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Abstract: Tungsten carbide (WC) has received widespread attention as a new type of nonprecious
metal catalyst for hydrogen evolution reaction (HER). However, it is still a challenge to improve
the surface HER catalytic activity. In this work, the effects of different nonmetallic dopants on the
catalytic activity and stabilities of WC (0001) surface for HER were studied by first principles methods.
The effects of different types of non-metal (NM = B; N; O; P and S) and doping concentrations
(ni = 25–100%) on HER catalytic activity and stability were investigated by calculating the Gibbs
free energy of hydrogen adsorption (∆GH) and substitution energy. It was found that the catalytic
performance can be improved by doping O and P non-metallic elements. Especially, the ∆GH with P
doped is −0.04eV better than Pt (−0.085 eV), which is a potential ideal catalyst for HER. Furthermore,
the electronic structure analysis was used to explore the origin of the regulation of doping on stability
and catalytic activity. The results show that nonmetallic doping is an effective strategy to control the
catalytic activity, which provides theoretical support for the future research of HER catalysts.
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1. Introduction

As energy consumption increases, the excessive exploitation of fossil fuels and the release of CO2

after combustion has led to the destruction of the surface environment, in which the greenhouse effect
continues to increase. Given this challenge, the development of efficient and clean new energy is an
effective solution for the above. Hydrogen energy has drawn significant attention in recent years due
to its environmental friendliness, relatively high energy density, and high utility value in modern
society. Water electrolysis is a convenient method for producing hydrogen energy [1,2], which provides
a channel for the reduction of water to hydrogen molecules as a sustainable energy supply. However,
efficient and stabilized catalysts are required to achieve a sufficient reaction rate. Currently, platinum
(Pt) is the most effective catalyst [3]. However, due to its high price and the strong adsorption of CO on
surface active sites of Pt, which leads to its poisoning, the wide use of Pt catalysts is difficult. Therefore,
it is especially important to research and develop high-efficiency electrocatalysts with low overall cost
and high resistance to poisoning.
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Nonprecious materials that have been explored as electrocatalysts for this reaction include
transition metal sulfides [4], phosphides [5,6], and oxides [7]. Among studied nonprecious metal
catalysts, the dissociative adsorption of water on the NiO (111) surface is thermodynamically favorable
and fast, according to density functional theory (DFT) theoretical calculation [8]. However, this material
strategy poses limitations [9]. Among them, transition metal carbides (TMCs) are attracted much
attention due to their high conductivity, metallic band states, tunable surface/bulk architectures [10–12].
There have been many previous studies on TMC [13,14]. Levy and Boudart [15] first reported the
catalytic activity of tungsten carbide (WC) in the 1970s, and they found that the surface electronic
properties of WC were modified by carbon in such a way that WC resembled those of Pt. Dong [16]
pointed out that WC had a high ratio of chemical bond energy to surface carbon and thus had similar
surface and catalytic properties as those of noble metals.

Recent rising interest has been in the support of a metal overlayer on metal carbides for improving
catalytic activity. TMCs loaded with trace amounts of noble metals to produce composite electrocatalytic
materials, such as Pt/WC, Au/WC, and Ni/TiC, have been increasingly studied by researchers [17].
As science and technology have developed, it has been found that doping can also improve the catalytic
activity of materials. Haiyan Jin et al. [18] showed that transition metal (Co, Ni, and Fe)-doped WC
exhibited improved catalytic activity. Metal-doped catalysts, although having the advantages of high
catalytic activity, have disadvantages, such as poor stability and low selectivity, which hinder the
further application of such materials. Nonmetal doped catalysts avoid such disadvantages and exhibit
very substantial performance in overall water decomposition. Robert B. Wexler et al. [19] proved
that doping the surface of Ni2P (0001) with nine nonmetallic elements (B, C, N, O, and so on) could
effectively enhance the catalytic activity of the Ni2P (0001) surface. Böhm indicated that hydrogen
adsorption was activated on partially oxidized WC electrodes after anodic polarization [20]. However,
few studies have systemically studied nonmetallic element doping in WC.

In this paper, the WC (0001) surface structure was constructed. Then, the surface stability and
catalytic activity of the hydrogen evolution reaction were studied by substituting the C on the WC
(0001) surface with nonmetallic elements (B, N, O, P, and S). Finally, the origin of the regulation of
stability and catalytic activity by doping was studied from the perspective of the electronic structure
analysis of the solid surface.

