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Abstract: Zeolites are widely used acid catalysts in research and in industrial processes. The 

catalytic performance of these materials is affected by the nature and concentration of Brønsted and 

Lewis acid sites. The balance between these types of active sites—and thus the activity and 

selectivity of the zeolite—can be altered by the introduction of metal species, e.g., by ion exchange. 

Although the acidic properties of zeolites are routinely characterized by bulk-scale techniques, this 

ensemble-averaged approach neglects the local variations in the material. Insights into the 

distribution of active sites at the single-particle level are thus critical to better understand the impact 

of post-synthetic modifications on the zeolite acidity. In this contribution, we spatially resolve 

Brønsted and Lewis acid sites in protonated and Zn-exchanged ZSM-5 crystals. To this end, the 

vibrational modes of pyridine chemisorbed on active sites are mapped with stimulated Raman 

scattering (SRS) microscopy. The SRS images reveal sharp inter- and intra-particle heterogeneities 

in the distribution of Lewis acid sites introduced upon ion exchange, ascribed to local variations in 

the Al content. Besides assessing the impact of Zn exchange on the active site distribution in ZSM-

5 crystals, this approach enables uniquely to map the distribution of Lewis acid sites in catalysts at 

the single-particle level. 
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1. Introduction 

The petrochemical industry relies on heterogeneous catalysts to optimize the conversion and 

selectivity of chemical processes [1]. The nature, concentration, and distribution of active sites are 

critical parameters to rationalize the catalytic activity of solid acid catalysts. The active sites of these 

materials consist of Brønsted and Lewis acid sites, i.e., proton donors and electron acceptors. Besides 

Brønsted acid sites, acidic heterogeneous catalysts also heavily rely on Lewis acidity [2–4]. 

In zeolites, Brønsted acidity originates from charge-balancing protons, whereas extra-

framework Al-species and framework Al defects give rise to Lewis acid sites. The Lewis acidity of 

zeolites can be enhanced by introducing extra-framework cationic species such as transition metal 

complexes [5]. These modifications enable fine-tuning of the acidic properties of zeolites and thus of 

their catalytic performance. Among these modified zeolites, Zn-substituted ZSM-5 has attracted 

significant interest in the field of catalysis over the years, as the strong Lewis acidity arising from Zn 

species greatly enhances the selectivity for aromatic products in the conversion of light alkanes to 

hydrocarbons [6–11]. 

The additional species introduced in catalytic materials through post-synthetic modifications 

can display heterogeneities in their local properties (e.g., geometry, electronic state) [12]. The state of 
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these species and their local environment can be accurately probed with spectroscopic tools such as 

solid-state nuclear magnetic resonance (SS-NMR), electron paramagnetic resonance (EPR) and X-ray 

absorption spectroscopy [13–15]. For instance, extended X-ray absorption fine structure (EXAFS) 

enables distinguishing Zn species incorporated in ZSM-5 as isolated Zn2+ and ZnO clusters [11,16]. In 

addition to EXAFS, Biscardi et al. also used temperature-programmed reduction to distinguish these 

two Zn species and gain insights into the structure of isolated Zn2+ in ZSM-5 [11]. 

Besides heterogeneities in their local environment, the additional metal species can also be non-

uniformly introduced in individual catalyst particles, irrespective of the size of the catalyst and the 

method used [17]. Spatially resolved characterization tools are thus required to probe the distribution 

of these species. Therefore, recent decades have seen a significant endeavor to develop microscopy 

methodologies to resolve the spatial heterogeneities of these materials at the single-particle level [18–

21]. For instance, the characterization of metal-impregnated Al2O3 pellets with 2D MRI imaging and 

tomographic energy-dispersive diffraction imaging revealed egg-shell and egg-yolk patterns for the 

distribution of metal species [17,22]. Furthermore, optical microscopic characterization of Ag-loaded 

SiO2 granules revealed sharp interparticle variations in the silver content [23,24]. Besides large 

catalyst bodies, inhomogeneities have also been observed in sub-micrometer zeolite materials. The 

phosphatation of ZSM-5 was investigated at the single-particle level with scanning transmission X-

ray microscopy, demonstrating the inhomogeneous distribution of phosphorus moieties in the 

intergrown zeolite clusters [25]. Likewise, significant differences in the nanoparticle content of a 

Pt/zeolite Y catalyst were observed with electron tomography, with an average Pt loading of the 

crystals ranging from 0.2 wt. % to 7.1 wt. % [26]. On the other hand, elemental mapping of Zn-loaded 

ZSM-5 and silicalite-1 with energy dispersive X-ray spectroscopy (EDX) revealed a fairly 

homogeneous distribution of the metal species in zeolite particles [27]. 

