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Abstract: The β-aryl-δ-halo-γ-lactones are known for their antiproliferative activity towards
numerous cancer cell lines. The aim of this study was to obtain in the biotransformation
process new β-aryl-δ-hydroxy-γ-lactones and compare their activity with the antiproliferative
activity of parent compounds. The racemic cis-5-(1-iodoethyl)-4-phenyldihydrofuran-2-one as well
as separate enantiomers were transformed in fungal cultures. Among ten tested biocatalysts,
three (Absidia cylindrospora AM336, Absidia glauca AM254, and Fusarium culmorum AM10) were able
to catalyze the hydrolytic dehalogenation process. The biotransformations processes were highly
stereoselective and enantiomerically pure hydroxylactones were obtained (ee ≥ 99%). The iodo- and
hydroxylactone enantiomers were subjected to cytotoxic activity evaluation on canine leukemia and
lymphoma cell lines. The iodolactones exhibited higher biological potential towards tested cell lines
than hydroxylactones. Higher cytotoxic potential was also characteristic for (+)-(4S,5S,6R)-enantiomer
of iodolactone compared to its antipode.

Keywords: lactones; biotransformations; dehalogenation; antiproliferative activity

1. Introduction

Lactones are a group of compounds widely present in nature. Those cyclic esters are generally
produced as a plant metabolite and often exhibit interesting biological properties. Lactones can
be sourced from numerous plants used in folk medicine. Vithanolide A, from Withania somnifera,
the traditional Ayurvedic plant, is known for neurone regeneration potential [1]. Anti-malarial
artemisinin is isolated from Artemisia annua, used in folk Chinese medicine [2,3]. Anti-viral brevilin
A is sourced from medicinal herb Centipeda minima [4]. Among the naturally occurring lactones,
the special interests are put on those with cytotoxic and anticancer activity. The lactones containing
aromatic ring-like styryl lactones, lignan lactones and β-aryl-γ-lactones are often discussed in context
of drug development [5–7]. Unfortunately, one of most important aspects limiting the wider use of
naturally occurring anticancer compounds is their low concentration in natural sources. Therefore,
in numerous works, the total synthesis of those compounds is presented as well as their chemical
modifications [8,9]. This approach involves certain disadvantages such as using the harsh chemicals,
difficulties with obtaining enantiomerically pure product and hence the use of complex and expensive
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catalysts. Biotransformation processes can be interesting alternatives to traditional chemical synthesis
in the context of sourcing new biologically active compounds. Microbial transformations are considered
to be highly regio- and stereoselective, require mild reaction conditions and are more environmentally
friendly. Biotransformations are also a great tool for metabolism investigations. The fungal
transformations often serve as a model processes for mimicking the metabolic pathways occurring in
higher organisms [10,11]. The applications of biotransformation can be crucial for the determination of
metabolite structures, which are formed in small concentrations and are often further transformed
quickly into low-molecular-weight products. The use of appropriate fungal catalysts can lead to the
accumulation of metabolites and facilitate their isolation and identification. The biotransformation
processes are also important for sourcing new biologically active compounds [12–14].

In our previous study, we developed the synthetic approach to obtain β-aryl-γ-lactones containing
a halogen atom that exhibit significant antiproliferative activity towards tested cancer cell lines [15–18].
In this work we adapt the biotransformation process to the preliminary investigation of their metabolism
in fungal cultures as well as to obtain the new hydroxylactones as potential cytotoxic agents.

2. Results and Discussion

The chiral iodolactones 1a and 1b were obtained by chemoenzymatic synthesis developed to access
the β-aryl-δ-halo-γ-lactones. The absolute configurations of the stereogenic centers of the synthesized
enantiomers were determined earlier on the basis of crystallographic analysis [15]. The racemic
form of iodolactone (rac-1) exhibited cytotoxicity towards acute human leukemia (Jurkat) and canine
osteosarcoma (D17) cell lines [16]. Based on those findings, we planned to further investigate the
metabolism of iodolactone enantiomers 1a and 1b as well as determine the biological potential of the
obtained products and the chiral form of substrate.

