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Abstract: In order to control NH3 injection for the selective catalytic reduction of nitrogen oxide
(NOx) denitration (SCR de-NOx) process, a model that can accurately and quickly predict outlet
NOx emissions is required. This paper presents a dynamic kernel partial least squares (KPLS) model
incorporated with delay estimation and variable selection for outlet NOx emission and investigated
control strategy for NH3 injection. First, k-nearest neighbor mutual information (KNN_MI) was used
for delay estimation, and the effect of historical data lengths on KNN_MI was taken into account.
Bidirectional search based on the change rate of KNN_MI (KNN_MI_CR) was used for variable
selection. Delay–time difference update algorithm and feedback correction strategy were proposed.
Second, the NH3 injection compensator (NIC) and the outlet NOx emission model constituted a
correction controller. Then, its output and the output of the existing controller are added up to
suitable NH3 injection. Finally, the KNN_MI_CR method was compared with different algorithms
by benchmark dataset. The field data results showed that the KNN_MI_CR method could improve
model accuracy for reconstructed samples. The final model can predict outlet NOx emissions in
different operating states accurately. The control result not only meets the NOx emissions standard
(50 mg/m3) but also keeps high de-NOx efficiency (80%). NH3 injection and NH3 escape are reduced
by 11% and 39%.

Keywords: selective catalytic reduction nitrogen oxide denitration (SCR de-NOx) process; dynamic
kernel partial least squares (KPLS) model; variable selection; delay estimation; control strategy

1. Introduction

How to reduce nitrogen oxide (NOx) emissions from coal-fired power plants has become an
important task of environmental treatment. Selective catalytic reduction denitration (SCR de-NOx)
technology is one of the mature flue gas denitration technologies [1]. Many efforts have been made
to optimize the SCR system, such as superior catalyst technology, enhanced de-NOx control strategy,
and byproduct limitation [2]. However, it is very difficult to control the amount of NH3 injection
accurately. First, new energy is integrated into the power grid on a large scale in recent years.
The boiler load needs to be changed to stabilize the fluctuation from the output power of new energy
frequently. Therefore, the wide range of operating states poses certain difficulties in NH3 injection
control. Second, the upper limitation of NOx emission is decreased to 50 mg/m3 in China. In order to
meet the national environmental standard, excessive NH3 injection occurs easily. Hence, it is required
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to control NOx emissions within the upper limitation and to avoid NH3 escape. Third, the SCR de-NOx

system has large inertia, and it also has a large delay in NOx analysis. When the operating state changes,
the SCR system cannot adjust NH3 injection in time based on the sampling inlet NOx concentration,
which can make the outlet NOx emission deviate from the set value. Furthermore, the SCR de-NOx

process, which has the feature of nonlinear and multivariable coupling, is complex. When boiler load
is stable, outlet NOx emission can fluctuate widely for the reasons of flue gas temperature, flue gas
flow rate, NH3 injection and oxygen content. If boiler load changes, outlet NOx emission changes
dramatically. The proportion integration differentiation (PID) cascade control cannot achieve optimal
control, which ensures high de-NOx efficiency and low NH3 escape. Therefore, the establishment of an
accurate SCR model and the research of optimal control strategies are significant.

The current control strategy mainly uses a transfer function to control NH3 injection. Considering the
strong coupling between boiler parameter and SCR process parameter, the transfer function is difficult
to reflect SCR de-NOx process accurately. With the application of a plant-level supervisor information
system, operating data can be viewed and recalled easily. Therefore, data-driven modeling and control
methods are widely used. Data-driven modeling methods, such as Hammerstein–Wiener [3], radial basis
function autoregressive exogenous [4], online support vector regression [5], neural network, nonlinear
autoregressive exogenous and polynomial fitting [6], have been used to predict NOx emission. Although
most models are applied for diesel engines, the reaction principle is the same as the SCR de-NOx system
of a coal-fired power plant. The differences are that the boiler parameter affects outlet NOx emissions,
and the NOx analyzer has a large lag in the coal-fired power plant. In addition, the advanced thermal
management control strategies of catalysts have been developed to reduce emission concentrations [7].

Variable selection and delay estimation are investigated to simple model structure and improve
model accuracy. Mutual information (MI), which denotes statistical dependence between any
two variables, is a measure of variable correlation [8]. Therefore, it can express a linear and nonlinear
correlation [9]. In order to improve the model accuracy, Stanišić et al. [10] used the MI method to select
input variables. However, how to select an evaluation strategy and how to estimate the MI value
accurately are two main difficulties in variable selection by the MI method. In their evaluation strategy,
Battiti et al. proposed the mutual information feature selection (MIFS) method [11], which got a good
result. After this, Peng et al. [12] and Fleuret [13] proposed a different evaluation strategy. The above
methods mainly use one-dimensional MI to evaluate the variable set. When there are redundant
variables, the subset of the optimal variables cannot be obtained. The literature [10] used a single
evaluation function as an indicator, which often leads to an imbalance between the relevant variable
and redundancy variables. Considering the large time-delay process, the effect of time-delay needs to
be considered in variable selection. Ludwig et al. [14] used the MI method to estimate the time-delay
and got better results in a case. However, the method ignores the effect of variable dimension on the MI
value. In general, output variable y(t) not only related to input variable xi(t) at time t, but also related
to historical input xi(t − 1), xi(t − 2), . . . , xi(t − li) before time t. Here, li is defined as the historical data
length of the input variable xi. Therefore, it is necessary to determine the historical data length of each
input variable when the time-delay is estimated.