Nevertheless, no studies investigated the impact of the post-synthetic modifications on the 

actual spatial distribution of Lewis acid sites at the single-particle level so far. Indeed, microscopic 

investigations of the active site distribution in catalyst particles have been mainly focused on 

Brønsted acidity [17,18]. This gap in imaging studies dedicated to the Lewis acidity is due to the lack 

of methodologies able to resolve the location of these active sites selectively. Fluorescence microscopy 

allows resolving the active site distribution in catalyst particles using the oligomerization of 

fluorogenic probes such as furfuryl alcohol and styrene derivates.[28–30] However, these reactions 

occur mainly on Brønsted acid sites, or simultaneously on Brønsted and Lewis acid sites [31]. 

Alternatively, the interactions of a probe molecule with both types of active sites can be distinguished 

using its vibrational modes [32]. Although this approach was used to map the active sites in zeolite 

crystals with infrared imaging and stimulated Raman scattering (SRS) microscopy, the reported 

images are exclusively focused on Brønsted acidity [33,34]. 

In this work, the acidic properties of zinc-exchanged ZSM-5 zeolites were investigated at the 

single-particle level. More specifically, we map the distribution of Brønsted and Lewis acid sites in 

single ZSM-5 crystals at different exchange times with SRS microscopy, using pyridine as a probe 

molecule 

2. Results 

Three ZSM-5 samples were used in this study, starting from a commercial zeolite in the 

ammonium form (Si/Al = 20). The zeolite in its protonated form (Zn000) was prepared by calcination 

of the parent sample. Zn-containing zeolites were prepared by ion-exchanged of the parent sample 

with zinc nitrate for 30 min (Zn030) and 6 h (Zn600) and subsequent calcination. The exact Zn content 

of the three samples was determined by X-ray fluorescence (XRF) (Table 1). The texture of the 

materials was characterized by nitrogen physisorption (Figure A1). The surface area and the pore 

volume of the protonated and zinc-exchanged samples indicate that the incorporation of Zn does not 

significantly affect the porous properties of the zeolite (Table S1). Furthermore, all ZSM-5 zeolites 

exhibit the characteristic X-ray diffraction(XRD) pattern of the MFI framework (Figure S2a). The 

introduction of Zn species does not affect the framework structure as no significant loss in the 

intensity of the diffraction peaks is observed upon ion exchange. Furthermore, the characteristic 
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reflections related to ZnO are not distinguishable in the XRD pattern of the exchanged materials, 

suggesting that the Zn species are highly dispersed (Figure S2b). The absence of ZnO clusters is also 

supported by the diffuse reflectance spectra of the exchanged zeolites as no new absorption band is 

observed in the 360–380 nm region (Figure S3). Therefore, zinc species in Zn030 and Zn600 are 

considered to be atomically dispersed inside the ZSM-5 framework as Zn2+ species at cation-exchange 

sites. This is in line with previous studies on the nature of Zn in ion-exchanged ZSM-5 zeolites on 

which the preparation method was based [9,11,35]. However, the coordination of Zn species to 

framework oxygen in the vicinity of framework aluminum (denoted Zeo hereafter) is subject to 

debate. Indeed, Berndt et al. concluded that Zn2+ is incorporated in ZSM-5 as Zeo[Zn(OH)], whereas 

Biscardi and coworkers observed Zeo2Zn species resulting from the coupling of Zeo[Zn(OH)] with an 

acidic surface hydroxyl group nearby [11], [35]. 

Table 1. Zinc loading measured by XRF analysis and concentration of Brønsted and Lewis acid sites 

determined from Fourier-transformed infrared spectroscopy (FTIR) using pyridine as a probe 

molecule. 