The metabolism of halogenated organic compounds may occur in several pathways and most
of them include different types of dehalogenation reactions. The dehalogenation processes are
often one of the first steps which allow for further transformation and detoxification of xenobiotics.
Depending on the environmental conditions and type of microorganism used, different dehalogenation
processes can be involved, for example, reductive dehalogenation, dehydrohalogenation and hydrolytic
dehalogenation [19–21]. In our research, we chose different strains of fungi and the screening procedure
allowed to select the microorganism able to transform iodolactone (rac-1). In the literature, examples
of different halolactones biotransformations are presented. Those processes often lead to hydrolytic
dehalogenation products [22–24]. In the presented study, regardless of the applied biocatalyst, only one
product with different efficiency was formed. The effective biocatalysts were Absidia cylindrospora
AM336, Absidia glauca AM254 and Fusarium culmorum AM10. Other tested strains did not exhibit
the ability for substrate transformation. In order to isolate the product and determine its structure,
the biotransformation was performed on a multiplied scale. Based on the data presented in Figure 1,
the process was performed using Absidia glauca AM254, due to the highest substrate conversion.

The structure of isolated product was determined on the basis of spectroscopic data. The IR
spectrum of the product shows a strong absorption band for the hydroxyl group (3442 cm−1) and also
for a carbonyl group in the γ-lactone ring (1772 cm−1), which indicates the formation of hydroxylactone
2 (Figure S1). The NMR data also confirm those findings. The 13C NMR spectrum shows the difference
in the chemical shift of signals from the C-6 carbon atom (Figure S2). The position of the C-6 signal at
δ = 66.8 ppm confirms the presence of a hydroxyl group in the product molecule. In the spectrum
of iodolactone, the C-6 carbon atom is present at 23.3 ppm, which is caused by the occurrence of the
heavy atom effect characteristic for carbon bounded with an iodine atom [25].
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Figure 1. Composition (in % according to GC) of the product mixtures in the screening 
biotransformations of racemic iodolactone (rac-1) by different fungal strains. (A) Absidia cylindrospora 
AM336; (B) Absidia glauca AM254 and (C) Fusarium culmorum AM10. 

The 1H NMR spectrum of hydroxylactone 2 (Figure S3) is clearly distinct from the iodolactone 1 
spectrum. The first difference relates to the chemical shift of methyl protons: δ = 2.01 ppm for 
iodolactone and δ = 1.13 ppm for hydroxylactone. The similar tendency can be observed for the H-5 
proton which also is in α-position towards the hydroxyl group. On the product 2 spectrum, the H-5 
proton is shifted slightly upfield to 4.49 ppm compared to iodolactone (4.82 ppm). The most 
important difference can be noticed in the H-6 proton coupling constants. This change directly 
indicates the shift in angles between the vicinal protons H5 and H6 and suggests the inversion of the 
configuration on the C-6 carbon atom. On the iodolactone spectrum, the H-6 signal is present as a 
doublet of quartets at 3.47 ppm. On the spectrum of product 2, this signal appears as a quartet of 
doublets at 3.58 ppm because of the significantly lower coupling constant between H-6 and H-5 (J = 
4.3 Hz). The high value of the coupling constant in iodolactone 1 (J = 10.8 Hz) indicates the 
antiperiplanar orientation of protons H-5 and H-6 [15]. Contrastingly, the significantly lower value 
of this coupling constant in the hydroxylactone spectrum indicates the reduction of the dihedral 
angle, which is related to the formation of diastereoisomer in SN2 type of substitution. The structure 
of the obtained product was also confirmed by the heteronuclear multiple-bond correlation (HMBC) 
correlation spectrum (Table 1, Figure S4). 

