
  

Catalysts 2020, 10, 1320; doi:10.3390/catal10111320 www.mdpi.com/journal/catalysts 

Article 

Iron-Catalyzed Conjugate Addition of Aryl Iodides 

onto Activated Alkenes under Air in Water 

Chung-Min Huang †, Wen-Sheng Peng †, Ling-Jun Liu, Chien-Chi Wu and Fu-Yu Tsai * 

Section 3, Institute of Organic and Polymeric Materials, National Taipei University of Technology,  

1, Chung-Hsiao E. Rd., Taipei 10608, Taiwan; gn00989189@hotmail.com (C.-M.H.);  

t107519006@ntut.edu.tw (W.-S.P.); lingebubest@gmail.com (L.-J.L.); amywu0716@gmail.com (C.-C.W.) 

* Correspondence: fuyutsai@ntut.edu.tw; Tel.: +886-2-2771-2171 (ext. 2437) 

† These authors contributed equally. 

Received: 29 September 2020; Accepted: 12 November 2020; Published: 13 November 2020 

Abstract: The combination of commercially available FeCl3·6H2O with a water-soluble cationic 

2,2′-bipyridyl catalytic system was found to enable the direct conjugate addition of aryl iodides 

onto activated alkenes, such as an α,β-unsaturated ester and a ketone, in a weakly acidic aqueous 

solution. This operationally simple protocol was carried out at 80 °C under air atmosphere in a 

potassium acetate-buffered aqueous solution for 12 h in the presence of Zn dust as a reductant to 

provide the desired 1,4-adducts in good yields. 
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1. Introduction 

Transition-metal-catalyzed conjugate addition onto α,β-unsaturated carbonyl compounds for 

the formation of C–C bonds is one of the most promising and powerful methods in organic synthesis 

[1]. Conventionally, pre-formed stoichiometric organometallic compounds, such as organoboron, 

organotin, organozinc, and organosilicon (which are usually prepared from alkyl/aryl halides), are 

required as the nucleophilic reagents to couple with activated olefins under Co [2], Ni [3–7], Cu [8–

10], Ru [11], Rh [12–40], Pd [41–63], and Ir [64,65] catalysis. Recently, Pd-based [66–69] and first 

transition series catalysts, such as Co [70–77], Ni [77–80], In/Cu [81], and Cu [82–86], for the 

conjugate addition of organic halides, triflates, or tosylates onto activated alkenes have been 

well-documented. The advantage of this protocol is that the pre-formed stoichiometric 

organometallic nucleophile is not required prior to the conjugate addition [87]. Typically, the 

transition-metal-catalyzed conjugate addition of organic halides onto activated olefins is conducted 

in hydrous organic solvents, where H2O is used to facilitate the protonolysis of the carbon–metal 

bond to afford the 1,4-adducts. There are only a few reports of these reactions performing in 

aqueous media [81–86]. Hence, the challenge remains to develop efficient conjugate addition 

reactions conducted in aqueous solutions to reduce the waste of organic solvents.  

Based on the environmental and economic concerns, the use of iron—which is nontoxic and the 

cheapest transition metal—to catalyze 1,4-addition is highly desirable. Lipshutz reported that an 

Fe(II) salt can catalyze the reductive coupling of alkyl halides with either vinyl aromatics or 

heteroaromatics in an aqueous solution in the presence of a surfactant [88]. However, the 

iron-catalyzed conjugate addition of aryl halides onto activated olefins in water has not yet been 

explored. We previously found that the combination of commercially available FeCl3·6H2O with a 

water-soluble cationic 2,2′-bipyridyl ligand, L, as a catalytic system is able to catalyze the 

Sonogashira coupling of aryl iodides with terminal alkynes in water in the presence of excess Zn 

dust as a reductant [89]. Herein, we report that this iron catalytic system is capable of catalyzing the 
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conjugate addition of aryl iodides onto activated alkenes in water under an air atmosphere by an 

operationally simple procedure (Scheme 1). 

 

Scheme 1. Iron-catalyzed conjugate addition of aryl iodides onto activated alkenes. 