 Zn content (wt. %) 
CBronsted 

(μmol/g) 

CLewis 

(μmol/g) 

Zn000 0 306 21 

Zn030 1.04 209 165 

Zn600 1.65 158 245 

 

The exchange of acid protons by Zn2+ species affects the nature and concentration of acid sites in 

zeolites. The impact of zinc exchange on the acidic properties of ZSM-5 materials was investigated 

with Fourier transformed infrared (FTIR) spectroscopy by probing the in-plane CH and NH bending 

vibrational modes of chemisorbed pyridine. Figure 1a shows the FTIR spectra of pyridine 

chemisorbed in the protonated and Zn-exchanged ZSM-5 zeolites after evacuation at 150 °C. The 

presence of Brønsted and Lewis acid sites is demonstrated by absorption bands at 1544 and 1454 cm−1, 

respectively.[9] The concentration of both types of acid sites was quantified using the area of the 

corresponding bands (Table 1). The concentration of Lewis acid sites increases with the Zn2+ ion 

exchange time, while the opposite trend is observed for Brønsted acid sites. Interestingly, the 

quantitative analysis of the FTIR spectra shows that the increase in Lewis acid sites exceeds the loss 

of Brønsted acid sites. Several authors have reported similar observations—especially for Zn 

incorporation in ZSM-5 by ion exchange—although the origin of this phenomenon remains unclear 

so far [9,36–38] Pinialla-Herrero et al. suggested that Zn species interact with more than one pyridine 

molecule, leading to an apparent excess of Lewis acid sites.[39] In contrast, Valecillos et al. 

rationalized this uneven variation by the use of an inaccurate molar extinction coefficient for the new 

Lewis acid sites arising from the Zn2+ species [40]. In any case, it is clear from the FTIR data that new 

Lewis acid sites appear at the expense of Brønsted acid sites upon the exchange of protons by Zn 

species. However, these data do not provide information about the location of active sites in the 

zeolite crystals. 

In a similar way to FTIR spectroscopy, the interactions of pyridine with different types of acid 

sites can be distinguished using the strong resonances of the ring breathing modes (900-1100 cm−1) in 

Raman spectroscopy [41–44]. The influence of different types of interactions on the ring breathing 

modes of pyridine can be illustrated with the Raman spectra of the molecule in different solutions 

(Figure S4). Interactions with water, HCl, and ZnCl2 affect the breathing mode ν1 (991 cm−1) and the 

in-plane deformation mode ν12 (1030 cm−1) of pyridine. More specifically, in solution, the ν1 mode is 

shifted at increasingly higher frequencies upon hydrogen-bonding with water (1002 cm−1), 

protonation by a Brønsted acid (1010 cm−1), and formation of a complex with a Lewis acid (1019 cm−1). 

These measurable shifts, originating from changes in geometry and the direct effect of the ligand on 

the force constant, can thus be exploited to distinguish the different interactions of pyridine with its 

environment [45,46]. 
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The protonated and Zn-containing ZSM-5 zeolites were loaded with liquid pyridine and 

characterized with Raman spectroscopy after evacuation at 150 °C to remove the physisorbed species 

(Figure 1b). The Raman spectrum of Zn000 displays one main band at 1006 cm−1 assigned to the ν1 

mode of pyridinium cation formed at Brønsted acid sites (called pyridinium cation hereafter) and a 

broad feature centered around 1023 cm−1 consisting of the overlap of the ν12 mode of the pyridinium 

cation and the ν1 mode of pyridine complexed with Lewis acid sites (called complexed pyridine 

hereafter). The intensity of the band at 1006 cm-1 progressively decreases upon the introduction of 

zinc species in ZSM-5 zeolites, whereas an increase is observed in the Raman signal at 1023 cm−1. This 

increase is ascribed to the higher concentration of Lewis acid sites in the Zn-exchanged zeolites, 

which give rise to a more important contribution of the ν1 mode of complexed pyridine to the Raman 

spectrum. These results are qualitatively in agreement with FTIR measurements. The differences in 

Raman shift with the reference solution measurements are attributed to the local environment created 

by the zeolite framework. The Raman spectrum of chemisorbed pyridine provides thus insights into 

the increase in the zinc content of ion-exchanged ZSM-5 materials. 

 

Figure 1. (a) FTIR and (b) spontaneous Raman spectra of pyridine chemisorbed in ZSM-5 zeolites 

after desorption at 150 °C under vacuum (blue: Zn000, green: Zn030, red: Zn600). The FTIR and 

Raman spectra were acquired at 150 °C under vacuum and in ambient conditions, respectively. 