Recently, adaptive nonlinear model predictive controllers, such as model-based predictive
controller [15], the generalized predictive controller [16], dynamic matrix controller [17],
nonlinear autoregressive moving average with exogenous inputs (NARMAX) based predictive
controller [18], the neural network-based predictive controller [19] and subspace predictive
controller [20], have been used to control the NH3 injection and got better effect compared with
the conventional PID controller. However, some models (e.g., [15,16]) involved high order nonlinear
optimization, which is time-consuming and gets a local minimum rather than a global minimum easily.
Not all of the operating states are covered in the NARMAX prediction model. The neural network
prediction model is difficult to be predicted online, quickly and accurately. The input variable of the
subspace predictive model only relates to NH3 injection. Hence, it cannot reflect other variables that
affect outlet NOx emission correctly. In addition, the control effect is also affected by the constraints,
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such as the NH3 valve opening and the increment of NH3 valve opening, which are neglected in the
above literature.

The objective of this paper is to model outlet NOx emissions under the different operating state,
thereby to facilitate controller design. The kernel partial least squares (KPLS) model shows a good
effect when it deals with the high dimensionality and colinearity data. In this paper, a dynamic
KPLS model incorporated with variable selection and delay estimation is proposed. The k-nearest
neighbor mutual information (KNN_MI) was used for delay estimation, and the effect of historical data
lengths on KNN_MI was taken into account. Based on the results of delay estimation, a bidirectional
search based on the change rate of KNN_MI (KNN_MI_CR) was used for variable selection. In order
to improve model update accuracy, delay–time difference (DTD) update algorithm and feedback
correction strategy are proposed. In order to take advantage of the existing controller, which has
rapid response-ability to deal with disturbance signals, a parallel control structure that can identify
the dynamic model online by using operation data is proposed. The existing conventional controller
is used as the main controller. The NH3 injection compensator (NIC) combined with the outlet NOx

emission model are used as correction controller, which can ensure the outlet NOx emission is stable
near the set value. The principle of NIC is to eliminate the adverse effects of the large inertia of the
SCR system and the lag of NOx analysis through feed-forward compensation to a certain extent.

The paper is organized as follows: In Section 2, the SCR de-NOx process and its control strategy
are described. In Section 3, the delay estimation and variable selection method are presented.
The experimental results of the benchmark dataset for variable selection are presented in Section 4.
The field data experiment for the SCR de-NOx process is investigated in Section 5, and the predictive
accuracy of the outlet NOx emission model and the control effect of the proposed control strategy are
analyzed. Finally, concluding remarks are given in Section 6.

2. The SCR de-NOx Process and Its Control Strategy

2.1. The SCR de-NOx Process

For a 1000 MW ultra-supercritical coal-fired power plant, the SCR de-NOx system is shown in
Figure 1. The temperature of the SCR de-NOx system is controlled by the bypass gas damper of the
economizer in the upstream flue. Mixed with dilution air, the ammonia gas is sprayed by the NH3

flow rate valve through the ammonia injection grid (AIG). In the reaction zone, the selective catalytic
reaction occurs on the stainless steel plates, which are supported by the V2O5-WO3-TiO2 catalyst.
Finally, the NOx in the flue gas is converted into harmless N2 and H2O, and thereby the flue gas is
purified. The main reaction of the SCR de-NOx process is described as follows [1]:

4NH3 + 4NO + O2→4 N2 + 6H2O (1)

4NH3 + 2NO2 + O2→3 N2 + 6H2O (2)

Actually, adverse side reaction will occur as follows [1]:

2SO2 + O2→2SO3 (3)

NH3 + SO3 + H2O→NH4HSO4 (4)

2NH3 + SO3+H2O→(NH4)2SO4 (5)

It can be seen that the excessive NH3 injection leads to side reaction, and de-NOx efficiency is
decreased because of the regeneration of NOx. Excess NH3 reacts with SO3 in the flue gas to form
NH4HSO4 and (NH4)2SO4, which not only reduce the catalyst activity but also cause plugging and
corrosion in the heated surface of the air preheater. In addition, increased NH3 escape could lead to
secondary pollution. Secondary pollution refers to new pollutants, that is, unreacted ammonia gas.
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Figure 2. The SCR de-NOx process control system. 

Figure 1. The selective catalytic reduction nitrogen oxide (NOx) denitration (SCR de-NOx) system.

2.2. The SCR de-NOx Process Control Strategy

Under the variable state of the power plant, the SCR de-NOx process shows nonlinear,
strong disturbance and large time-delay in NOx analysis, so it is hard to achieve a good control
effect by the existing PID control. Actually, except for controlling the temperature of the reaction zone
by the bypass flue gas, it is necessary to design a better automatic control system which can control the
NH3 injection strictly. In order to ensure the most suitable NH3/NOx ratio, which is related to de-NOx

efficiency and ensure the NH3 escape in a reasonable range, the proposed control system includes the
main controller and the correction controller, which are in parallel operation. The main controller is
the existing PID controller. The correction controller, which is shown in Figure 1, is investigated in this
paper. The parallel control system is shown in Figure 2. The dynamic KPLS model is used as an outlet
NOx emission predictive model, which can be identified offline by the field data.
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The correction controller includes three parts mainly: outlet NOx emission predictive model,
feedback correction and NH3 injection compensator (NIC).