2. Results and Discussion 

To examine our initial idea for iron-catalyzed conjugate addition, iodobenzene 1a (1 mmol) and 

n-butyl acrylate 2a (4 mmol) were added into an FeCl3·6H2O/L aqueous solution (10 mol% in 3 mL 

H2O) in the presence of Zn dust (3 mmol) as a reductant at 80 °C for 12 h; this produced butyl 

3-phenylpropanoate, 3a, with a yield of only 22% (Table 1, Entry 1). We found that the FeCl3·6H2O/L 

aqueous solution was very acidic with a pH value of 1.8; hence, Zn may have reacted with the acid 

prior to reducing Fe(III). The addition of various amounts of potassium acetate (KOAc) to the 

aqueous phase led to the formation of a buffer solution with pH values between 5.0 and 5.8, which 

further increased the 1,4-adduct yields (Table 1, Entries 2–4). A more effective outcome was achieved 

when 2 mmol KOAc was added to the aqueous solution (Table 1, Entry 3). Other, stronger inorganic 

bases were also screened, but these basic aqueous solutions produced low yields of 3a, presumably 

due to the high hydroxide concentration that retarded the protonolysis of the C–Fe bond. This 

observation suggested that the pH control for this conjugate addition could be crucial (Table 1, 

Entries 5–7). Organic bases, such as Bu3N and iPr2NEt, are known to promote the Pd-catalyzed 

conjugate addition of aryl iodides onto α,β-unsaturated carbonyl compounds [66–68]; in our system, 

however, only a 47% yield of 3a was achieved when Bu3N was used (Table 1, Entry 8). A higher 

concentration of n-butyl acrylate, 2a, was necessary to provide higher product yields (Table 1, 

Entries 3, 9, and 10), which was also reported for the Ni-catalyzed reaction [78]. For the loading 

amount of Zn, we observed that 3 equivalents of Zn against 1a resulted in the highest product yield 

of 3a (Table 1, Entries 3 and 11–13). In addition, 99.99% pure FeCl3 was used to verify that this 

conjugate addition reaction was catalyzed by iron (Table 1, Entry 14) [90]. Without the addition of L, 

FeCl3·6H2O could not catalyze this conjugate addition, leading to the recovery of 86% of 1a (Table 1, 

Entry 15). Furthermore, the replacement of L by neutral 2,2′-bipyridine gave rise to an inferior yield 

of 3a (Table 1, Entry 16). These results revealed that the water-soluble ligand in the reaction was 

indispensable. Similarly, no 3a was formed when the catalytic system was left out of the reaction 

(Table 1, Entry 17). Finally, a scaled-up reaction was performed employing 5 mmol of 1a to give 3a in 

75% yield (Table 1, Entry 18). Unfortunately, an aryl bromide, such as bromobenzene, did not 

participate in this 1,4 addition; hence, bromobenzene remained intact (Table 1, Entry 19).  
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Table 1. Iron-catalyzed conjugate addition of iodobenzene (1a) onto n-butyl acrylate (2a).a 

Entry 2a (mmol) Zn (mmol) Base (mmol) pH Yield (%) b 

1 4 3 -- 1.8 22 

2 4 3 KOAc (1) 5.0 74 

3 4 3 KOAc (2) 5.5 85 

4 4 3 KOAc (3) 5.8 80 

5 4 3 K2CO3 (2) 11.5 40 

6 4 3 K3PO4 (2) 13.5 35 

7 4 3 KOH (2) 15.4 23 

8 4 3 Bu3N (2) 6.8 47 

9 3 3 KOAc (2)  77 

10 2 3 KOAc (2)  52 

11 4 2.5 KOAc (2)  74 

12 4 2 KOAc (2)  61 

13 4 0 KOAc (2)  0 

14 c 4 3 KOAc (2)  86 

15 d 4 3 KOAc (2)  0 

16 e 4 3 KOAc (2)  12 

17 f 4 3 KOAc (2)  0 

18 g 20 15 KOAc (10)  75 

19 h 4 3 KOAc (2)  0 
a Reaction conditions: 1a (1 mmol), 2a, Zn, base, FeCl3·6H2O/L (10 mol%), and H2O (3 mL) at 80 °C for 

12 h. b Isolated yields. c 99.99% pure FeCl3 was used. d In the absence of ligand L. e Neutral 

2,2′-bipyridine was used as the ligand. f In the absence of FeCl3·6H2O/L. g 5 mmol of 1a was used. h 

Iodobenzene 1a was replaced by bromobenzene. 