Interestingly, the NMR data are also significantly different than those reported for the trans- 
diastereoisomer of hydroxylactone obtained earlier by the chemical lactonization of unsaturated ester 
with m-chloroperbenzoic acid [26]. The trans-diastereoisomer was isolated from a mixture of 
products, with rather low (9%) yield for chemical synthesis, whereas cis-5-(1-hydroxyethyl)-4-
phenyldihydrofuran-2-one 2 obtained in the biotransformation process was isolated in 38% yield. 
  

Figure 1. Composition (in % according to GC) of the product mixtures in the screening
biotransformations of racemic iodolactone (rac-1) by different fungal strains. (A) Absidia cylindrospora
AM336; (B) Absidia glauca AM254 and (C) Fusarium culmorum AM10.

The 1H NMR spectrum of hydroxylactone 2 (Figure S3) is clearly distinct from the iodolactone
1 spectrum. The first difference relates to the chemical shift of methyl protons: δ = 2.01 ppm for
iodolactone and δ = 1.13 ppm for hydroxylactone. The similar tendency can be observed for the H-5
proton which also is in α-position towards the hydroxyl group. On the product 2 spectrum, the H-5
proton is shifted slightly upfield to 4.49 ppm compared to iodolactone (4.82 ppm). The most important
difference can be noticed in the H-6 proton coupling constants. This change directly indicates the shift
in angles between the vicinal protons H5 and H6 and suggests the inversion of the configuration on
the C-6 carbon atom. On the iodolactone spectrum, the H-6 signal is present as a doublet of quartets
at 3.47 ppm. On the spectrum of product 2, this signal appears as a quartet of doublets at 3.58 ppm
because of the significantly lower coupling constant between H-6 and H-5 (J = 4.3 Hz). The high
value of the coupling constant in iodolactone 1 (J = 10.8 Hz) indicates the antiperiplanar orientation
of protons H-5 and H-6 [15]. Contrastingly, the significantly lower value of this coupling constant in
the hydroxylactone spectrum indicates the reduction of the dihedral angle, which is related to the
formation of diastereoisomer in SN2 type of substitution. The structure of the obtained product was
also confirmed by the heteronuclear multiple-bond correlation (HMBC) correlation spectrum (Table 1,
Figure S4).

Interestingly, the NMR data are also significantly different than those reported for the
trans- diastereoisomer of hydroxylactone obtained earlier by the chemical lactonization of
unsaturated ester with m-chloroperbenzoic acid [26]. The trans-diastereoisomer was isolated
from a mixture of products, with rather low (9%) yield for chemical synthesis, whereas
cis-5-(1-hydroxyethyl)-4-phenyldihydrofuran-2-one 2 obtained in the biotransformation process was
isolated in 38% yield.
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Table 1. Heteronuclear multiple-bond correlation (HMBC) data of hydroxylactone 2.

CH2-3 H-4 H-5 H-6 CH3-7 H-2′; H-6′ H-3′; H-5′ H-4′

C-2 + + +
C-3 + +
C-4 + + +
C-5 + + +
C-6
C-7 + +
C-1′ + + + +

C-2′; C-6′ + + +
C-3′; C-5′ +

C-4′ +

The NMR data were also related to the product obtained in the second biotransformation
experiment in which single enantiomers were subjected to microbial transformation. These studies
were designed to compare the transformation rate of individual iodolactone enantiomers (1a and 1b)
as well as the enantioselectivity of the process. The results are presented in Figure 2.
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cis-5-(1-hydroxyethyl)-4-phenyldihydrofuran-2-one enantiomers (1a and 1b) by different fungal strains.
(A) Absidia cylindrospora AM336; (B) Absidia glauca AM254 and (C) Fusarium culmorum AM10.