(1) Outlet NOx emission predictive model
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In general, a dynamic data-driven model is constructed by adding the model input, such as the
historical input data x(t − 1), · · · , x(t −w + 1) and output data y(t − 1), · · · , y(t −w + 1). Therefore,
x(t− τ)x(t− τ− 1) and y(t− 1) are selected as the new input variables in this paper. As a kind of model
update method, the time difference (TD) algorithm can work out the variable drift and achieve better
predictive accuracy. Moreover, the data model based on the TD algorithm does not need frequent
reconstruction and parameter updating [21]. The time-delay must be considered in the SCR deNOx

process. Hence, the delay-time difference (DTD) algorithm is proposed. Combining with the DTD
method and KPLS model, the dynamic KPLS model, which is named DTD–KPLS, is proposed.

In general, the original input variable sample and output variable sample are used in the regression
algorithm. However, ∆x(t) is calculated between the input variable x(t) at the time of t and the input
variable x(t − i) at the time of t − i through the TD method first. Similarly, ∆y(t) is calculated by the TD
method:

∆x(t) = x(t) − x(t− i) (6)

∆y(t) = y(t) − y(t− i) (7)

Then, the relationship between ∆x(t) and ∆y(t) is modeled as:

∆y(t) = f[∆x(t)] (8)

If new data x(t′) is obtained, the TD of input data can be computed as:

∆x(t′) = x(t′) − x(t′ − i) (9)

Thus, the TD of output data can be predicted by the training model as:

∆y(t′) = f(∆x(t′)) (10)

Finally, the predicted output value at time t′ is:

ŷ(t′) = ∆y(t′) + y(t′ − i) (11)

When the DTD method is used, the time-delay τ needs to be considered in Equations (8) and (10).
Hence, the training model becomes:

∆y(t) = f[∆x(t− τ)] = f[x(t− τ) − x(t− τ− 1)] (12)

Hence, the actual predicted output is:

ŷ(t′) = f[x(t′ − τ) − x(t′ − τ− 1)] + y(t′ − 1) (13)

In this paper, the estimation of the DTD–KPLS model from the training set is depicted as
follows [22]:

1. The relevant variable samples are obtained, and the preprocessing, which contains outlier
elimination and data filtering, is performed;

2. The input matrix Xreal∈ Rn×m and the output matrix Y ∈ Rn×1 are confirmed;
3. The time-delay of each input variable xi(I = 1, . . . ,n) is estimated and the phase space reconstruction

is made for Xreal. Hence, the new input variable matrix Xst is obtained;
4. The ∆x(t− τ) and ∆y(t− 1) of new input are calculated, and the ∆y(t) of output is calculated;

5. The training set ∆X0
tr and ∆Y0

tr are confirmed and ∆X1
tr and ∆Y1

tr (z-score normalized) are obtained;
6. The kernel matrix K0

tr of the training set is calculated as:

K0
tr = k(∆xtr, ∆xtr) (14)
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7. The kernel matrix K0
tr of the training set is centered as:

K1
tr =

(
I−

1
n

1n1T
n

)
K0

tr

(
I−

1
n

1n1T
n

)
(15)

Here, I is a unit matrix, 1n is a matrix whose all elements are 1 and whose dimension is n.
8. L is the number of latent variables, i iterates from 1 to L, and initialize the score vector ui of

X1
tr randomly.

9. The score vector ti is calculated as:

ti =
K1

tru
i

‖K1
trui‖

(16)

10. The weight vector ci is calculated as:

ci =
(
Y1

tr

)T
ti (17)

11. The score vector ui is calculated as:

ui =
Yi

trc
i

‖Yi
trci‖

(18)

12. Step (8) to (11) is repeated until that ti is converged;

13. The matrix K1
tr and Y1

tr are reduced as follows: until that t and u are extracted;

Ki+1
tr =

[
I− ti

(
ti
)T

]
Ki

tr

[
I− ti

(
ti
)T

]
(19)

Yi+1
tr = Yi

tr − ti
(
ti
)T

Yi
tr (20)

14. The regression coefficient B is obtained, and the regression model of the training set is obtained
as follows:

Ŷtr = KtrB = KtrU
(
TTKtrU

)−1
TTYtr (21)

Here, T and U are both matrices, which are formed by score vector t and score vector u.
The prediction for the test set is similar to that for the training set, except the computation of the

test kernel matrix K0
te and the centralization of K0

te:

K0
te = k(∆xte, ∆xtr) (22)

K1
te =

(
K0

tr −
1
n

1nt1T
nK0

te

)(
I−

1
n

1n1T
n

)
(23)

Here, nt is the number of the test set. In addition, the kernel function uses the radial basis function
(RBF) kernel in this paper.

(2) Feedback correction

In order to compensate for the prediction error, the feedback correction equation is as follows:

ỹ(t + 1) = ŷ(t + 1) + ∆y(t + 1) (24)

∆y(t + 1) = ρ× ∆y0(t + 1) + (1− ρ)∆y(t) (25)

∆y0(t + 1) = y(t) − ŷ(t) (26)

Here, ρ is 0.3, ỹ(t) is the corrected predicted value at time t, ŷ(t) is the predicted value at time t,
y(t) is the real value at time t.



Catalysts 2020, 10, 1364 7 of 22

Because the SCR de-NOx process is very complicated, a complete mathematical model of the SCR
process has still not been summarized. However, the compensation amount of NH3 injection ∆yNH3

can be calculated according to the nonlinear Equation (27):

∆yNH3(t) = f(∆ỹ(t)) (27)

Here,
∆yNH3(t) = y′NH3

− yNH3(t) (28)

∆ỹ(t) = ỹ(t) − yset (29)

y′NH3
is the demand amount of NH3 injection at the current operating state. yNH3(t) is the NH3

injection flow rate at the time of t.
In this paper, the TD-KPLS model is used to establish the nonlinear model of the NIC, which is

shown in Equation (27). The difference between the TD-KPLS model and DTD–KPLS model is that the
samples of the TD-KPLS model are not reconstructed. In the model, the deviation ∆ỹ(t) between the
corrected DTD–KPLS model output ỹ(t) and the set value of outlet NOx mission yset is used as the
input variables, and the compensation amount of NH3 injection ∆yNH3(t) is used as the output variable.
In addition, input variables also include inlet flue gas temperature and inlet NOx concentration,
which reflect the changing trend of the boiler load to a certain extent.