The distribution of acid sites in single ZSM-5 crystals can be visualized by spatially resolving 

the Raman signal of chemisorbed pyridinium cation in the ring breathing region. Figure 2a shows 

the SRS image of Zn000 crystals using the Raman signal at 1006 cm−1. Interestingly, the SRS signal of 

pyridinium cation is unevenly distributed in single Zn000 crystals. These local inhomogeneities in 

the SRS signal are explained by the presence of intergrowths in the ZSM-5 crystals (Figure 2b). Since 

SRS microscopy has an axial resolution of around 1 μm, variations in the thickness of the sample will 

affect the images acquired at a focal plane in the middle of the 1 μm-thick crystals. Besides these intra-

particle variations, the comparison of the SRS spectrum of 10 Zn000 crystals also reveals the existence 

of interparticle heterogeneities in the acidic properties of the protonated ZSM-5 zeolite (Figure S5a). 

Apparent differences are observed in the intensity Raman signal at 1006 cm−1 of the crystal-averaged 

SRS spectra, suggesting particle-to-particle variations in the average framework Al content of Zn00 

crystals (Figure S5b). On the other hand, the intensity ratio of the SRS signal at 1006 and 1023 cm−1, 

I1023/I1006, is very similar for the 10 crystals imaged, suggesting that the decrease in Brønsted acidity is 

not associated with an increase in Lewis acid site density (Table S5). In any case, the contribution of 

complexed pyridine to the SRS spectrum of pyridine adsorbed in Zn000 crystals is limited, given the 

low density of Lewis acid sites in this sample (Table 1). 
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Figure 2. (a) SRS images at 1006 cm−1 of chemisorbed pyridine in Zn000 crystals after desorption at 

150 °C under vacuum. The image was acquired in ambient conditions. (b) Scanning electron 

microscopy (SEM) image of the morphology of the crystals. 

Unlike Brønsted acidity, the distribution of Lewis acid sites cannot be directly inferred from the 

SRS image of chemisorbed pyridine at 1023 cm-1 due to the overlap of two vibrational modes. 

Nevertheless, knowing the SRS intensity ratio I1023/I1006 of the protonated ZSM-5 zeolite enables 

subtracting the contribution of pyridinium cation to the SRS spectrum at 1023 cm−1 (see details in 

Appendix A). The spatial distribution of Lewis acid sites introduced in ZSM-5 crystals upon ion 

exchange with Zn2+ can thus be visualized using the obtained SRS signal associated with complexed 

pyridine. Figure 3 shows the Brønsted and Lewis acid site density maps in protonated and Zn-

exchanged ZSM-5 crystals, as well as their morphology observed with SEM. A strong SRS signal at 

1006 cm−1 associated with pyridinium cation is observed in Zn000 crystals (Figure 3a). Please note 

that while a homogeneous distribution of chemisorbed pyridine is observed in the bottom left Zn000 

crystal, in most cases intra-particle variations are observed (Figure S5b). In contrast, the density of 

Lewis acidity obtained after removing the pyridinium cation contribution from the 1023 cm−1 signal 

is very low. A measurable increase in the SRS signal from complexed pyridine is observed in crystals 

exchanged with zinc nitrate for 30 min (Figure 3b,c). However, the introduction of Zn2+ species at 

cation-exchange sites in the ZSM-5 framework is not uniform. Moreover, no clear correlation between 

the morphological features (such as intergrowths) and the SRS signal corresponding to Lewis acidity 

are observed. Extending the exchange time to 6 h further increases Lewis acid site density at the 

expense of Brønsted acidity (Figure 3d,e). However, counterintuitively, the spatial distribution of 

Zn2+ species is not progressively homogenized with prolonged exchange time. On the contrary, the 

local heterogeneities are even more substantial in Zn600 crystals. Indeed, SRS images reveal sharp 

differences between crystals in the density of pyridine chemisorbed to Lewis acid sites. Moreover, 

significant local differences in Lewis acidity are observed within Zn600 crystals. 

 

Figure 3. SRS mapping of (i) pyridinium cation (I1006) and (ii) complexed pyridine (I1023 – 

I1006[I1023/I1006]Zn000, see supporting information for details) and (iii) SEM image of the corresponding 

morphology for ZSM-5 crystals at different exchange time. (a) Zn000, (b,c) Zn030, and (d,e) Zn600. 
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The extent of the observed interparticle heterogeneities in Brønsted and Lewis acidity can be 

evaluated by plotting the measured amounts of both types of acid sites in individual crystals (Figure 

4). As seen in the SRS images, the concentration of Lewis acid sites in single ZSM-5 crystals increases 

and becomes more inhomogeneous with the exchange time. On the other hand, the average Brønsted 

acidity decreases and becomes more uniform between crystals (Table 2). 