2. Results and Discussion

2.1. Stoichiometric Tungsten Carbide Single-Crystal Surface

In the actual calculation, the single layer and double layer are constructed on the surface of WC to
test the number of layers. The number of odd layers is 3–15, and that of even layers is 4–16. When the
even layer model reaches four layers, the energy of WC (0001) tends to be flat, which indicates that it
has the properties of bulk material. When the odd number layer model reaches more than five layers,
the surface energy of WC (0001) tends to be flat, which indicates that it has the properties of bulk
material. In this study, the six layers model on WC (0001) surface is selected for discussion, as shown
in reference [21].

Due to breaking symmetry, the surface atoms will undergo stress-strain, which leads to the
rearrangement of surface atoms. A large number of calculations and experimental results show that
only the top-most surface atoms are clearly rearranged. Therefore, we focus on the structural relaxation
between the top three layers of the WC (0001) structure during the configuration optimization process.
The variation in the distance between the layers i and j before and after relaxation ∆d is defined as follows:

∆d = ((d′i j − d0
i j)/d0

i j) × 100% (1)

where d′i j is the layer distance between the adjacent i-th and j-th layers after relaxation and d0
i j is the

layer distance between the adjacent layers of the ideal crystal before relaxation [22]. It can be seen
from Table 1 that the C-terminated WC (0001) change is obvious. For the WC (0001) C-termination, the



Catalysts 2020, 10, 1272 3 of 11

structural relaxation between the first two layers is 21.7%, while between the second and third layers it
is 6.23%.

Table 1. Calculated percent of relaxation of the ∆d12 (distance between the first two layers) and the
∆d23 (distance between the second and third layers) for the W- and C-terminated WC (0001) surface,
respectively, and the literature data presented for comparison.

Surface Termination ∆d12/% ∆d23/% Reference

W This work −5.11 1.68 -
- Literature data −4.33 2.88 [17]

- −4.09 1.97 [23]
- −2.81 2.11 [24]

C This work −21.7 6.23 -
- literature −22.5 4.54 [17]

- −22.82 4.31 [23]
- −18.8 4.92 [24]

It can be seen from the above data that the uppermost two layers of the C-terminated WC (0001)
surface are more relaxed, and the relaxation of the second and third layers decreases; so, in the next
calculation, we only need to relax the uppermost two layers of atoms. In addition, our calculation
results are similar to those of ref. [23].

2.2. Effect of Doping on the Surface Stability and H-Adsorption Strength

Stabilization is an important parameter for evaluating catalyst performance. Therefore, we evaluate
the stability of different doping configurations. To do this, we summarize the substitution energies
(∆Esub(i), i = 0.25, 0.50, 0.75, 1.00) at different doping concentrations (Step2 of Figure 1), which can be expressed
as surface stability [21]. A negative value of ∆Esub(i) indicates that the system becomes more stable
after nonmetal doping, and a positive value indicates that the system becomes unstable after nonmetal
doping. Figure 2a shows that ∆Esub(i) strongly depends on the doping concentration (ni), and we can
observe two trends: (1) the O-doped surface becomes more stable, and (2) the B-, N-, P-, and S-doped
surface becomes unstable. In addition to nonmetal O, the stability of the surface C1−niXni /WC(0001)
structure can be increased sequentially with ∆Esub(i) (i = 0.25 ML(monolayer)) < ∆Esub(i) (i = 0.50 ML) <

∆Esub(i) (i = 0.75 ML) < ∆Esub(i) (i = 1.00 ML). For the other four unstable nonmetallic doping structures,
the ∆Esub(i) of N element doping structure is relatively small, and thus is relatively stable.
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Figure 2. (a) Dopant substitution energy (∆Esub(i), i = 0.25, 0.50, 0.75, 1.00) for different nonmetallic doped
elements and concentrations and (b) The adsorption energy of H (∆EH) on the nonmetallic element
(B, C, N, O, P and S)-doped WC surface as a function of the surface doping concentration.