The adverse effects brought by the inertia characteristic of the SCR system are eliminated by
feed-forward compensation. Hence, the NIC can compensate for the NH3 injection in time to ensure
that the outlet NOx emission is stable at the set value.

In the SCR de-NOx system, the NH3 injection valve can be seen as a linear part, so the algorithm
design and parameter setting are performed on the basis of that. However, the NH3 injection valve has
a certain dead zone and saturation zone, which shows nonlinearity. Therefore, in this paper, the middle
curve in the on and off stroke is taken as the fitting curve between the NH3 injection valve opening
and the NH3 injection flow rate.

In order to avoid valve saturation and action frequently, the following constraints of the NH3

injection valve need to be considered:

UVmin ≤ ∆uV(t + 1|t ) + uV(t) ≤ UVmax (30)

uVmin ≤ ∆uV(t + 1|t ) ≤ uVmax (31)

Here, UVmax and UVmin are the upper and lower limits for the NH3 valve opening. uVmax and
uVmin are the upper and lower limits for the increment of the NH3 valve opening. ∆uV(t + 1|t )
represents the increment of the NH3 valve opening from the next time t+1 to the current time t.

3. The Delay Estimation and Variable Selection Method

3.1. Delay Estimation

Aiming at nonlinearity and large lag in SCR de-NOx process, this paper proposes the k-nearest
neighbor MI(KNN_MI) method to estimate the time-delay of the input variable and the effect of the
historical data lengths on KNN_MI was taken into account. The KNN_MI method can be summarized
as follows [8].

The KNN_MI of variable X and Y is:

MI(X, Y) = ψ(k) −
〈
ψ(nx + 1) +ψ(ny + 1)

〉
+ψ(n) (32)

Here, nx(i) is the sample number xj whose distance from xi is less than εi/2 strictly, εi/2 denotes
the distance from xi. to its k-th neighbor, and ny(i) is calculated similarly, i ∈ [1, · · · , n]. Ψ (x) is the
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digamma function, Ψ (x) = Γ(x)−1dΓ(x)/dx. It meets the recursion equation Ψ (x + 1) = 1/x + Ψ (x)
and Ψ (1) ≈ −0.5772156. The symbol 〈· · · 〉 denotes the mean of all variables in it.

The KNN_MI of high dimensional variables (X1, X2, · · · , Xm, Y) is:

MI(X1, X2, · · · , Xm, Y) = ψ(k) −
〈
ψ(nx1) + · · ·+ψ(nxm) +ψ(ny)

〉
+ mψ(n) (33)

Because of the time-delay between each input variable x.i and the output variable y is different,
the phase space of x.i is reconstructed by embedding with time-delay τi ∈ [min(τi), max(τi)] (min(τi)

and max(τi) are resolved by field experience). In addition, MI value has a relation to the length w of
x′·i. Therefore, the time-delay τi and length w are calculated at the time of t as follows:

max
τi=τ′i,wi=w′i

MI
(
[x·i(t− τi −wi + 1), · · · , x·i(t− τi − 1), x·i(t− τi)]

T, [y(t−wi + 1), · · · , y(t− 1), y(t)]T
)

s.t. min(τi) ≤ τi ≤ max(τi) , τi + wi < Tmax; i ∈ [1, m]
(34)

Here, Tmax is the maximum reaction time when the SCR system responds. Equation (34) involves
constrained multivariable nonlinear optimization. If the number of input variables is m, 2 m parameters
need to be obtained. Thus, within the above constraints, a global searcher maximizes the objective
function by particle swarm optimization (PSO) algorithm. Hence, the optimal τ′ = [τ′1, τ′2, · · · , τ′m]
and w′ = [w′1, w′2, · · · , w′m] are obtained. By estimating the time-delay τ′i of input variable x.i,
the reconstructed input matrix Xst is assumed as follows:

Xst =


x·1(t− τ′1 − n + 1) · · · x·i(t− τ′i − n + 1)

...
. . .

...
x·1(t− τ′1 − 1) · · · x·i(t− τ′i − 1)

x·1(t− τ′1) · · · x·i(t− τ′i)

 (35)

3.2. Variable Selection

The subset S, which has m input variables, equals to set (X1, X2, · · · , Xm). The MI between S and
Y is defined as:

MI(S, Y) = MI(X1, X2, · · · , Xm, Y) (36)

Information entropy represents a measure of uncertainty. If the added variable di is irrelevant,
the change of uncertainty is less. Therefore, the change rate of KNN_MI, which shown in Equation (37)
is larger, when the added variable di is relevant:

R∆MI(S + di, Y) =
∆MI(S, di, Y)

MI(S, Y)
=

MI(X1, X2, · · · , Xm, di, Y) −MI(X1, X2, · · · , Xm, Y)
MI(X1, X2, · · · , Xm, Y)

(37)

The high-dimensional KNN_MI and the impact on original MI(S, Y) are considered in the above
equation. Therefore,R∆MI(S + di, Y) can be used to select variable subset S in forward-selection
(step (2)–step (5)). In addition, the one-dimensional KNN_MI between any two variables in the
variable subset S can be used to delete redundant variables in backward selection (step (6)–step (7)).
Based on the change rate of KNN_MI (KNN_MI_CR), the algorithm for the variable selection is
designed as follows:

