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Abstract: In the present study, two photocatalytic graphene oxide (GO) and carbon nanotubes (CNT)
modified TiO; materials thermally treated at 300 °C (T300_GO and T300_CNT, respectively) were
tested and revealed their conversion efficiency of nitrogen oxides (NOy) under simulated solar light,
showing slightly better results when compared with the commercial Degussa P25 material at the initial
concentration of NO, of 200 ppb. A chemical kinetic model based on the Langmuir-Hinshelwood (L-H)
mechanism was employed to simulate micropollutant abatement. Modeling of the fluid dynamics
and photocatalytic oxidation (PCO) kinetics was accomplished with computational fluid dynamics
(CFD) approach for modeling single-phase liquid fluid flow (air/NO, mixture) with an isothermal
heterogeneous surface reaction. A tuning methodology based on an extensive CFD simulation
procedure was applied to adjust the kinetic model parameters toward a better correspondence
between simulated and experimentally obtained data. The kinetic simulations of heterogeneous
photo-oxidation of NOy carried out with the optimized parameters demonstrated a high degree
of matching with the experimentally obtained NO, conversion. T300_CNT is the most active
photolytic material with a degradation rate of 62.1%, followed by P25-61.4% and T300_GO-60.4%,
when irradiated, for 30 min, with emission spectra similar to solar light.

Keywords: CFD modeling; photocatalytic oxidation; air quality; NOy; heterogeneous surface reaction

1. Introduction

The air quality is influenced by a significant number of harmful substances including gases
(carbon monoxide and dioxide, ozone, nitrogen oxides, volatile organic compounds), other contaminants
of organic and inorganic origin as well as bacteria, fungi, and pollen. These pollutants can penetrate
deep into the respiratory and circulatory human systems, causing great damage [1]. A very significant
fraction of indoor air pollution is a result of human activities. Nitrogen oxides are considered major
contaminants, with carcinogenic activity, that also have a detrimental effect on the lung functions and
reproductive system [2]. In light of this, the air quality guideline [3] of the World Health Organization
(WHO) has established a threshold limit of 1 h indoor nitrogen dioxide (NO,) exposure at 200 ug/m3
and an annual average exposure at 40 ug/m3. Both nitrogen monoxide (NO) and dioxide are gases
produced by high rate expressions combustion through reactions between nitrogen and oxygen.
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The main sources of NOy are exhaust gases from cars and trucks as well as emissions from electrical
power generation plants. Therefore, NO, ground-level emissions and their indoor concentrations
are normally lower than outdoors. However, the NO, levels in homes, where gas or coal-burning
are used for heating and cooking or when they are located close to underground parking garages,
may surpass the outdoor concentrations [3,4]. Cigarette smoke can also be considered a source of
indoor NOy pollution [5]. Unfortunately, conventional air filtration systems do not efficiently deal
with the destruction/removal of some of the above-mentioned contaminants including, but not limited
to, NOy. A technology based on the principle of photocatalysis, earlier used for water purification,
has been applied in recent years for indoor air purification. Photocatalytic oxidation (PCO) is based on
the irradiation of a photocatalyst, generally an inorganic semiconductor such as TiO,. When the TiO,
material is exposed to a light source, electrons transit from the valence to the conduction band, resulting
in the generation of positive holes. Their interaction with water molecules leads to the formation of
strong oxidants: superoxide radical anions (O,°~) and the hydroxyl radicals (HO®), which are powerful
oxidizing agents. In the case of NO and NO; heterogeneous photocatalysis, O,°~ reacts with nitrogen
oxides to form nitrates, while HO® increases the efficacy of the process and participates by reacting
with NO; and discomposing it into nitrate and NO [6]. There are many studies reporting the high
efficiency of PCO processes initiated by TiO,-based catalysts for the purification of air polluted with
NOy [7-10]. To enhance the efficiency of the photocatalytic activity of commercially available TiO,,
researchers focused on the modification of their physical and chemical characteristics such as doping
with other chemical elements to manipulate its chemical structure and therefore the band gap [11-14]
and testing their photocatalytic behavior under different types of light sources, such as visible (Vis) and
UV lights [15,16]. Recently, Silva et al. [14] used a simple and green procedure to synthesize TiO,-based
materials, which showed great photocatalytic ability. That work was focused on the activation of
the photocatalysts using solar light, as it is freely available and almost limitless. Carbon structures
(graphene oxide or carbon nanotubes) were added to TiO; to improve the degradation rates by reducing
the electron-hole recombination. Prepared materials were tested with a dye (rhodamine B) to find
those having the best performance under both UV and Vis lights. In particular, Vis light (400-700 nm)
is important because it represents 43% of solar radiation (where 5% is UV (300-400 nm)) and the
52% is infrared (700-250 nm) [17]. After selecting the best materials, their ability to degrade benzene
was tested and compared against the very effective and commonly used commercial material P25.
Two of the prepared materials surpassed the commercial one: T300_GO and T300_CNT. Accordingly,
these materials were chosen for the present work to be tested for the first time in the photocatalytic
degradation of the NO, by employing experimental and computational procedures.