Since the reaction conditions had been optimized, a variety of aryl iodides (1) were further 

employed to evaluate the conjugate addition with 2a under the conditions listed in Table 1, Entry 3, 

and the results are described in Table 2. A weakly electron-donating methyl group at the para 

position underwent a smooth reaction to produce 3b with a 74% yield (Table 2, Entry 1). However, 

this conjugate addition reaction did not proceed efficiently when a strong electron-donating group 

was added (Table 2, Entry 2). The low yield of 3c could be attributed to the methoxy group at the 

para position that decelerated the oxidative addition rate. Sterically congested aryl iodides, such as 

1d and 1e, only slightly affected the reaction, producing 70% and 72% yields of 3d and 3e, 

respectively (Table 2, Entries 3 and 4). 3-Substituted aryl and 1-naphthyl iodides, 1f–1i, can also 

participate in this reaction, which produced the corresponding 1,4-adducts with yields between 75% 

and 79% (Table 2, Entries 5–8). For the electron-withdrawing groups 1j and 1k, moderate product 

yields were recorded (Table 2, Entries 9 and 10). Because Zn was prone to insertion into the carbon–

iodine bond in the presence of aryl iodides bearing an electron-withdrawing group at the para 

position, the formation of ArZnI was dominant when 1j and 1k were applied. Though arylzinc 

iodides could be temporarily stabilized by a certain surfactant in water [91], in our cases with 1j and 

1k, the swift protonolysis of the moisture-sensitive arylzinc iodides in weakly-acidic hot water 

resulted in the formation of the deiodinated by-products acetophenone and chlorobenzene, 

respectively [72,89]. The fast hydrolysis of ArZnX was further demonstrated using 

3,5-dimethylphenylzinc chloride instead of using the iodide analogue, which gave rise to only 

m-xylene under the reaction conditions of Entry 7 in Table 2. The heteroaromatic 2-iodothiophene, 

1l, failed to provide the desired conjugate adduct, resulting in the recovery of 1l (Table 2, Entry 11). 

A similar outcome was also observed in the Pd nanoparticle-catalyzed 1,4-addition reaction [68]. 
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Table 2. Iron-catalyzed conjugate addition of aryl iodides (1) onto n-butyl acrylate (2a).a. 

Entry Aryl Iodide Product Yield (%) b 

1 
I  1b 

OBu

O  3b 

74 

2 
I

MeO

 1c 

MeO

OBu

O  3c 

44 

3 
I  1d 

OBu

O  3d 

70 

4 
I

OMe

 1e 
OBu

O

OMe

 3e 

72 

5 
I  1f 

OBu

O  3f 

75 

6 
IMeO  1g 

OBu

O

MeO

 3g 

79 

7 
I  1h 

OBu

O  3h 

78 

8 

I  1i 

OBu

O  3i 

75 

9 

I

O

 1j 
OBu

O

O

 3j 

40 

10 
I

Cl

 1k 

Cl

OBu

O  3k 

52 

11 
 1l 

 3l 

 0 

a Reaction conditions: 1 (1 mmol), 2a (4 mmol), Zn (3 mmol), KOAc (2 mmol), FeCl3·6H2O/L (10 

mol%), and H2O (3 mL) at 80 °C for 12 h. b Isolated yields. 

To further expand the substrate scope, other α,β-unsaturated carbonyl compounds, 2b and 2c, 

were added to this reaction (Table 3). The conjugate addition of aryl iodides onto alkenes proceeded 

smoothly, producing the desired products in yields of 70−84% (Table 3, Entries 1, 2, 4–11, and 13–

18), except for the use of 4-iodoanisole 1c (Table 3, Entries 3 and 12). In contrast to 2-substituted aryl 

iodides, the steric hindrance on activated olefins inhibited the application of 2d and 2e in the 

conjugate addition reactions (Table 3, Entries 19 and 20). 
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Table 3. Iron-catalyzed conjugate addition of aryl iodides (1) onto activated alkenes (2).a. 

Entry Aryl Iodide Alkene Product Yield (%) b 

1 1a 
2b 

 4a 
82 

2 1b 2b 
 4b 

81 

3 1c 2b 

 4c 

43 

4 1d 2b 

 4d 

84 

5 1e 2b 

 4e 

74 

6 1f 2b 
 4f 

77 

7 1g 2b 
 4g 

73 

8 1h 2b 

 4h 

77 

9 1i 2b 

 4i 

80 

10 1a 

 2c 

O

5a 

77 

11 1b 2c 
O

5b 

75 

12 1c 2c O

MeO

5c 

55 

13 1d 2c 
O

5d 

73 

14 1e 2c O

OMe

5e 

74 

15 1f 2c 
O

5f 

70 
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16 1g 2c 
O

MeO

5g 

72 

17 1h 2c O

5h 

81 

18 1i 2c O

5i 

78 

19 1a 

 2d 
 6a 

0 

20 1a 

 2e 
 7a 

0 

a Reaction conditions: 1 (1 mmol), 2 (4 mmol), Zn (3 mmol), KOAc (2 mmol), FeCl3·6H2O/L (10 mol%), 

and H2O (3 mL) at 80 °C for 12 h. b Isolated yields. 