(1) One-dimensional MI(Xi,Y) between each input variable Xi and output variable Y are calculated,
i = 1, . . . ,m;

(2) Based on one-dimensional KNN_MI values, the input variables are sorted from max to min.
The most relevant variable which corresponds to the maximum KNN_MI value is selected as the
initial variable set S;
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(3) Based on the most relevant variable and the sorting result of other input variables, R∆MI(S+ di, Y),
which relates to the other input variable di and the output variable Y, is calculated in sequence by
Equation (37);

(4) The calculated R∆MI(S + di, Y) are sorted from min to max. The most relevant variable di,
which corresponds to the minimum R∆MI(S + di, Y) is selected. If R∆MI(S + di, Y) < α is satisfied,
S = S∪ di. Here, α is a threshold value;

(5) Step (3) and step (4) are repeated until all input variables were selected. The relevant variable
subset S is finally obtained;

(6) Backward selection: The one-dimensional KNN_MI between any two variables in S is calculated,
and then the combination of redundant variables which has the max KNN_MI value is selected.

(7) The redundant variables are eliminated by combining with the one-dimensional KNN_MI in step
(2), and the optimal relevant variable subset S is finally obtained.

4. The Benchmark Dataset Experiment

In order to verify the proposed variable selection method, the Friedman dataset and Housing
dataset [23] are used to experiment, and the predictive accuracy of the KPLS model is evaluated by the
root mean square error (RMSE).

4.1. Friedman Dataset

Friedman function:

Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε (38)

Here, the input variable Xi(1 ≤ i ≤ 10) is a uniform distribution between 0 and 1, ε is the Gaussian
noise with a variance of 1. The variables from X6 to X10 are irrelevant variables. The variable X11 =

0.5X1 + ε is a redundant variable. The sample number is 500. The number of training sets is 338. The
number of the test set is 162.

First, this paper uses the proposed variable selection method (KNN_MI_CR) to select variables.
In Section 3.2, the one-dimensional MI(Xi,Y) calculated in step (1) is shown in Figure 3.
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and output variable.

In Figure 3, if the variable selection is only based on one-dimensional KNN_MI, X8 and X10 are
mistakenly selected, X1 and X2 are mistakenly eliminated.

In step (2), the most relevant variable X4, which corresponds to the maximum one-dimensional
KNN_MI value, is selected as the initial variable set S. Hence, the initial variable set S is X4.
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High dimensional KNN_MI and its change rate, which is calculated in step (4), are shown in
Figure 4. There, +X5 represents MI(X4, X5, Y), +X3 represents MI(X4, X5, X3, Y) and so on. The threshold
value α is 0.1. Therefore, variables from X6 to X10 are eliminated, and the relevant variable subset
S = (X4, X5, X3, X2, X11, X1).
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In Figure 3, MI(X1, Y), MI(X2, Y) and MI(X11, Y) are relatively close. In addition, MI(X3, Y) and
MI(X5, Y) are also relatively close. Therefore, the relevant variable subset S could have a redundant
variable. One-dimensional KNN_MI between any two variables in S is shown in Figure 5. It is obvious
that MI(X1, X11) is the maximum value. In Figure 3, MI(X1, Y) > MI(X11, Y). Therefore, X11 is a
redundant variable. Finally, optimal relevant variable subset S = (X4, X5, X3, X2, X1). This is consistent
with Equation (38).

Second, the comparison among variable selection methods and the test results of the KPLS model
are shown in Tables 1 and 2.

In Tables 1 and 2, it can be seen that BIF, mRMR, MIFS, and CMIM have not selected all valid
input variables, and the CMIM method selects redundant variable X11 in the input variable subset.
Compared with the other four variable selection methods, the KNN_MI_CR method selects all relevant
input variables. Therefore, the KNN_MI_CR method proposed in this paper can select the input
variable subset effectively.
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Table 1. The variable selection result and model test result for the Friedman dataset (no redundant variable).

Variable Selection Method Variable Selection Result RMSE

All variables X1~X10 1.4966
MIFS [11] X4, X5, X3, X1, X9 1.2019

mRMR [12] X4, X5, X3, X1, X9 1.2019
CMIM [13] X4, X5, X3, X7, X8 1.2433

BIF [24] X4, X5, X3, X10, X9 1.2079
KNN_MI_CR X4, X5, X3, X2, X1 1.1260

Table 2. The variable selection result and model test result for the Friedman dataset (contain redundant
variable X11).

Variable Selection Method Variable Selection Result RMSE

All variables X1~X11 1.6222
MIFS [11] X4, X5, X3, X1, X9 1.2043

mRMR [12] X4, X5, X3, X1, X9 1.2043
CMIM [13] X4, X5, X3, X11, X8 1.1843

BIF [24] X4, X5, X3, X8, X10 1.3810
KNN_MI_CR X4, X5, X3, X2, X1 1.1272

4.2. Housing Dataset

The Housing dataset is used to predict Boston house price (defined as the output variable Y) by
statistic values (defined as input variables X1, · · · , X13), which represent 13 attributes in each house.
The number of training sets is 338. The number of the test set is 168. The comparison of different
variable selection methods and test results of the KPLS model are shown in Table 3.

It can be seen from the results that the predictive accuracy of the model is highest by using the
KNN_MI_CR method. Therefore, the KNN_MI_CR method contributes to establishing a more effective
prediction model.

Table 3. The variable selection result and model test results for the Housing dataset.