 

Figure 4. Evolution of the mean SRS intensity of pyridinium cation (red) and complexed pyridine 

(blue) for single ZSM-5 crystals as a function of the Zn exchange time. The mean SRS intensity of 

Lewis acidity is offset by 5 min for clarity. 

Table 2. Mean SRS intensity of the ν1 mode of pyridine chemisorbed on Brønsted and Lewis acid 

sites. 

 Mean SRS Intensity (a.u.) 

 Zn000 Zn030 Zn600 

Brønsted 

acid sites 
0.50 ±0.09 0.38 ±0.08 0.28 ±0.04 

Lewis 

acid sites 
0.02 ±0.02 0.09 ±0.03 0.19 ±0.06 

 

The relationship between the Lewis acidity and the total acid site density in Zn600 crystals was 

assessed to rationalize the observed variability in the mean SRS signal. Figure 5a shows the evolution 

of the mean SRS signal of complexed pyridine with the mean SRS signal of both complexed pyridine 

and pyridinium cation. A positive correlation is observed, as the SRS signal associated with Lewis 

acid sites increases linearly with the total acid site density. Since the latter is related to the Al content 

of Zn600 crystals, this suggests that a higher amount of Lewis acid sites are introduced in Al-rich 

ZSM-5 crystals and crystal regions upon Zn exchange. Interparticle variations in the mean SRS signal 

of complexed pyridine thus arise from differences in the average Al content in the parent crystals. 

Likewise, the observed intra-particle heterogeneities in the Lewis acid site density are therefore 

ascribed to local variations in the Al content in ZSM-5 crystals. 
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Figure 5. (a) Evolution of the SRS signal of complexed pyridine as a function of the total SRS signal 

(pyridinium cation and complexed pyridine) in Zn600 crystals. (b) Evolution of the Zn loading 

(Zn/(Si+Al) ratio) as a function of the Al content (Al/(Si+Al) ratio) in Zn600 crystals in Zn600 crystals, 

quantified by point EDX measurements. 

The correlation between the Lewis acid site density and the total acidity implies that the local Al 

content of ZSM-5 crystals dictates the Zn loading after ion exchange. To further explore this 

relationship, the elemental composition of Zn600 crystals was determined by point-measurements of 

their EDX spectrum (Figure S6). The atomic ratios of Si, Al, O, and Zn were quantified by analyzing 

point EDX spectra acquired on different crystals. Using the same approach as van der Wal et al., the 

Al and Zn content of Zn600 crystals are presented relative to the Si content [47]. Figure 5 shows that 

the amount of zinc incorporated in Zn600 crystals increases linearly with the compositional ratio of 

Al/(Al+Si). This supports the hypothesis that Zn exchange occurs preferentially in ZSM-5 crystals 

with a higher Al content. Thus, the observed inter- and intra-particle heterogeneities in Lewis acid 

site density originate from local variations in the Al content in the ZSM-5 crystals. These observations 

are in line with previous scanning transmission electron microscopy (STEM) characterization of a 

Pt/zeolite Y bifunctional catalyst [26,47]. However, in this case, SRS microscopy and SEM-EDX were 

used to characterize Zn2+ species at cation-exchange sites in the ZSM-5 framework instead of 

nanoparticles. 

3. Conclusions 

In conclusion, the spatial distribution of Lewis acid sites was resolved at the single-particle level 

for the first time with stimulated Raman scattering microscopy, using pyridine as a probe molecule. 

Lewis acidity introduced in ZSM-5 crystals by Zn2+ ion exchange was mapped with SRS microscopy 

using ring breathing modes of chemisorbed pyridine. The SRS images of protonated ZSM-5 zeolite 

reveal the inhomogeneous distribution of Brønsted acid sites in the few microns-sized crystals. 

Further analysis of the ion-exchanged materials highlights the inhomogeneous distribution of Lewis 

acid sites in ZSM-5 crystals upon the introduction of Zn2+ species. The significant intra- and 

interparticle variability in acidic properties after ion exchange are linked to local variations in the Al 

content of parent crystals. These results highlight the influence of the crystal composition on the 

introduction of additional Lewis acid sites in ZSM-5 by ion exchange. These insights can be exploited 

in the rational preparation of metal-exchanged zeolite with optimized active site distribution. Thus, 

spatially resolving chemisorbed probe molecules with SRS microscopy is a powerful tool, 

complementary to bulk-scale techniques, to unravel the acidic properties of heterogeneous catalysts. 