Next, in the HER study, we considered H-stabilized adsorption sites with various doped elements
and concentrations (Step3 of Figure 1). There are six positions, including the top-site, hollow-site,
bridge-site, anti-bridge-site, hex-site, and anti-hex-site, as shown in Figure 6b. The most stable adsorption
site of H atom for different nonmetal doped elements and doping concentrations and the corresponding
H adsorption energy (∆EH) are shown in Table 2 (Step4 of Figure 1). It can be seen that for non-metal
N, O, P, and S doping structure, the most stable adsorption sites are all top site. The adsorption site
of nonmetallic B is unique. When ni is 75% and 50%, the optimal adsorption position is bridge-site.
When ni is 25% and 100%, the optimal adsorption position is anti-hex. Besides, we can see that the
absorption energy of B doping structure is so favorable. The explanation is as follows: as seen in
Figure 2a, the Esub of B doping structure is a more positive value, which indicates that the system
becomes less stable after nonmetal doping. Thus, the B doping structure is slightly distorted, which
leads to its adsorption configuration and adsorption energy different from other doping structures.
Besides, the valence electron number of B element is less than that of the C element, while the valence
electrons of other doped elements (N, O, P, and S) are more than the C element. The above results
show that B doping is favorable. Furthermore, as doping concentration increases, the doping structure
becomes more unstable.

Furthermore, we studied the effect of different dopants and concentrations on the H adsorption
energy (∆EH) at stable adsorption sites, as shown in Figure 2b. We observe that the three trends
are (1) B, (2) N, (3) O, P, and S. The first group (B) ∆EH exhibits sharp changes with alterations in
concentration; ∆EH decreases with increasing concentration ni from 25% to 75%, while ∆EH starts to
increase at ni = 100%. Conversely, there is no significant difference between the N-doped and undoped
surfaces (the undoped WC surface is marked with a black square in the Figure 2b). In the third group
(O, P, and S), at ni = 25–75%, ∆EH shows a small decrease and then significantly increases at ni = 100%.
The increase in S is more obvious than the trends of O and P. At ni = 100%, ∆EH is 1.7918 eV (S),
0.2596 eV (O), and −0.32745 eV (P), respectively.

To further study the source of the outstanding activity of the concentration of nonmetal doping at
the atomic level, the Gibbs free energy of hydrogen adsorption (∆GH) was calculated. Theoretically, the
HER path can be described as containing the initial state H + e−, the intermediate state of adsorption
H * (* is the adsorption site), and the final state of the 1/2 H2 product [25,26]. In general, a catalytic
performance of ∆GH that is close to zero is ideal [27]. It can be seen from our results that compared
with WC itself, replacing C with P and O dopants improves the catalytic activity of HER (∆GH is closer
to zero). As shown in Figure 3a, the Gibbs free energy of the hydrogen adsorption (∆GH) of WC(0001),
WC(0001)_O4, WC(0001)_P4, and Pt are−0.71 [28], 0.55, −0.13, and 0.09 eV [29,30], respectively. Besides,
the results show that the nonmetal-doped WC structures have good HER catalytic activity when the
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complete terminating carbon layer is replaced e.g., by oxygen. Besides, recent rising interest has been
in the support of a metal overlayer on metal carbides for improving catalytic activity [16,17]. Thus, it can
also be called an effect of overlayer coating.

Table 2. The most stable adsorption site of H atom for different nonmetal doped elements and doping
concentrations and the corresponding H adsorption energy (∆EH).

Dopant Doping Density Structures Adsorption Energy/eV

B 25% anti-hex −3.81425
50% bridge −5.37456
75% bridge −7.45212
100% anti-hex −7.25006

N 25% top −1.41112
50% top −1.51332
75% top −1.58855
100% top −1.81286

O 25% top −1.51835
- 50% top −1.69721

75% top −1.98577
100% top 0.25959

P 25% top −1.34954
50% top −1.60193
75% top −1.28851
100% top −0.32748

S 25% top −1.61477
50% top −1.79602
75% top −1.98137
100% anti-hex 1.79181

WC 0.00 top −1.30734
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and the (b) effect of various dopants and their surface concentrations on the average nonmetal charge.

To better understand the effect of the nonmetal doping concentration (ni) on ∆GH and ∆Esub(i),
we used charge transfer as a descriptor for research and analysis. In Figure 3b, the charge means the
charge change of nonmetallic element after doping. Besides, N and O doped systems have the highest
charge change since N and O elements have the highest electronegativity and the strongest electron
acquisition capability among doping elements. Figure 3b shows approximately linear relationships
between the charge transfer and doping concentration (ni), and the slopes can be interpreted as the
direction of electron transfer between W and the doped nonmetal elements [16]. For example, a positive
slope corresponds to the electron transfer from W to the doped nonmetal, oxidized W (electron donor)
and reduced doped nonmetal (electron acceptor). Conversely, if the slope is negative, the electron
transfer goes the opposite way as above. However, the electron transfer and ∆GH are not strongly
correlated. For example, when doping nonmetallic O, the tendency of electron transfer and the trend
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of ∆GH are the same. However, when doping nonmetallic B, a good tendency for electron transfer
is observed, but the trend of ∆GH is not uniform. Therefore, it is not appropriate to use the trend of
electron transfer to explain changes in ∆GH.