Variable Selection Method Variable Selection Result RMSE

All variables X1~X13 9.9566
MIFS [11] X13, X6, X11, X1, X4 9.6594

mRMR [12] X13, X10, X12, X6, X7 9.8252
CMIM [13] X13, X10, X2, X6, X4 10.5333

BIF [24] X13, X11, X6, X3, X5 9.7156
KNN_MI_CR X13, X10, X4, X3, X2 9.4404
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5. The Field Data Experiment for SCR de-NOx Process

5.1. Field Data and Preselected Input Variables

The inlet NOx concentration and NH3 injection flow rate reflect the NH3/NOx molar ratio,
which influences the de-NOx efficiency and the NH3 escape directly. The NH3 injection flow rate is
controlled to match up the change of boiler load by the NH3 valve. Inlet O2 content influences outlet
NOx concentration and de-NOx efficiency directly. Moreover, the change in boiler load often influences
the inlet flue gas flow rate. Then, the flue gas temperature is changed through heat exchange. The inlet
flue gas temperature influences the reaction rate and catalyst activity.

In a word, the outlet NOx emission is related to many factors. In addition, the changes in boiler
load, coal quality, and combustion condition could cause a large fluctuation in inlet NOx concentration.
Therefore, preselected input variables and the output variable are shown in Table 4.

Table 4. The preselected input variables and output variable for SCR de-NOx process.

Variable Parameter Unit

Preselected input variables

Boiler load/x1 MW
Total coal feed rate/x2 t/h
Total air volume /x3 t/h

Inlet NOx concentration/x4 mg/m3

Inlet O2 content/x5 %
NH3 valve opening/x6 %

NH3 injection flow rate/x7 kg/h
Inlet flue gas temperature/x8

◦C
Inlet flue gas flow rate/x9 km3/h

Output variable Outlet NOx emission/y mg/m3

Assuming that coal quality is invariable, the selected field data cover steady state and variable state.
One-dimensional linear interpolation is carried out on the measured NOx concentration at the process
of blowback. Therefore, 2000 samples were collected, and the sampling period is 10 s. Due to the length
of this paper, the samples of part preselected input variables and output variables are shown in Figure 6.Catalysts 2020, 10, x FOR PEER REVIEW 13 of 23 
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5.2. Result Analysis of Delay Estimation and Variable Selection

In general, the maximum time-delay of SCR reaction which includes NOx analysis is 120~400 s,
and the maximum time-delay of boiler load which influences inlet NOx concentration is 600 s, so the
range of τ is (20,60) from x1 to x3, and (1,40) from x4 to x9. Tmax in Equation (32) is 1200 s, so the range of
w is (1,120). The time-delay of each input variable is different-in-different operation point. The samples
from 200 point to 500 point at 800 MW operating state are taken as an example to analyze the delay
estimation and variable selection methods. The size of the SCR reactor is 11.67 m × 13.95 m × 12.6 m.
The optimal fitness curves of the PSO algorithm for all preselected input variables are shown in Figure 7,
and the results are shown in Table 5.Catalysts 2020, 10, x FOR PEER REVIEW 14 of 23 
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Table 5. The results of delay estimation.

Input Variables KNN_MI Optimal Result of Time-Delay Time-Delay

x1 MI(x1, x3) 41 410 + 330 = 740 s
x2 MI(x2, x3) 40 400 + 330 = 730 s
x3 MI(x3, y) 20 200 + 330 = 530 s
x4 MI(x4, y) 33 330 s
x5 MI(x5, y) 23 230 s
x6 MI(x6, y) 24 240 s
x7 MI(x7, y) 40 400 s
x8 MI(x8, y) 40 400 s
x9 MI(x9, y) 14 140 s
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It can be seen from Figure 7, each preselected variable reaches the optimal global solution before
the 10th iteration, and the optimal parameter τ′ and w′ are obtained. The optimal result multiplies the
sampling period to obtain the time-delay of the preselected variable, which is shown in Table 5.

The effect of time-delay needs to be considered for the variable selection in SCR de-NOx process.
Therefore, based on the delay estimation result, the phase space reconstruction on each input variable
is performed first, and then the KNN_MI_CR method is used to select a suitable variable.

It can be seen from Table 6 that if the model samples are reconstructed by phase space, the result of
variable selection is different. The DTD–KPLS model, whose variables are selected by the KNN_MI_CR
method, has the highest predictive accuracy. Although the variable selection result is the same,
the predictive accuracy of the DTD–KPLS model whose samples are reconstructed is improved in the
BIF and CMIM method. In addition, the sequence of the selected input variable is different, and the
model accuracy is different, which indicates that the consideration of high-dimensional KNN_MI is
conducive to the selection of suitable input variables.

Table 6. The variable selection result and test result for SCR de-NOx process.

Method
Samples Reconstructed Samples

Result RMSE
(TD-KPLS) Result RMSE

(DTD–KPLS)

All input variable X1~X9 4.4561 mg/m3 X1~X9 4.2619 mg/m3

MIFS [11] X3, X4, X6 3.2071 mg/m3 X3, X4, X8 3.2089 mg/m3

mRMR [12] X3, X5, X4 3.2101 mg/m3 X3, X5, X2 3.2168 mg/m3

CMIM [13] X3, X7, X4 3.2061 mg/m3 X3, X7, X4 3.2003 mg/m3

BIF [24] X3, X4, X7 3.3069 mg/m3 X3, X4, X7 3.2207 mg/m3

DISR [25] X3, X4, X7 3.3069 mg/m3 X3, X4, X2 3.2130 mg/m3

KNN_MI_CR X3, X5, X4 3.2101 mg/m3 X3, X7, X4 3.2003 mg/m3

5.3. Analysis of Dynamic Model

In general, dynamic modeling is realized by adding the historical input data x(t−1), · · · , x(t−w+ 1)
and output data y(t− 1), · · · , y(t−w+ 1) as a new input of the model. The 2000 prediction samples are
used to analyze model accuracy by using different input variables. The results are shown in Table 7.