4. Materials and Methods 

4.1. Material Preparation 

NH4-ZSM-5 zeolite (NH4CZP 55) was provided by Clariant (Bruckmühl, Germany). The crystals 

were used as such for the preparation of protonated and Zn-exchanged ZSM-5. The protonated 
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zeolite Zn000 was obtained by calcination of the parent sample at 450 °C (5 °C/min, 6 h). The Zn-

exchanged zeolites Zn030 and Zn600 were prepared based on a previously reported protocol.[9] NH4-

ZSM-5 powder was stirred in an aqueous solution of Zn(NO3)2 (0.1 M, mliquid/msolid = 40) at 80 °C for 

30 min and 6 h, respectively. After filtration, the samples were dried at 80 °C overnight and calcined 

at 450 °C (5 °C/min, 6 h). 

4.2. Bulk-Scale Characterization 

The elemental composition of the samples was determined by X-ray fluorescence analysis 

(Bruker S8 TIGER 4k). 

Nitrogen physisorption measurements were performed on a Micromeritics 3Flex surface 

analyzer and carried out at −196 °C. Before the measurements, the samples (50–100 mg) were 

outgassed for 10 h at 180 °C and 10−1 mbar vacuum. 

Powder X-ray diffraction data was recorded on a Malvern PANalytical Empyrean diffractometer 

equipped with a PIXcel3D solid-state detector using a Cu anode (Cu Kα1: 1.5406 Å; Cu Kα2: 1.5444 Å). 

Samples were loaded onto a 96-well sample holder, and patterns were recorded at room temperature 

in transmission geometry (Debye-Scherrer; θ-θ scan) within a 1.3°–45° 2θ range using a step size of 

0.013°. 

IR experiments were performed on a Nicolet 6700 spectrometer equipped with a DTGS detector 

(128 scans; resolution of 2 cm−1). Self-supporting wafers were pretreated in vacuum at 400 °C K for 1 

h (5 °C/min) before measurements. The acidity of the catalysts was analyzed using pyridine as a 

probe. After pretreatment at 400 K, the samples were saturated with about 25–28 mbar of pyridine 

vapor at 50 °C for 20 min. The evacuated samples containing the adsorbed pyridine were heated up 

to 150 °C, kept for 20 min, and then IR spectra were recorded. The integrated molar extinction 

coefficients used in acidity quantification were 1.67 cm−1μmol-1 and 2.22 cm−1μmol−1 for the 1545cm−1 

band characteristic for Brønsted acid sites and 1455 cm-1 band characteristic for Lewis acid sites, 

respectively (according to the data reported in C. A. Emeis, J. Catal., 1993, 141, 347–354). 

UV-visible diffuse reflectance spectra were recorded on a Perkin Elmer Lambda 950 UV-VIS-

NIR spectrophotometer with the 150 mm integrating sphere accessory in the wavelength range 

between 250 nm to 600 nm. 

4.3. Spontaneous Raman Microspectroscopy and SRS Imaging—Sample Preparation 

Zeolite powder was placed in a glass vial and then calcined an ashing furnace (Nabertherm LVT 

3/11) to remove any impurities, using a three-step temperature program (80° for 1h, 120° for 1 h,450 

°C for 50 h) with a temperature ramp of 1 °C/min. The sample was removed from the oven at 450 °C 

and immediately placed in a desiccator under nitrogen. Once cooled down to room temperature, the 

sample was loaded with liquid pyridine. The vial was sealed, and the sample left to equilibrate for 

24 h. After equilibration, the content of the vial was evacuated at 150 °C for two hours to remove 

liquid as well as physisorbed pyridine. The powder recovered was then disposed on a #1 glass 

coverslip before spontaneous and stimulated Raman scattering experiments in ambient conditions. 