Regardless of the biocatalyst used, a single enantiomer of the product was formed from the single
enantiomer of the substrate. The enantiomeric excess of hydroxylactones was monitored by chiral GC.
The microbial hydrolytic dehalogenation mechanism presented in numerous investigations assumes the
inversion of configuration on the halogen-binding carbon atom [21,27,28]. The reason for this is the steric
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conditions that determine the approaching nucleophile from the opposite side to the halogen-binding
carbon. For reported iodolactones, the formation of hydroxyderivatives with the opposite configuration
to the C-6 carbon atom is rational. In these processes, from (−)-(4R,5R,6S)-iodolactone 1a and
(+)-(4S,5S,6R)-iodolactone 1b, (−)-(4R,5R,6R)-hydroxylactone 2a and (+)-(4S,5S,6S)-hydroxylactone 2b
were obtained, respectively (Figure 3). Previous studies carried out on cyclic iodolactones also confirm
this thesis [22]. In the provided example, biotransformations were performed on bicyclic iodolactones
in Absidia cylindrospora culture. The iodine atom was in axial orientation on the cyclohexane moiety of
the substrate. As a result of hydrolytic dehalogenation processes, the hydroxyl group has an equatorial
orientation in the product structure. Therefore, the stereospecificity of this process is also analogical to
the chemical SN2 type of substitution.
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Figure 3. Hydrolytic dehalogenation of cis-5-(1-hydroxyethyl)-4-phenyldihydrofuran-2-one
enantiomers and predicted configuration of stereogenic centers of products.

Although the transformation rates of iodolactones 1a and 1b were slightly different in all
experiments, some tendencies can be pointed out. All three tested strains have the ability to transform
both enantiomers. At the beginning of the biotransformation process, the (-)-1a enantiomer of
iodolactone is transformed more effectively compared to (+)-1b enantiomer. It can be clearly seen in
Absidia cylindrospora AM336 and Absidia glauca AM254 cultures. Therefore, during the transformation
of racemic iodolactone, the enantiomerically enriched product can be obtained depending on the time
of the process, especially when Absidia cylindrospora AM336 is used as a biocatalyst.

Since β-aryl-γ-lactones are well known for their cytotoxic potential [17,29], in our study, we also
plan to evaluate this activity. Depending on the compound structure, the literature provides
examples of different biological activities of iodo- and hydroxylactones. The iodolactones with
cyclohexane system can exhibit higher biological potential compared to their hydroxy analogs [23,30,31],
whereas some hydroxylactones with aromatic rings have similar cytotoxic potential compared to
the iodo-derivatives [32]. Therefore, the examination of the cytotoxic activity of biotransformation
products was reasonable. An important aspect of these experiments was the comparison of cytotoxicity
of single enantiomers. Those experiments were performed on canine leukemia (CLB70) and two canine
lymphoma cell lines (CLBL-1, CNK-89). All tested lines were more sensitive to iodolactones 1a and
1b than hydroxylactones 2a and 2b (Table 2). Interestingly, the (4S,5S,6R)-enantiomer of iodolactone
1b is slightly more potent towards tested cells than its antipode. This tendency was also observed
previously for other structural analogs [17,29]. This confirms that β-aryl-δ-iodo-γ-lactones with the
configuration of stereogenic centers 4S, 5S and 6R generally exhibit higher cytotoxicity towards almost
all tested cancer cell lines.



Catalysts 2020, 10, 1313 6 of 10

Table 2. Antiproliferative activity of iodololactones 1a,b, hydroxylactones 2a,b and the
control—etoposide—against the selected cancer cell lines expressed as IC50.

IC50 Values after 72h (µg/mL)
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Jasco P-2000 digital polarimeter (version with iRM controller, Mary’s Court Easton, MD, USA) 
was used to measure the optical rotation. IR spectra were performed on Mattson IR 300 Thermo 
Nicolet spectrophotometer. 

The gas chromatography–mass spectrometry (GC–MS) analysis was performed on a GCMS-
SATURN 2000 instrument (Varian, nowadays Agilent, Santa Clara, CA, USA) using a ZB-1 
(crosslinked phenyl-methylsiloxane) capillary column (30 m × 0.25 mm × 0.25 µm). The following 
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8.4, 5.1 Hz, 1H, H-4), 4.82 (dd, J = 10.8, 5.1 Hz, 1H, H-5), 7.25–7.35 (2 m, 5H, -C6H5). 13C NMR (75 MHz, 
CDCl3) δ: 23.3 (C-6), 25.5 (C-7), 38.9 (C-3), 45.0 (C-4), 87.8 (C-5), 128.0 (C-4′), 128.6 (C-2′ and C-6′), 128.7 
(C-3′ and C-5′), 137.3 (C-1′), 176.5 (C-2). IR (KBr, cm-1): 1779, 1416, 1183, 1136, 1005, 755, 706. 