The PCO process of nitrogen oxides obeys the reactions kinetics usually described by a
Langmuir-Hinshelwood (L-N) model, reporting a satisfactory agreement between the experimental
and analytical results in a number of studies [8,9,18-22]. In their review, Boyjoo et al. summarized
the CFD methods extensively used to address different aspects of gas-phase photocatalytic oxidation
modeling for the prediction of uniform and non-uniform air flow and contaminant distribution,
generally reporting close agreement with the experimentally obtained contaminant’s conversion [23].
Over the recent years, CFD-based assessment of PCO reaction and fluid dynamics prediction has
been applied for optimization of the reactors’ design [9,24-29] and optimization of the PCO model
parameters [22,30-33]. These methods are especially useful when the configuration of the photocatalytic
reactor does not yield a laminar plug flow and there are large gradients of velocities and pollutant
concentration [31,32,34].

The present work had two main objectives. The first one was focused on the assessment of
TiO, carbon-based materials’ efficiency for photocatalytic degradation of NO, using a lab-scale
photocatalytic reactor under solar light. The conversion yield was determined for different initial
concentrations of NOy (from 100-800 ppb). Commercial Degussa P25, de facto a commercial standard,
was used as comparison in the photocatalytic tests performed at the concentration of approximately
200 ppb of NOy. This NO, concentration was adopted in accordance to the WHO, which established a
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threshold limit of 1 h indoor nitrogen dioxide exposure at 200 ug/m? [3]. The second objective was to
develop and validate a computational fluid dynamics (CFD) model representing the hydrodynamics
and NO, PCO kinetics for a lab-scale stirred photocatalytic reactor toward a better understanding
of the flow dynamics on the abatement of the contaminants. The reaction rate of the photocatalytic
oxidation was set as a boundary condition of the CFD model and integrated into the NO, mass
transport equation to predict the conversion of NOy. A tuning methodology based on an extensive
CFD simulation procedure was implemented to adjust the kinetic model parameters toward a better
correspondence between simulated and experimentally obtained data. The validity of the proposed
approach was studied by comparing the results of the kinetic simulations with the experimentally
obtained data for a range of operating conditions.

2. Results and Discussion

2.1. Experimental Results

The photocatalytic degradation of the NO, at the concentration of approximately 200 ppb under
solar light was studied on both synthesized samples: T300_GO and T300_CNT. Results show that both
carbon-modified TiO, materials present similar kinetics compared with Degussa P25, with slightly
enhanced performance for T300_CNT sample as shown in Figure S1 in the Electronic Supplementary
Information (ESI) file. The NO, degradation rates after 10 min of photocatalytic reaction are 54.2,
58.5 and 56.4% for T300_GO, T300_CNT, and P25 materials, respectively. After 30 min of reaction,
a small increase in the NO, degradation rate is observed (60.4, 62.1, and 61.4% for T300_GO, T300_CNT,
and P25, respectively).

Tests of both T300_GO and T300_CNT were also conducted by varying the concentrations of
NOy at the nominal values of 100, 200, 400, 600, and 800 ppb. The actual measured values of NOy
concentrations vary slightly from the nominal ones and are presented along with the measured
concentration of NOy at the reactor’s outlet in Table 1. The experimental conversion of NO, was
calculated using Equation (1), where Cp.in and Cp.out are NOy concentrations at the inlet and outlet of
the reactor, respectively.

Cp.in - Cp.out (1)
Cp.in

Y% =

The concentration values at the reactor’s outlet were obtained after 30 min of irradiation (duration
of the test), after reaching the adsorption-desorption equilibrium.

Table 1. Set up conditions and the conversion yield of NOj.

(@F C Conversion
Material in out
atena (ppb) (ppb) (%)
T300_GO 107 44 58.9
192 76 60.4
425 175 58.8
608 253 58.4
787 353 55.2
T300_CNT 108 45 58.3
195 74 62.1
420 167 60.2
618 253 59.1
805 330 59.0
P25 197 76 61.4

As is evident from Table 1, it is hard to discern a clear dependence of the initial concentrations on
the conversion rate for the investigated range of NO, concentrations. The conversion rate appears to
vary slightly about the average value of 60%, ranging between 55 and 62%. The highest conversion
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rate was observed for concentrations of 192 and 195 ppb for T300_GO (60.4%) and T300_CNT (62.1%),
respectively. Then, with an increase in concentration, the conversion tends to decrease slightly. However,
at the lowest experimentally tested concentrations, the conversion values fall out of this trend.