4.4. Spontaneous Raman Microspectroscopy 

The Raman spectrum pyridine chemisorbed in Meso-MOR crystals was acquired with a confocal 

Raman microscope (MonoVista CRS+, S&I Instruments). The 532 nm laser line (Cobolt Samba) was 

used as the excitation sourced, and the laser beam was focused on the sample with a 100 x 0.9 NA 

objective lens (MPLN100X, Olympus). After being collected by the same objective lens, the backward 

Raman scattering signal was passed through a 100-μm confocal pinhole and sent into a 

monochromator (Princeton Instruments) equipped with a 1200 grooves/nm grating. The signal was 

then recorded with a charge-coupled device (CCD) camera (Newton 920, Andor). The spectrum of 

the sample was obtained by averaging three acquisitions of 10 s. The Raman bands were fitted with 

Lorentzian curves using the MultiPeak Fit 2 tool of Igor Pro. 
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4.5. Stimulated Raman Scattering Microscopy 

The light used in the SRS microscope consist of the 1064 nm, 7 ps and 80 MHz repetition rate 

output of a Nd:YVO4 laser (picoTRAIN, High-Q) and an optical parametric oscillator (OPO) (Levante 

Emerald, APE-Berlin) synchronously pumped by the 532 nm output of the of Nd:YVO4 laser. The 

OPO output was tuned in the 957–963 nm window to probe the ring breathing modes of pyridine. 

The amplitude of the 1064 nm laser was modulated at 9.7 MHz using a Pockell Cell (model 360-80, 

ConOptics) and a function generator (model 29, Waveteck) before spatial and temporal overlap with 

the OPO output. The SRS images were acquired in transmission on an upright optical microscope 

(BX61WI/FV1000, Olympus) using a water immersion 25 x 1.05 NA objective (XLPLAN, Olympus) 

and an oil immersion 1.4 NA condenser (U-UCD8, Olympus). Both beams had a power in focus of 45 

mW. A dichroic mirror (FF750, Semrock) was used to reflect the transmitted beams, and the 1064 nm 

beam was blocked with a bandpass filter (ChromaTechnology, CARS 890/220 m). A silicon PIN 

photodiode (S8650, Hamamatsu) on which a reverse bias of 60 V was applied was used to detect the 

stimulated Raman loss of the OPO beam. The obtained photocurrent was filtered (Mini-Circuits, BLP-

1.9), demodulated (HF2LI, Zurich Instrument) and sent to an analog-to-digital converter (FV-10-

ANALOG, Olympus) synchronized with the microscope. 

4.6. SEM—Sample Preparation 

The samples previously imaged with SRS microscopy were recovered and used as such, after 

removing the immersion water from the glass coverslip. 

4.7. Scanning Electron Microscopy 

The morphology of the crystals was observed using a scanning electron microscope (FEI Quanta 

250 FEG) with an acceleration voltage of 2 kV. 

Appendix A 

The SRS signal of chemisorbed pyridine in the 950–1050 cm−1 window arises from the ν1 and ν12 

modes. The intensity of the signal can be expressed as follow: 

I1006 = σBAS,1006cBAS + σLAS,1006cLAS (1) 

I1023 = σBAS,1023cBAS + σLAS,1023cLAS (2) 

Where cBAS  and cLAS  stand for the concentration of Brønsted and Lewis acid sites, respectively. 

Since cLAS is very low in Zn000, the intensity ratio I1023/I1006 can be expressed as: 

(
I1023

I1006

)
Zn00

=
σBAS,1023

σBAS,1006

 (3) 

The SRS intensity at 1023 cm−1can thus be expressed as: 

I1023 = (
I1023

I1006

)
Zn00

σBAS,1006cBAS + σLAS,1023cLAS (4) 

 

Therefore, the contribution of pyridine chemisorbed to Lewis acid sites can be extracted from the SRS 

spectrum, using the following expression: 

σLAS,1023cLAS =  I1023 − (
I1023

I1006

)
Zn00

I1006 (5) 

To account for variability in the Lewis acid site density in the parent crystals, the minimal I1023/I1006 ratio 

observed (0.39) was used. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/10/11/1331/s1, 

Figure S1: Nitrogen adsorption and desorption isotherms of the protonated and zinc-exchanged ZSM-5 zeolites, 
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Figure S2: XRD patterns of the protonated and zinc-exchanged ZSM-5 zeolites, Figure S3: UV-visible diffuse 

reflectance spectra of the protonated and zinc-exchanged ZSM-5 zeolites as well as nanoparticles of ZnO, Figure 

S4: Spontaneous Raman spectra of pyridine in different environments, Figure S5: SRS images and spectra of 

chemisorbed pyridine in Zn000 crystals after desorption, Table S1: Textural properties of the protonated and 
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