To elucidate the reaction mechanism, the reaction conditions listed in Table 1, Entry 3 were 

performed in the presence of a 1 mmol radical scavenger, 

(2,2,6,6-tetramethylpiperidin-1-yl)oxyl—TEMPO. We found that the presence of TEMPO in the 

reaction did not suppress the conjugate addition, which still produced 3a in an identical yield to that 

in Table 1, Entry 3; the radical pathway for this conjugate addition is therefore unlikely. In addition, 

>98% deuterium at the α-carbon to the product was observed when the reaction was conducted in 

D2O (see the Supporting Information for the 1H and 13C NMR spectra). This result implied that the 

Csp3–Fe bond was hydrolyzed by H2O to release the final product in the reaction. Following the 

above results, although the radical pathway cannot be completely ruled out, a similar mechanism to 

those in first-series transition-metal-catalyzed conjugate additions of aryl/alkyl halides onto 

α,β-unsaturated carbonyl compounds has been proposed [71,72,78]. As shown in Scheme 2, Fe(III) 

was first reduced by Zn dust, followed by the oxidative addition of an aryl iodide, to deliver aryl 

iron(III) intermediate A. The coordination of an activated olefin to the Fe(III) center and a 

subsequent migratory insertion provided intermediate B. The protonolysis of B by water afforded 

the conjugated addition product along with Fe(III). Then, reduction of Fe(III) by Zn regenerated Fe(I) 

for the next catalytic cycle. 
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Scheme 2. Proposed mechanism for the conjugated addition. 

3. Materials and Methods  

3.1. General Methods 

Aryl iodides, butyl acrylates, 2-cyclohexen-1-one, Bu3N, D2O, and FeCl3·6H2O were acquired 

from Acros Organics. KOAc, K2CO3, K3PO4, and KOH were purchased from SHOWA Chemical Co. 

Ltd (Tokyo, Japan). The cationic 2,2′-bipyridyl ligand (L) was prepared according to the known 

procedure [92,93]. NMR spectra were recorded in CDCl3 on a Bruker Biospin AG 300 NMR 

spectrometer (Bruker Co., Faellanden, Switzerland) at 25 °C, where the chemical shifts (δ in ppm) 

were established with respect to CHCl3, which was used as a reference (1H NMR: CHCl3 at 7.24; 13C 

NMR: CDCl3 at 77.0). High-resolution mass spectrometry (HRMS) was performed on a JEOL 

AccuTOF GCx-plus and SHIMADZU QP2020 at the Instrument Center Service, Ministry of Science 

and Technology of Taiwan. The spectral data of all conjugate adducts can be found in the 

Supporting Information. 

3.2. Typical Procedure for the Conjugate Addition of Aryl Iodides onto Activated Olefins 

A 20 mL cylinder reactor was charged with FeCl3·6H2O (0.1 mmol) and cationic 2,2′-bipyridyl 

ligand L (0.1 mmol in 3 mL of H2O). After stirring this solution at room temperature for 30 min, 

KOAc (2.0 mmol) was then added to the wine-red solution, which stirred for an additional 5 min. 

Aryl iodide (1.0 mmol), activated alkene (4.0 mmol), and Zn dust (3.0 mmol) were added in 

sequence, and the reaction mixture was then stirred at 80 °C under air atmosphere for 12 h. After 

cooling the reaction to room temperature, 3 N HCl (2 mL) was added into the aqueous solution and 

extracted with ethyl acetate (3 × 5 mL); the combined organic phase was then dried over MgSO4. The 

solvent was removed under reduced pressure, and the residue was purified by column 

chromatography on silica gel to give the desired product. 

4. Conclusions 

In conclusion, we developed an environmentally friendly method for the conjugate addition of 

aryl iodides onto activated alkenes catalyzed by a green catalytic system in water under an air 

atmosphere. Several activated olefins, such as an α,β-unsaturated ester and a ketone, can be applied 

to form 1,4-adducts in good-to-high yields. Nontoxic and cheap iron is used as the catalyst, and 

neither organometallic reagents nor organic solvents are required in this reaction, rendering this 
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procedure sustainable. Further development of this green catalytic system for other reactions in 

water under ambient conditions is now underway in our laboratory. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/10/11/1320/s1: the 

spectral data and copies of 1H- and 13C-NMR spectra of all conjugate addition products. 
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