3.3. Microbial Transformations—Screening Procedure 

The biocatalysts tested in the screening procedure were filamentous fungi. The microorganisms 
derives from the collection of the Institute of Biology and Botany, Wrocław Medical University (AM) 
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3.1. Analysis

The progress of biotransformations was checked by thin-layer chromatography (silica gel
on aluminum plates, DC-Alufolien Kieselgel 60 F254, Merck, Darmstadt, Germany) and gas
chromatography (Agilent Technologies 6890N instrument, Santa Clara, CA, USA). The GC analysis was
performed on Agilent DB-5HT capillary column ((50%-phenyl)-methylpolysiloxane 30 m × 0.25 mm ×
0.10 µm) and hydrogen as the carrier gas. The ee (%) of biotransformation products were determined
on the basis of chiral gas chromatography. The CP Chirasil-Dex CB column (25 m × 0.25 mm × 0.25 µm)
was used at the following conditions: injector 200 ◦C, detector (FID) 250
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C, column temperature: 75 ◦C
(1 min), 75–175 ◦C (1.6 ◦C ×min−1), 175 ◦C (1 min), 175–200 ◦C (15 ◦C ×min−1), 200 ◦C (2 min).

The purification of the products was carried out using column chromatography on silica gel
(Kieselgel 60, 230–400 mesh, Merck, Darmstadt, Germany).

The NMR spectra were performed on a Brüker Avance II 600 MHz spectrometer (Brüker,
Rheinstetten, Germany) in CDCl3 solution. The signals at δH = 7.26, δC = 77.16 were used as references.

Jasco P-2000 digital polarimeter (version with iRM controller, Mary’s Court Easton, MD, USA)
was used to measure the optical rotation. IR spectra were performed on Mattson IR 300 Thermo
Nicolet spectrophotometer.

The gas chromatography–mass spectrometry (GC–MS) analysis was performed on a
GCMS-SATURN 2000 instrument (Varian, nowadays Agilent, Santa Clara, CA, USA) using a ZB-1
(crosslinked phenyl-methylsiloxane) capillary column (30 m × 0.25 mm × 0.25 µm). The following
temperature program was applied: 70 ◦C (2 min), 75–250 ◦C (20 ◦C ×min−1), 250 ◦C (3 min), 250–300 ◦C
(20 ◦C ×min−1), 300 ◦C (2 min) (Figure S5).

3.2. Substrates for Biotransformation

The iodolactones (1a,b) were obtained from benzaldehyde according to procedure described
earlier [15,16]. The spectroscopic data of products are in accordance with data described by
Gładkowski [15,16] and are presented below to facilitate the spectra analysis and comparison with a
biotransformation product:

cis-5-(1-Iodoethyl)-4-phenyldihydrofuran-2-one (rac-1):
1H NMR (300 MHz, CDCl3) δ: 2.01 (d, J = 6.6 Hz, 3H, CH3-7), 2.71 (dd, J = 17.7, 0.9 Hz, 1H, one of

CH2-3), 3.14 (dd, J = 17.7, 8.7 Hz, 1H, one of CH2-3), 3.47 (dq, J = 10.8, 6.6 Hz, 1H, H-6), 3.91 (dd, J = 8.4,
5.1 Hz, 1H, H-4), 4.82 (dd, J = 10.8, 5.1 Hz, 1H, H-5), 7.25–7.35 (2 m, 5H, -C6H5). 13C NMR (75 MHz,
CDCl3) δ: 23.3 (C-6), 25.5 (C-7), 38.9 (C-3), 45.0 (C-4), 87.8 (C-5), 128.0 (C-4′), 128.6 (C-2′ and C-6′), 128.7
(C-3′ and C-5′), 137.3 (C-1′), 176.5 (C-2). IR (KBr, cm−1): 1779, 1416, 1183, 1136, 1005, 755, 706.
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3.3. Microbial Transformations—Screening Procedure