Table 7. The predictive accuracy of DT-KPLS and DTD–KPLS model using different input variables.

Model Input Variables Dimension of Input Variable RMSE

DT-KPLS

x(t) 3 3.2268 mg/m3

y(t− 1), x(t) 4 3.2166 mg/m3

x(t− 1), x(t) 6 3.2054 mg/m3

x(t− 1), y(t− 1), x(t) 7 3.2061 mg/m3

DTD–KPLS

x(t− τ) 3 3.2139 mg/m3

y(t− 1), x(t− τ) 4 3.2082 mg/m3

x(t− τ− 1), x(t− τ) 6 3.2035 mg/m3

x(t−τ−1), y(t−1), x(t−τ) 7 3.2003 mg/m3

It can be seen from Table 7 when input variables are x(t− τ− 1) , y(t− 1) and x(t− τ), the predictive
accuracy of the model is highest. In addition, because the model input is historical input data before
the current time t, the DTD–KPLS model can predict the current value of the output variable in
advance accurately.

When parameter optimization is used in model control strategies, a large number of calculations
need to be avoided. In this paper, the DTD–KPLS model has only one RBF kernel parameter.
The predictive accuracy of the DTD–KPLS model in different kernel parameters is analyzed. The results
are shown in Figure 8.
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The change rate of the RMSE value was no more than 1%, as shown in Figure 8, which indicates
that the predictive accuracy was not sensitive to the kernel parameter. Therefore, the DTD–KPLS
model could adopt fixed parameters to avoid a large number of calculations in parameter optimization.
In this paper, the single-step prediction time was 1 s, so it could meet the demand for control.

In order to compensate for the prediction error, this paper proposes a feedback correction strategy
for the DTD–KPLS model. The predicted value and the corrected predicted value are shown in Figure 9.
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It can be seen from Figure 9, and the DTD–KPLS model shows high predictive accuracy with a
low RMSE of 3.2933 mg/m3 and a high determinate coefficient (Q2) of 0.7011 in the whole state. A large
amount of NOx was produced in a variable state. Hence the predictive accuracy was lower at the
peak of the outlet NOx emission curve. After feedback correction, the predicted values were closer to
the real value. Steady state and variable state were covered in the model samples, so the DTD–KPLS
model had strong self-adaptability.

5.4. Analysis of Control Effect

Two kinds of NH3 injection control modes have mainly existed in China. One is fixed NH3/NOx

molar ratio control, and the other one is fixed outlet NOx value control. In this paper, the fixed
outlet NOx value control was analyzed. First, the NOx flow rate was determined by the inlet NOx

concentration and the flue gas flow rate, and the preset molar ratio was calculated. Then, the NH3/NOx

molar ratio was corrected based on the measured value and the set value of outlet NOx emission.
The amount of NH3 injection was determined by the corrected NH3/NOx molar ratio and the calculated
NOx flow rate. Finally, the fixed outlet NOx emission was achieved.
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In order to obtain the demand amount of NH3 injection y′NH3
at the current operating state,

the transfer function from the NH3 injection to the decreased amount of outlet NOx emission was
investigated through a dynamic characteristic test as follows:

W(s) = −
1.73e−21s

10236s2 + 196s + 1
(39)

Then, the control structure diagram set up in MATLAB/SIMULINK is shown in Figure 10.Catalysts 2020, 10, x FOR PEER REVIEW 17 of 23 
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Figure 10. The control structure diagram of fixed outlet NOx value.

In the field data in Figure 6, the inlet NOx and the flue gas flow rate fluctuated from 135~230 mg/m3

to 120~160 km3/h. During the simulation, the inlet NOx, the flue gas flow rate and the set value of
outlet NOx were set to 160 mg/m3, 1300 km3/h and 37 mg/m3, which were consistent with the field data.
PID tuning program was used to get optimal PID parameters. The results are shown in Figures 11–13.
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Figure 13. The curve of NH3 injection flow rate.

If the inlet NOx value and the set value of outlet NOx were fixed, as the deviation between them
decreased, the PID controller reduced the actual NH3/NOx molar ratio; thereby, the amount of NH3

injection was reduced gradually. After the system was stabilized, the outlet NOx emission, the NH3

injection flow rate and the NH3/NOx molar ratio were stable at 37 mg/m3(set value), 60 kg/h and 0.8857,
which were close to the average value of field data. So the demand amount of NH3 injection y′NH3
corresponding to the set value of outlet NOx emission was 59.6 kg/h, and this method could accurately
simulate the fixed outlet NOx control mode. The control process lasted for nearly 1000 s before the
system became stable. Hence, the existing system could not meet real-time control because of the long
adjustment time.

The predicted value of the TD-KPLS model was taken as the output of NIC in each model update.
The input variables included the deviation between the corrected predicted NOx emission value and the
set value of outlet NOx emission, inlet flue gas temperature and inlet NOx concentration. The output
variable was the amount of NH3 injection compensation. The output of the NIC is shown in Figure 14.
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Figure 14. The output of NH3 injection compensator (NIC).

