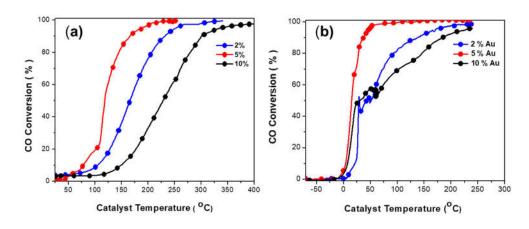


MDPI

Article Physical and Chemical Synthesis of Au/CeO₂ Nanoparticle Catalysts for Room Temperature CO


Khaled Mohammad Saoud 1,* and Mohamed Samy El-Shall ²

Oxidation: A Comparative Study

¹ Liberal Arts and Sciences Program, Virginia Commonwealth University in Qatar, Doha, Qatar; s2kmsaou@vcu.edu.

² Department of Chemistry, Virginia Commonwealth University. Richmond, VA 23284-2006, USA; mselshal@vcu.edu.

* Correspondence: Khaled M. Saoud; s2kmsaou@vcu.edu, Tel.: +974 66037810

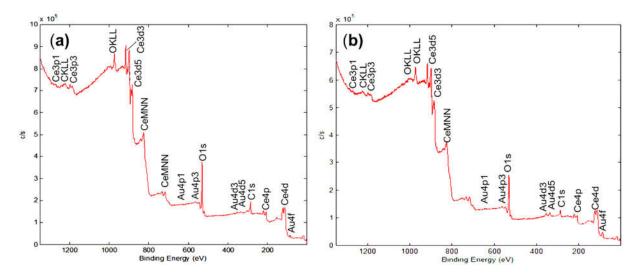


Figure S1. Catalytic activities of fresh Au/CeO₂ catalyst prepared by (**a**) LVCC and (**b**) DP methods as a function of Au loading.

Sample	Ce	0	С	Au
Au/CeO ₂ (LVCC)	28.2	45.54	26.0	0.3
Au/CeO ₂ (DP)	31.6	47.2	20.0	1.1

Table S1. Concentration ⁺ of Elements Detected (in Atom%).

+ Concentrations are normalized to 100%. Note: XPS does not detect hydrogen or helium. "nd" indicates none detected above XPS detection limit of ~0.1 atom%. * Carbon concentrations were overestimated due to the overlap of Ce 4s with carbon 1s.

Figure S2. Survey scan of (**a**) 5% Au/CeO₂ (LVCC). Various amounts of the following species: cerium as Ce⁴⁺, oxygen, carbon as {C–(C, H), C–O, C=O, O–C=O}, and traces of gold as Au. (**b**) 5% Au/CeO₂ (DP). Various amounts of the following species: cerium as Ce⁴⁺, oxygen, carbon as {C–(C, H), C–O, C=O, O–C=O}, and traces of gold as Au.