The biocatalysts tested in the screening procedure were filamentous fungi. The microorganisms
derives from the collection of the Institute of Biology and Botany, Wrocław Medical University (AM)
(Trametes versicolor AM536, Nigrospora oryzae AM8, Mortierella vinaceae AM149, Mortierella isabellina
AM212, Fusarium culmorum AM10, Fusarium avenaceum AM12, Armillaria mellea AM296, Absidia
cylindrospora AM336, Absidia glauca AM254). The cultivation of the strains were performed at 20 ◦C in
300 mL Erlenmeyer flasks containing 50 mL of medium (3% glucose, 0.5% peptone K, 0.5% aminobac
in distilled water). The substrate (rac-1) was dissolved in 1 mL of acetone and after 3 days of growth
added to the shaken cultures (170 rpm). The biotransformations were carried out for 14 days. After 2,
5, 7, 9, 12 and 14 days, the products were extracted with methylene chloride and analyzed by TLC
and GC.

3.4. Isolation of Obtained Products

Three strains (Absidia cylindrospora AM336, Absidia glauca AM254, Fusarium culmorum AM10) were
selected as efficient biocatalyst in transformation processes. For the identification of products and their
isolation, the additional experiments were performed. The Absidia glauca AM254 strain was grown
in six 500 mL Erlenmeyer flasks containing 100 mL of medium. On the third day 20 mg of racemic
iodolactone (rac-1) were added to each flask. The substrate was dissolved in 1 mL of acetone (total
amount 120 mg, conditions the same as described for screening procedure). The product was extracted
three times with chloroform (50 mL for each flask). The organic layer was dried over anhydrous
magnesium sulfate and evaporated in vacuo. The transformation product was purified by column
chromatography (hexane: acetone in gradient from 15:1 to 5:1). As a result the hydroxyderivative
(rac-2) was obtained.

cis-5-(1-Hydroxyethyl)-4-phenyldihydrofuran-2-one (rac-2):
Oily liquid, 1H NMR: (600 MHz, CDCl3) δ: 1.13 (d, J = 6.6 Hz, 3H, CH3-7), 2.85 (dd, J = 17.2, 8.9

Hz, 1H, one of CH2-3), 3.06 (dd, J = 17.2, 8.3 Hz, 1H, one of CH2-3), 3.58 (qd, J = 6.6, 4.3 Hz, 1H, H-6),
3.83 (q, J = 8.3 Hz, 1H, H-4), 4.49 (dd, J = 7.4, 4.3 Hz, 1H, H-5), 7.27–7.40 (3m, 5H, -C6H5). 13C NMR
(151 MHz, CDCl3) δ: 19.2 (C-7), 35.3 (C-3), 43.9 (C-4), 66.8 (C-6), 86.7 (C-5), 127.9 (C-4′), 128.1 (C-2′ and
C-6′), 129.1 (C-3′ and C-5′), 136.9 (C-1′), 176.8 (C-2, C=O). IR (KBr, cm−1): 3422, 1773, 1138, 1077, 703.

The biotransformation of (−)-cis-(4R,5R,6S)-5-(1-iodoethyl)-4-phenyldihydrofuran-2-one (1a) was
carried out according to the procedure described above; as a result, the (−)-enantiomer of hydroxylactone
was obtained:

(−)-cis-(4R,5R,6R)-5-(1-Hydroxyethyl)-4-phenyldihydrofuran-2-one (2a)
[α]20

D = −123.4 (c = 0.75, CHCl3), ee > 99.9%, spectroscopic data identical with those presented for
rac-2.