These results seem to differ from the findings of Devahasdin et al. [10], who studied NOy
conversion for the inlet concentrations of 5-60 ppm and came to a conclusion that the lower initial
concentration yields higher conversion. Similar conclusions were reported by Ballari et al. [19] for
concentrations between 100 and 1000 ppb, which is comparable to the range under investigation here.
However, it should be noted that in both cases, the photocatalytic materials were under UV-A radiation
in the range of 300-400 nm, and the experimental setup is different from that used in the present study.

2.2. Flow Field Simulation

Flow distribution through the cross-section of the reactor is shown in Figure 1. It is evident
that there is a tendency for flow stagnation in the upper part of the reactor, where the photocatalytic
powder is deposited, due to the obstacle to free flow passage caused by the Petri dish support feature.
The highest velocity, as expected, was at the fan boundary condition reaching 6.72 m/s. However,
the velocity above the photocatalytic surface is several orders of magnitude lower, nor rising above
0.006 m/s, due to the barrier created by the support feature of the Petri dish. This steep velocity gradient
along the length of the reactor suggests that the assumption of the perfect mixing inside the reactor
may not be valid.

Velocity

. 6.72 x 10°
5.97 x 10°
5.23 x 10°

4.48 x 10°
3.73 x 10°

- 2.99 x 10°
2,24 x10°

£ 1.49 x 10° —
' 7.47 x 101 iy
0.00 x 10° “ IR
[m s?-1] o ‘:—‘(

Figure 1. Velocity distribution along the length of the reactor.

Moreover, from the flow pattern (Figure 1), it can be concluded that the flow regime above the
photocatalytic surface is essentially laminar with each layer of fluid moving smoothly past the adjacent
layers with little to no mixing. According to Equations (6) and (7), the first cell height should be
0.058 m. However, this value is higher than the height of the first cell in the chosen grid configuration
(about 0.0025 m), which corresponds to the Y+ < 0.2. Therefore, in light of the above, there is no need
for further mesh refinement at this location.

2.3. PCO Analysis with the Conventionally Estimated L-N Model Parameters

2.3.1. Determination of the L-H Model Parameters from the Experimental Data

The experimental data were used to calibrate the L-H model according to the procedure explained
above. It should be noted that only four points/relationships between the reciprocal of the reaction
rate (1/r ) and that of the representative concentration (1/Cp) were used to determine the L-H model
parameters, and the data for the lowest concentrations were excluded. During the model fitting with
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the complete set of data, it was verified that the value for the intercept is negative, which is physical
nonsense. It may be eventually attributed to the fact that the linearization of the Langmuir isotherm
overemphasizes the data points at a low concentration (points with a high associated error) where the
Henry’s Law (hypothesis of infinite dilution) [35] generally, describes the solid—fluid phase equilibrium.
Therefore, at very low concentrations, it is unlikely that the system obeys the same Langmuir isotherm
(due to energetic heterogeneity of adsorption sites). Another reason for the negative intercept value
is the inclusion of the lowest concentration, which can also be related to the difficulties inherent to
the concentration’s precise measurement in such diluted solutions. Bearing in mind the provisions
exposed above, two reciprocal plots between NO, concentration and its physical adsorption rate
were constructed for materials T300_GO and T300_CNT (Figure 2), and the parameters k” and K.
were determined by fitting the plots to the Equation (3). According to Figure 2, the relation between
initial NO, concentration and the reaction rate is linear for both carbon-modified TiO, materials.
Their estimated kinetic parameters k” and K, are presented in Table 2.

1.10 x 10°
1.00 x 10°
9.00 x 10°
8.00 x 108
7 7.00 %108

s-kg 1

. 6.00 x 108

5.00 = 108

1/r (m?

4.00 x 108

3.00 x 10®

2.00 x 10°
8.00x105 1.60x10° 2.40x10° 3.20x10° 4.00x10° 4.80x 10°

1/C(m* kg 1)

Figure 2. Reciprocal plot of reaction rate and respective concentration of T300_GO (dashed line) and
T300_CNT (solid line).