Single charge transfer cannot describe the regulation effect of nonmetallic element doping on
hydrogen evolution, which may be because doping not only regulates the surface electronic structure,
but also produces surface local structure distortion, as shown in Figure 4. From the analysis of electron
localization function (Figure 4a–c), it is found that WC (0001), WC (0001)_O4, and WC (0001)_P4 are
obviously different, which means that the bonding strength of surface nonmetallic elements is different.
From Figure 4e–f, it is found that from WC (0001), WC (0001)_O4 to WC (0001)_P4, the bond length
between the surface nonmetal and WC base gradually increases, and the electron density distribution
is also different. The change of surface crystal structure and electronic structure caused by this doping
explains why the O-doped system becomes more stable, while the P-doped system becomes unstable.
The synergistic effect caused by the doping band further regulates the catalytic activity of hydrogen
evolution on WC surface.
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(c,g) WC (0001) _P4, respectively.

To analyze the origin of the change in the HER catalytic activity, the density of state (DOS)
was obtained by analyzing the electronic structures of WC(0001), WC(0001)_O4, and WC(0001)_P4.
The total density of state (TDOS) values and projected density of state (PDOS) values of the above
structures are shown in Figure 5a–c. As shown in Figure 5c, significant changes occur near the Fermi
level. When the doping concentration of nonmetal O is 4, a significant peak appears near −1 eV, and
when the doping concentration of nonmetal P is 4, a characteristic peak at −0.3 to the Fermi level (0 eV)
forms. Thus, W-5d and P-2p undergo orbital hybridization, and the formation of characteristic peaks
indicates that there is a significant charge transfer between the W and P atoms; this result further
indicates that the WC(0001)_P4 ∆GH value is close to that of Pt because the charge transfer occurs
similarly based on the electronic structure.
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Figure 5. (a) Calculated total DOS for WC(0001) and WC(0001)_O1,2,3 and 4; (b) WC(0001)_P1,2,3 and
4; (c) PDOS of WC(0001), WC(0001)_O4 and WC(0001)_P4 for the C, P, and O p-states and W d-states;
(d) Calculated DOS for Pt.

The DOS diagram analysis of the total density of state values of nonmetallic O and P are compared
with the Pt and undoped WC (0001) surfaces. The result shows that the DOS pattern of WC (0001)_P4
is near the Fermi level, and it is most similar to Pt because the characteristic peak also significantly
increases compared to that of the WC (0001) surface (Figure 6c,d). This study shows that the catalytic
activity of replacing C with nonmetallic P is good, and the ∆GH of WC(0001)_P4 is the closest to Pt [31],
thereby exhibiting good HER catalytic activity. The above analysis of ∆GH and electronic structures
shows that nonmetallic doping is an effective strategy to improve catalytic activity.
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Figure 6. The (2 × 2) supercell structure of the C-terminated WC(0001) surface. (a) The number of
the labeled C atoms indicates the preferred sequence of substitution with dopants. (b) The six sites
that bind H. a, b, c, d, e and f, which are named the bridge-site, hex-site, hollow-site, anti-hex-site,
anti-bridge-site and top-site, respectively. Gray: C; light blue: W.

3. Method

3.1. Calculation Details

The spin polarization density functional theory (DFT) calculation was performed by the Vienna
ab initio Simulation Package (VASP) [32]. The projector augmented wave (PAW) basis was adopted,
and the kinetic energy cut off was set to 500 eV. The generalized gradient approximation (GGA)
methods in the scheme of Perdew–Burke–Ernzerhof (PBE) described the exchange and correlation
potential [33]. The Brillouin region of bulk materials was sampled by a uniform k-point grid of
11 × 11 × 11. The Brillouin region of 2 × 2 supercells was sampled by a 5 × 5 × 1 uniform k-point grid.
The convergence tolerances of the energy and force on each atom during structural relaxation were less
than 10−6 eV and 0.01 eVÅ−1, respectively. The vacuum layer was set at 15 Å. In this study, the 2 × 2
six-layer supercell plate model on the surface of WC (0001) is selected, such as reference [34]. The first
two layers of WC (0001) surface with nonmetal atoms doped were relaxed, and the bottom four layers
were fixed.