Figure 14 shows that the output of the NIC was consistent with the trend of the expected value of
NH3 injection compensation. Therefore, the predictive accuracy of TD-KPLS was high. In addition,
the predicted value was a mostly negative value indicating that the amount of NH3 injection was
reduced by 11% after adding the NIC. Assuming that the price of NH3 water was about 3000 RMB
per ton, the data used in this paper was taken as an example. After the application of the NIC, the cost
of de-NOx could be saved by 531.2 RMB per day.

Because the SCR de-NOx system had large inertia and had a large delay in NOx analysis; hence,
the following analysis started from the 100th point. The control effect of outlet NOx emission is shown
in Figure 15.
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Figure 15. The control effect of outlet NOx emission.

Figure 15 shows the control effect of the existing controller was not ideal, and the outlet NOx

emission produced drastic fluctuation when the load changes. For example, the outlet NOx emission
exceeded the national NOx emission standard (50 mg/m3) at the 500, 1400 and 1800 points. In contrast,
after the NIC was added, the outlet NOx emission whose fluctuation ranged in ±5 mg/m3 was
stable near the set value. Therefore, the outlet NOx emission was far lower than the national NOx

emission standard.
It can be seen from Figure 16 that the minimum value of the de-NOx efficiency after adding the

NIC (76.31%) was higher than the minimum value of the de-NOx efficiency of the existing controller
(73.79%). The average de-NOx efficiency was 80.12% by using the existing controller, and the average
de-NOx efficiency was 80.15% after adding the NIC. This indicated that the de-NOx efficiency was
basically unchanged after adding the NIC.
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Figure 16. The de-NOx efficiency of the existing controller and the de-NOx efficiency after NH3

injection compensation.

In order to calculate the NH3 escape further, the following formula was introduced.

p(t) =
(Wm(t) −Wc(t)) × 106

17×Vgas(t)
(40)

Here, t represents the sampling time; Wm is the measured NH3 injection flow rate, kg/h; Wc is the
NH3 injection consumption, kg/h; Vgas is the inlet flue gas flow rate, m3/h; p is the NH3 escape, µg/m3.

Because the compensation amount of NH3 injection in this paper was negative value mostly,
the consumption of NH3 injection was regarded unchanged basically. Figure 17 was the comparison
between the NH3 escape of the existing controller and the NH3 escape after NH3 injection compensation.
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Figure 17. The NH3 escape of the existing controller and the NH3 escape after NH3

injection compensation.

In Figure 17, after the NIC was added, although the average of de-NOx efficiency did not change,
the NH3 escape was reduced by 39% after NH3 injection compensation.

Actually, in order to avoid actuator saturation, the NH3 injection valve opening was restrained by
conditions (23) and (24) in the NH3 injection control. The NH3 valve opening of the existing controller
and NH3 valve opening after NH3 injection compensation are shown in Figure 18.

Due to the lag of NOx analysis, the NH3 control valve was prevented from being over-opened or
over-closed. Therefore, when the NH3 control valve was in automatic mode, the NH3 valve opening
was limited from UVmin = 20% to UVmax = 50%. In Figure 18, the NH3 valve opening of the existing
controller reached 50% from 1300 points to 1500 points, which indicated that the actuator reached
saturation in automatic control. When the NIC was used, the average of the NH3 valve opening was
reduced, thereby actuator saturation was avoided.
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Figure 18. The NH3 valve opening of the existing controller and the NH3 valve opening after NH3

injection compensation.

The upper limitation uVmax and the lower limitation uVmin of the increment of NH3 valve opening
were 2% and −2%, respectively. Figure 19 shows that the increment of NH3 valve opening after NH3

injection compensation was within limitation. Therefore, the NH3 valve was protected, and the control
accuracy was improved.
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Figure 19. The increment of NH3 valve opening after NH3 injection compensation.

In all, the proposed control strategy had a good control effect. Through the NH3 injection was
adjusted by NIC continually, the controller could decrease the NH3 injection and decrease the NH3

escape as much as possible while ensuring that the high de-NOx efficiency and NOx emission meets the
national NOx emission standard. Therefore, the operation cost was reduced, and secondary pollution
caused by the incomplete reaction of NH3 was avoided.

6. Conclusions

A dynamic KPLS model incorporated with variable selection and delay estimation was proposed
for the prediction of outlet NOx emission in advance. The KNN_MI method was used to estimate the
time-delay, and the effect of historical data lengths on the KNN_MI value was considered. Bidirectional
search, which is based on the change rate of KNN_MI (KNN_MI_CR), was used for variable selection,
which avoids using a single evaluation strategy and considers the effect of high-dimensional KNN_MI.
Finally, the DTD update method and feedback correction strategy are proposed, so the fixed parameter
is used in the final model. Therefore, the final model could be identified offline by using field data and
have high predictive accuracy.

The proposed control system includes the main controller and the correction controller. The main
controller is the existing PID controller. The combination of NIC and the outlet NOx emission model is
used as the correction controller. According to the results of the field data experiment, the proposed
control strategy has several findings as follows:
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(1) In the aspect of the control effect, the outlet NOx emission meets the national NOx emission
standard, whose fluctuation range in ±5 mg/m3 is stable near the set value, and the system
maintains high de-NOx efficiency; the NH3 escape is reduced by 39% after NIC.

(2) Compared with the conventional PID control, the proposed control strategy not only protects the
NH3 injection valve but also reduces the operation cost because of the reduction of NH3 injection;

(3) The reduction of NH3 escape avoids operating accidents and secondary pollution.

The potential disadvantage of the proposed control strategy is that the calculation of the demand
amount of NH3 injection y′NH3

at the current operating state involves a dynamic characteristic test.
For different operating states, y′NH3

will be different. If the operating state changes frequently, it will
not be easy to determine y′NH3

accurately.
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