Table 2. Experimentally estimated kinetic parameters k” and K,

Materials K (kg/m?2s) Kp.(m3/kg)
T300_GO 402 %1078 1.05 x 10°
T300_CNT 492 %1078 8.75 x 10*

2.3.2. Results of the PCO Analysis with the Conventionally Estimated L-N Model Parameters

The results of the flow simulation (steady-state) were used as the initialization flow field for the
species transport simulation in the transient regime, as the stationary nature of the flow field does
not interfere with the species transient nature, as the latter is due to local generation corresponding
to a negligible mass addition to the flow. It was implemented by applying the interpolation routine,
explained in Figure 3.
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Write an interpolation file for
the converged solution data

=
Read and interpolate the

solution data into the species
transport simulation study

J

=
Run the species transport

simulation by solving only
the species equation

S

Figure 3. Workflow of the interpolated solution.

By applying the profile/flow pattern inside the reactor, it is possible to significantly reduce the
duration of the kinetic simulation by solving just the equation for NOy. The residual for the species
equation was set at the order of 1.0 X 1076. To set up the initial NO, concentration at the beginning
of the simulations, the required boundary conditions were set up at the reactor inlet and through all
the fluid zones of the reactor’s domain to assure that the NO, concentration is constant and uniform
before starting the PCO process. A time step of 1 s was chosen, requiring a total of 1800 time steps to
simulate 30 min of reaction time for PCO simulation of NOy. A total of 10 simulations were carried out
for different NO, inlet concentrations for both T300_GO and T300_CNT materials.

Asevidenced from the distribution of NOy (Figure 4), after 30 min of irradiation (T300_GO/107 ppb),
the concentration varies significantly through the length of the reactor, being the lowest, as expected,
near the catalyst surface. By mechanisms of convection and diffusion, the initial (highest concentration)
is gradually decreased, reaching 71 ppb at the outlet of the reactor. However, this value is much
larger than the 44 ppb observed experimentally. In addition, there are high concentration gradients
(63-80 ppb) throughout the reactor’s volume, which do not comply with the assumption of perfect
mixing used for determination of the L-H model parameters.
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Figure 4. NO, concentration distribution (T300_GO /107 ppb).
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Similar trends were observed for both photocatalytic materials T300_GO and T300_CNT through
the range of inlet NOy concentrations. The comparison for NOy, predicted and experimental conversions
are summarized in Figure 5.

65
60 /Qt\\——
55
® 50
C
L2 45
2
S 40
c
S
35
t::::':::::::::::::s:::::::::::,’:;:;:;:;::;u
30
0 100 200 300 400 500 600 700 800
Cin (ppb)

——T300_CNT exp.-+-T300_CNT pred.—+T300_GO exp.-+-T300_GO pred.

Figure 5. Experimental and predicted conversion yield of NO, for T300_GO and T300_CNT.

The main conclusion reached after the analysis of the simulation results is that the simulation of
the PCO process of NO, with the L-H model parameters obtained from the fitting the experimental
data (Table 2) led to a large underprediction of the photodegradation efficiency (approximately 44%).
It means that the existence of non-uniformity of NO, concentration distribution was not considered,
leading subsequently to inaccurate values of the L-H model parameters. However, with an aid of CFD
simulation, it is possible to obtain the model parameters accounting for the non-homogeneity of the
NO, concentration distribution.

2.4. Kinetic Analysis with the CFD Modified L-N Model Parameters

The CFD optimization procedure applied in this study was similar to the methodology proposed
by Einaga et al. [24]. For a given reaction condition (material, inlet NO, concentration) the L-H model
parameters k” and K, were iteratively changed to match the experimental NO, concentration at
the reactor’s outlet. Eight iterations for every concentration/material combination were performed,
resulting in a total of 80 simulations runs.

For a given combination of NO, concentration/material, the set of k" and Kp. parameters were
determined by minimization of the objective function expressed by Equation (2):

Objective = (Cpr. = Cexp.)’ @)

where Cpr. and Ceyp. stand for the predicted and experimental NO, concentrations at the reactor’s
outlet. The modified values of the photocatalytic parameters for each material are shown in Table 3.
To account for a lack of compliance with the perfect mixing assumption, the reaction rate constant (k”)
and the Langmuir adsorption constant (Kp.) should be increased by approximately 45 + 1%.

Table 3. Computational fluid dynamics (CFD) estimated kinetic parameters k’ and Ky,

Materials K (kg/m?2s) Kp.(m3/kg)
T300_GO 7.25x 1078 1.89 x 10°
T300_CNT 9.04 x 1078 1.61 x 10°

After performing the simulations with the optimized L-H model parameters, the calculated and
experimentally obtained NO, conversions at the reactor’s outlet were compared and presented in
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Figure 6. The comparison demonstrates that the numerically predicted concentrations of NO, match
closely the experimentally obtained data for both photocatalytic materials analyzed, with the highest
difference in the conversion being less than 3.4%. Additionally, after analyzing the NO, concentration
distribution with the modified set of the model parameters in more detail, the observation, shown in
Figure 7 (T300_GO/ 107 ppb), suggests that in the presence of deficient mixing (high concentration
gradients throughout the reactor), both (a) the interaction between adsorbate and the surface, and (b)
the sorption capacity of material are larger than estimated with the fitting the experimental data to the
L-H model.

