimal 

parameter θ̂ and the estimated confidence intervals are illustrated in Figure S1. The numbers in the 

bins of the histograms in Figure S1 have been normalized by dividing them by 𝐵 = 1500 to get the 

frequencies, that are easier to interpret. The optimal parameters are also listed in Table 8. 

 

Figure S1. Histograms of the distribution of the parameters of the bootstrapping process of model 

(C5) of the deactivation of the VOx catalyst with propene.    
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D) Periodic Experiments and Validation 

The diagrams in Figure S2 and Figure S3 illustrate the results of the periodic experiments 2) and 

3) described in section “Results and Discussion - Periodic Experiments and Validation”. The 

experimental conditions are summarized in Table 15. Periodic experiment 1) is illustrated in Figure 

15.  

 

 

Figure S2. Measurements during periodic experiments: (a) mass changes (TGA) and temperature, (b) 

oxygen and propane concentrations, (c) CO, CO2, ethene and ethane concentrations for periodic 

experiment (2). 
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Figure S3 Measurements during periodic experiments: (a) mass changes (TGA) and temperature, (b) 

oxygen and propane concentrations, (c) CO, CO2, ethene and ethane concentrations for periodic 

experiment (3). 
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