The biotransformation of (+)-cis-(4S,5S,6R)-5-(1-iodoethyl)-4-phenyldihydrofuran-2-one (1b) was
carried out according to the procedure described above; as a result, the (+)-enantiomer of hydroxylactone
was obtained:

(+)-cis-(4S,5S,6S)-5-(1-Hydroxyethyl)-4-phenyldihydrofuran-2-one (2b)
[α]20

D = +124.9 (c = 1.4, CHCl3), ee > 99.9%, spectroscopic data identical with those presented for
rac-2.

3.5. Antiproliferative Activity

The antiproliferative tests were performed on three types of cancer cell lines: canine B-cell
lymphoma (CLBL-1) [33], canine B-cell chronic leukemia (CLB70) [34] and NK-cell lymphoma (CNK-89)
(Grudzień et al. in press). The antiproliferative activity was investigated by MTT test after 72 h of
treatment, according to the procedure described previously [16]. The concentration of tested lactones
was in the range 6.25–50 µg/mL and dimethyl sulfoxide concentration was <1% in each dilution.
The optical density of formazan formed in untreated control cells was determined as 100%, and IC50
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values (µM concentration of the compounds ables to inhibits the proliferation of 50% of cells) were
calculated. The results are presented as the means ± standard deviation (SD) of four separate analyses,
with three wells each.

4. Conclusions

Among ten tested strains of filamentous fungi, Absidia cylindrospora AM336, Absidia glauca AM254
and Fusarium culmorum AM10 have ability to transform cis-5-(1-iodoethyl)-4-phenyldihydrofuran-2-one
1. In all processes, cis-5-(1-hydroxyethyl)-4-phenyldihydrofuran-2-one 2 was obtained as an only
product. The experiments with the use of single enantiomers, allow as to analyze the enantioselectivity
of the process and also predict the configuration of stereogenic centers of the products. The hydrolytic
dehalogenation reaction is more likely to occur analogically with chemical SN2 type of substitution,
which leads to the inversion of configuration on the halogen-binding carbon atom. For that reason,
from (−)-(4R,5R,6S)-iodolactone 1a the (−)-(4R,5R,6R)-hydroxylactone 2a was formed and from
(+)-(4S,5S,6R)-iodolactone 1b the (+)-(4S,5S,6S)-hydroxylactone 2a was formed. The rac-1 was
transform with the highest enantioselectivity in Absidia cylindrospora AM336 culture. The optimization
of this biotransformation may lead to the complete kinetic resolution of iodolactone enantiomers.
Under optimal conditions, one enantiomer of the substrate (1b) and the enantiomer of hydroxylactone
with the opposite configuration of the asymmetric centers on C-4 and C-5 carbon atoms (2a) could
be obtained. Additionally, the extended screening of microorganisms could result in finding a
biocatalyst with higher enantioselectivity or even the opposite enantioselectivity. The evaluation of
antiproliferative activity of obtained lactones brings to the conclusion that the activity of the individual
enantiomers is not much different. Although, analyzing data presented previously we noticed the
tendency that (4S,5S,6R)-enantiomers of β-aryl-δ-halo-γ-lactones are in most cases more potent in
cytotoxicity tests. Contrastingly, there is a significant difference between the cytotoxic activity of iodo-
and hydroxylactones. The substrates of biotransformation processes were more potent towards all
tested cancer cell lines.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2073-4344/10/11/

1313/s1. Figure S1: IR spectrum of lactone 2, Figure S2: 13C-NMR spectrum of lactone 2, Figure S3: 1H-NMR
spectrum of lactone 2, Figure S4: HMBC spectrum of lactone 2, Figure S5: The comparison of GC–MS analysis of
iodolactone 1 and hydroxylactone 2.
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22. Gładkowski, W.; Mazur, M.; Białońska, A.; Wawrzeńczyk, C. Lactones 35. Metabolism of iodolactones with
cyclohexane ring in Absidia cylindrospora culture. Enzym. Microb. Technol. 2011, 48, 326–333. [CrossRef]
[PubMed]
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