63
62
61
60
59
58
57
56
55

54
0 100 200 300 400 500 600 700 800

Cin (ppb)
——T300_GOexp. -¢-T300 GOpred. —T300 CNTexp. -¢-T300_CNT pred.

Conversion (%)

Figure 6. Experimental and predicted with the modified Langmuir-Hinshelwood (L-H) model
parameters NOy conversion yield.
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Figure 7. NOy concentration distribution T300_GO/107 ppb (optimized L-H model parameters).
3. Materials and Methods

3.1. Materials Synthesis

Two TiO,-carbon based photocatalytic materials were prepared and tested as previously published
by Silva et al. [14]. The samples were synthesized using a two-step procedure, starting by hydrolysis
and condensation of the precursor tetrabutyl orthotitanate (TBOT) followed by a thermal treatment at
300 °C. The first, designated as T300_GO, is composed of TiO, with the addition of graphene oxide
(GO) and the second, T300_CNT, is composed of TiO, and carbon nanotubes (CNT). Typically, only the
first steps in the syntheses of T300_GO and T300_CNT are different. In the initial steps of the T300_GO
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synthesis, GO (5 wt. % of TBOT) was added to distilled water and stirred for 10 min, followed by
the dropwise addition of TBOT (1:10 w/w) without stirring. In the case of T300_CNT, firstly the CNT
(1 wt. % of TBOT) were added to TBOT. After 30 min of sonication at 42 kHz, the mixture was dropwise
into distilled water (1:10 w/w) without stirring.

The final steps were the same for both samples: the precipitated material (either GO+TBOT or
CNT+TBOT) were removed, rinsed with distilled water repeatedly (5 times), and then left to dry in
a Petri dish at ambient conditions for 24 h. The resulting materials were heated using heating rate
of 100 °C/h up to 300 °C and kept one hour at this temperature to achieve T300_GO and T300_CNT.
Further details of the material synthesis are presented in reference [14].

3.2. Materials Characterization

The materials T300_GO and T300_CNT, which were characterized in Silva et al. [14], are composed
of mostly anatase and a small amount of brookite. The presence of GO and CNT into T300_GO
and T300_CNT, respectively, was corroborated via Raman spectroscopy (Bruker Optics, Ettlingen,
Germany), FTIR and XPS spectroscopy techniques (SPECS, Berlin, Germany). Here, =196 °C N,
adsorption—desorption isotherms (measured at a Gemini V 2.00 instrument model 2380, Micromeritics
Instrument Corporation, Georgia, GA, USA) showed that both materials have a type IV isotherm
curve (International Union of Pure and Applied Chemistry (IUPAC) classification), which is assigned
to the materials’ mesoporosity (also observed by SEM, HITACHI, Krefeld, Germany) and their
adsorbent-adsorptive interactions. T300_GO has a pore volume (V) of 0.19 cm®/g and 4.2 nm pore
width (dp) with a superficial specific area (Sggt) of 172 mz/g. T300_CNT has a higher Sggt (205 mz/g),
Vp of 0.24 cm3/g, and smaller dp, (3.3 nm). This porosity allows an increased contact between the
pollutant and the photocatalyst. All these characteristics, along with the increased electron transport to
TiO, and the decreased electron-hole recombination, provided by GO and CNT additions, created an
efficient photocatalyst. Further details of the chemical and physical characterization of the materials
are shown in [14].

3.3. Experimental Setup

The experimental layout is presented in Figure 8. It is composed essentially by four sections:
(1) the gas cylinders containing both clean air and pollutants sources; (2) two airflow controllers (one for
the clean air, MFC1, and other for the NO,, MFC2) and a T-shaped piece for the air mixing; (3) the
photocatalytic reactor where the testing material and the light source are placed, and finally (4) the
gas analyzer.

IFCT) Light source

T &RH @

meter | 7™

NO & NO,
analyser

Figure 8. Experimental layout.

Photocatalytic Reactor Layout

The photocatalytic reactor (Figure 9) used for gas—solid-phase tests belongs to the category of
stirred reactors (CSTR), in which one or more impellers are used to generate gas turbulence and air
mixing within the reactor [36]. In this case, there is only one small impeller located at the bottom
of the reactor. The body of the reactor is made of a 3.5 L stainless steel cylinder. The top is covered
with a glass window that allows for the light to reach the photocatalytic material (0.1 g) placed on the



Catalysts 2020, 10, 1366 10 of 16

surface of the Petri dish (5 cm diameter), which is located on the top of the support. To recreate an
outdoor environment, it employed a light source imitating the solar spectrum (Osram Ultra-Vitalux,
300 W, which emission spectrum is reported in Figure S3 of the ESI), which was placed 20 cm above the
photocatalytic material. Light intensity and relative humidity were maintained constant throughout
all the experimental runs (radiance intensity of 39.6 W/m? in the UV-A region and 278.0 W/m? in
the visible region, relative humidity of 31%). The gases used were pure synthetic air and NOy
(NO =9.8 ppm and NO; = 0.2 ppm) both from Praxair. The inlet gas mixture (prepared mixing gas
cylinders containing synthetic air and NO,) was allowed to flow into the chamber until it stabilized at
the desired concentrations. Once these were reached and it attained a stable level into the reactor, the
window glass was uncovered, the lamp was turned on, and the photocatalytic reaction was started.

1 glass window

Petri
dish

reactor's
body

support
P el e

support

impeller

[

air outlet l’ Tairinlet z A

0.000 0.050 0.100 (m)
| |

0.025 0.075

Figure 9. Photocatalytic reactor layout.

A mixture of pure synthetic air and NO; controlled by two flow controllers enters the reactor
through a tube of 4 mm of internal diameter and 50 mm in length. Then, with the aid of the impeller,
the mixture is dispersed throughout the reactor and finally exits through the 280 mm length outlet tube
(with the same diameter as the inlet tube), which is connected to a chemiluminescent NOy analyzer
(Environment AC31M). The general mechanism of NOy oxidation by photocatalysis implies their
oxidation to nitric or nitrous acids by active oxygen species produced on the TiO, surface.

The desired concentration of NO, was achieved by diluting the NO, of the gas cylinder
(concentration of 10 ppm) with pure synthetic air using the two mass flow controllers. The flow of
NO, was adjusted, keeping the total flow constant and equal to 1 L/min.

3.4. Kinetic Modeling of Photocatalytic Degradation

3.4.1. Langmuir-Hinshelwood Mechanism

Considering that it is impossible to measure the concentration of gaseous pollutants directly on
the surface of the photocatalyst during the experimental runs, the pollutant level has to be acquired
from the bulk of the system. This means that the rate expressions being derived from experimental
data will be a combination of several parameters such as (i) reaction kinetics; (ii) mass transfer effects
within the system; (iii) adsorption/desorption of pollutants from the catalyst surface; and (iv) diffusion
effects of the pollutants through the boundary layer.
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As mentioned earlier, for several indoor air pollutants, including nitrogen oxides, the PCO
kinetics follows some variation of the Langmuir-Hinshelwood (L-H) kinetic model [37]. The Langmuir
adsorption isotherm is used to describe the equilibrium between the adsorbate and the adsorbent
system, where the adsorbate adsorption is limited to one molecular layer, and all adsorption sites on
the surface of the adsorbent are assumed to be identical [38].

In the present case, maintaining the radiation source and relative humidity constant, the Langmuir—
Hinshelwood equation of reaction rate can be simplified and formulated as follows [20,37]:

KP-CP~

Sy
"H=ETYK,C,

®)

where 11 f is the photocatalytic oxidation reaction rate (kg/mzs) ; Kp. is the Langmuir adsorption constant
related to the affinity of the binding sites and energy of adsorption (m3/kg); k” is the reaction rate
constant, related to sorption capacity (kg/m?s), and Cp. is the pollutant concentration at the supply inlet.

3.4.2. Identification of L-H Model Coefficients by Using the Experimental Results

The reaction rate equation explains the dependence of this parameter on the concentrations of
reactants, and for a given reaction, it is determined experimentally. Diverse mathematical formulations
of the reaction rate are possible for the different reaction mechanisms. The PCO surface reaction rate
is generally obtained, assuming the perfect gases mixing inside the reactor and expressed as follows
through Equation (4) [24]:

Texp = % : (Cp.in - Cp.out) 4)

where Q (m?/s) is the volumetric flow rate; A (m?) is the surface area of the photocatalytic where
the reaction takes place; and rexp is the reaction rate obtained experimentally, which is equal to the
total reaction rate derived from the Langmuir-Hinshelwood equation (Equation (3)). The parameters
of the L-H kinetic model may be identified by the linear approximation analysis, applying the least
square method.

Based on the reciprocal plots between pollutant concentration, and its physical adsorption rate,
the parameters k” and Ky, could be determined by fitting the plots to Equation (5):

1 1 1 1
—_— = ——4 5
YLH k'Kp. Cp. + Kk ( )

Then, the relationship between the reciprocal of the reaction rate (1/r;y) and that of the
representative initial concentration (1/C,.) is plotted as a linear regression curve, where the model
parameters are captured by its slope and intercept.

3.5. CFD Analysis

3.5.1. Flow Modeling

CFD simulations of the airflow contaminated with NO, were performed using ANSYS/FLUENT
19.0 [39]. The finite volume formulation used in the present work is based on the Reynolds-averaged
Navier-Stokes equations (RANS model). k-¢ model, Realizable, was used as a turbulence model.
The near wall treatment was based on the use of standard wall functions, as proposed by Launder
and Spalding [40], which is a default option in FLUENT. The flow of contaminated air through the
reactor, assuming the incompressibility of fluid, is modeled by solving the conservation of mass (the
continuity equation) and the conservation of momentum equations simultaneously, and it can be
written as follows [39]:

Conservation of mass:

2 .
R+ V(p7) =0 (6)
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Conservation of momentum:

Jd  — - = - -
ﬁ(pv)—l—v-(pvv):—Vp—l—V(T)—i-p + F (7)

where p is the static pressure, 7 is the stress tensor, v is the velocity vector, (p_ig) is the gravitational

N
body force, and F stands for other model-dependent source terms such as porous-media and
user-defined sources.

3.5.2. Solver Parameters

In this study, the pressure-based solver was chosen, which is applicable for a wide range of flow
regimes. The Green—Gauss Cell-Based gradient method was selected for the domain discretization,
which is referred in the ANSYS Fluent Theory Guide as a suitable choice for tri/tetragonal meshes
schemes and a more accurate choice for minimizing false diffusion [39]. The Second-Order Upwind
scheme was used for the convection term, and a Pressure-Implicit with Splitting of Operators (PISO)
pressure—velocity coupling scheme was taken into consideration as a form of implicit under-relaxation
for steady-state cases. It helps in reducing the convergence difficulties associated with highly distorted
meshes and, at the same time, it promotes convergence [39]. To account for the presence of the
impeller, a PRESTO! interpolation scheme was used for calculating cell-face pressures. This scheme is
recommended for highly swirling flows, flows involving steep pressure gradients (fan model, etc.),
or in strongly curved domains [41].

3.5.3. Meshing and Boundary Conditions

Tetrahedral cells with boundary prism layers were used to discretize the majority of the CSTR
reactor’s domain, while the inlet and outlet tubes were modeled with the structured quadrilateral
grid and assigned as the laminar zones, considering the low flow rates (Table 4) at the inlet and outlet.
To guarantee convergence of the solution, the residuals for the momentum and velocities were set in
the order 1.0 X 107> and for energy 1.0 x 107°.

Table 4. Summary of the simulation assumptions and boundary conditions.

Turbulence Model K-¢ Model, Realizable, Standard Wall Function
Scheme Convection term: Second-Order Upwind
Inlet Boundary D =0.004 m; Ti = 1 wt. %;
Mass Flow Rate (MFR) = 2.06208 x 10> (kg/s)
Outlet Boundary Outlet boundary D = 0.004 m; MFR = 2.06208 X 107> (kg/s)
Fan Boundary Condition lump parameter model/polynomial pressure jump across the fan
Fluid A mixture of NOy and pure synthetic air

The summary of the simulation assumptions and boundary conditions for the grid independence
check are presented in Table 4.

Based on these boundary conditions, four types of grid design were tested before the PCO
simulations. Mesh quality was accessed in terms of the acceptable values of skewness, aspect ratio,
and orthogonal quality. Aside from monitoring the residuals, the average and maximum velocity at the
reactor’s outlet and maximum and average pressures at the fan surface were chosen as the quantities
of interest for monitoring of the solution convergence. After the divergence between the monitored
quantities was deemed to be acceptable, the final model with 2,694,646 cells and 665,748 nodes was
chosen for the flow field and PCO simulations.

The near-wall modeling significantly impacts the fidelity of numerical solutions. It is in the
near-wall regions that the solution variables have large gradients. Therefore, accurate representation
of the flow in the near-wall regions determines successful predictions of wall-bounded turbulent flows.
To assure the fidelity of flow field simulation in the boundary layer, the center of the computational cells
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closest to the wall surface should be at a non-dimensional distance (Wall Unit) of Y+ < 1. Aiming at
the non-dimensional distance of Y+ < 1, the first cell height can be calculated in the following steps.
First, the Reynolds number should be calculated based on the characteristic scale of the model.

p-U-L
U

Re =

®)

where p and p are fluid density and viscosity, U is the free stream velocity, and L is the characteristic
length (for example, body length). Then, the first cell height is derived from the following expression
for Y+:

U:-Y

Y+ = 9)

where Y is the first cell height, v is the kinematic viscosity, and U; is the friction velocity. As explained
above, to answer the question about the proper height of the first row of the grid cells in direct contact
with the photocatalytic surface, it is necessary to know the free stream velocity above the Petri dish.
However, these data are difficult to estimate prior to the simulations, considering the flow pattern
complexity inside the reactor. That is the reason why no boundary layer modeling using inflation
layers was applied above the photocatalytic surface. Meanwhile, for the rest of the domain, the mesh
here was tetrahedral with the boundaries of five boundary prism layers at the reactor’s walls. After the
values of the free stream velocity will be available, the mesh refinement at the sub-viscous layer above
the Petri dish will be performed, if deemed necessary, to ensure that the first node is not located outside
the boundary layer region.

The impeller was modeled implicitly as a Fan Boundary Condition, without modeling its physical
equivalent. The fan model is a lumped parameter model that can be used to determine the impact of a
fan with known characteristics upon some larger flow fields. This boundary type allows inputting
an empirical fan curve that governs the relationship between the head (pressure rise) and flow rate
(velocity) across a fan element. Although the fan model does not provide an accurate description of
the detailed flow through the fan blades, it predicts the amount of flow through the fan [36], being an
alternative to more computationally expensive MRF (Moving Reference Frame) or sliding mesh.

3.5.4. Modeling and Simulation of NO, Transport

By solving conservation equations for chemical species, ANSYS Fluent predicts the local mass
fraction of each species, Yi, through the solution of a convection—diffusion equation. This conservation
equation takes the following general form [39]:

%(pYi)—i—V-(va]):—V-]i+Ri+Si (10)
where R; is the net rate of production/depletion of species by chemical reaction, and S; is the rate of
creation by addition from the dispersed phase plus any user-defined sources.

When a chemical reaction of the photocatalytic surface degradation is not modeled explicitly,
i.e., with the reaction net rate R;, it can be modeled with a user-defined rate of creation/destruction of
species (contaminant sink term)-S; (kg/m3s), which represents the kinetic model of the air pollutant
oxidation. §; is equal to the expression in the Equation (10), but with the negative sign representing the
degradation of pollutant, as shown in the Equation (11):

Ky.Cp.

Si=-rp=kK——01—
! 14 Kp.Cp.

(11)

To model the surface reaction, the sink term should be applied to the first cell layer of the fluid
zone adjacent to the photocatalyst, while for all other cells in the domain, the source term is set to
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zero. Then, the source/sink term, in the form of a User-Defined Function (UDF), is then linked to the
appropriate flow zone, which detains the photocatalytic surface.

4. Conclusions

In the scope of this study, the modeling and simulation of the air purification process by the
heterogeneous photooxidation of NOy using porous carbon-modified TiO; has been accomplished.
The best conversion values were achieved at nearly 200 ppb and were 60.4% and 62.0% using T300_GO
and T300_CNT, respectively. T300_CNT showed higher photocatalytic activity than the commercial P25
(61.4%). Thus, CNT was found to be a more efficient TiO, carbon modifier than GO for PCO reactions.

Based on the experimental data, the reaction rates for different concentrations of NOy and two
photocatalytic carbon—TiO, materials were calculated by applying the L-H model, demonstrating a
linear relationship with the initial NO, concentrations. Assuming NO, convection and diffusion in
the cylindrical stirred reactor, the kinetic parameters—Langmuir adsorption constant and reaction
rate constants—were determined. However, the kinetic parameters calculated from the experimental
data were inadequate for the correct prediction of the NO, concentration at the outlet, which may be
ascribed to a non-uniform concentration distribution due to the particular geometry of the reactor.

After applying the CFD tuning procedure, two new sets of the kinetic parameters were determined
for T300_GO and T300_CNT, respectively. To validate the prediction accuracy, the kinetic simulations
of NO, were repeated with the optimized parameters, achieving a high degree of consistency (less than
3.4% of difference) with the experimentally obtained conversion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/12/1366/s1,
Figure S1: Photocatalytic degradation of NO, during 30 min under solar light on P25 (blue), T300_GO (orange)
and T300_CNT (gray). Figure S2: NO, degradation reaction scheme. (adapted from Dalton et al., Environmental
Pollution, 2002, 120, 415-422.), Figure S3: Emission spectrum of Osram Ultra-Vitalux, 300 W (adapted from
https://www.osram.com/), Table S1: Degradation of NO and NO, in 10 min at a concentration around 200 ppb.
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