3.2. Theoretical Model and Doping Scheme

WC has a simple hexagonal structure [35], and its cell structure parameters are a = 0.2906 nm
and c = 0.2837 nm [23]. By our calculations, the cell structure parameters were a = 0.29189 nm and
c = 0.28446 nm, which were close to the literature values.

The WC (0001) surface is considered the most stable, and most research models are focused on
the (0001) surface [33,36,37]. Therefore, the WC (0001) surface is selected as the research object in this
study. The surface WC is composed of alternating W and C elements on the z axis. The surface of
WC (0001) is a polar surface, which can be divided into W-terminal and C-terminal regions. In this
work, we mainly study the substitution of the C element by nonmetallic element doping, so only the
C-terminal model is explored.

Each C bond on the surface is connected to three W bonds on the subsurface, which makes a total
of four C atoms with equivalent positions, numbered from 1 to 4, as shown in Figure 6a. At these
positions, we substituted five different nonmetallic elements (B, N, O, P, and S) for C on the surface
and varied the substitution concentration from 0.25 to 1.00.

3.3. Substitution Energy.

The substitution energies of the different nonmetallic doping elements can be defined as follows:

∆Esub(i) = (EC1−ni Xni /WC(0001) + iEC) − (EWC(0001) + iEX) (2)
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where X is the nonmetallic element (B, N, O, P and S), EC1−ni Xni /WC(0001) is the total energy of the
WC surface with the nonmetallic element X replacing the C atom, EWC(0001) is the total energy of
the WC surface, EC and EX are the energies of one C atom and one nonmetal X atom, respectively,
i is the number of nonmetallic X atoms doped in the model, and ni is the concentration of doped
nonmetallic elements.

3.4. Gibbs Free Energy of Hydrogen Adsorption

The Gibbs free energy of hydrogen adsorption (∆GH) is defined as follows [38,39]:

∆GH = ∆EH + ∆EZEP − T∆S (3)

where ∆EH, ∆EZEP and ∆SH, represent the energy difference of hydrogen adsorption, zero-point
energy, and the entropy, respectively, between the adsorbed state and the corresponding freestanding
state. ∆EH is defined as:

∆EH = EC1−ni Xni /WC(0001)+H −

(
EC1−ni Xni /WC(0001) +

1
2

EH2

)
(4)

where EC1−ni Xni /WC(0001)+H is the total energy of adsorbing one H atom on the surface of WC(0001)
after doping and the substitution of nonmetallic elements and EH2 is the energy of one H2 molecule.

∆EZEP can be determined by equation:

∆EZEP = EH∗
ZEP − EZEP − 1/2EH2

ZEP (5)

The ∆SH can be approximated as

∆SH � −
1
2

S0
H2

(6)

where S0
H2

is the entropy of H2 gas under the standard condition [39].
Due to the fact that the vibrational entropy in the adsorbed state is small according to the previous

studies [38], Here, the values of ∆EZEP and T∆S are referenced from ref. [40]. Therefore, ∆GH can be
written as

∆GH = ∆EH + 0.3 eV (7)

The optimal ∆GH value for HER is close to 0 eV, which means that the smaller the | ∆GH | value is,
the better HER performance the catalyst has.

4. Conclusions

We investigated the doping of different various concentrations of nonmetallic elements into WC
(0001) and their effect on the stability and catalytic properties of WC (0001). It is found that doping with
nonmetal N and O can improve the surface stability, while the HER catalytic activity can be improved
by doping with nonmetallic O and P doping. The catalytic activity of the surface, especially the Gibbs
free energy of hydrogen adsorption (∆GH) of P, is close to that of Pt. Charge transfer alone cannot be
used to describe the change of ∆GH. Thus, we need to combine crystal structure and electronic structure
changes to study HER activity and stability. In other words, the surface structure and electron changes
caused by nonmetallic dopants co-regulate stability and HER catalytic activity. The electronic structure
analysis shows that the p-d orbital hybridization caused by doping with nonmetallic elements leads to
electron rearrangement near the Fermi level, which can improve the HER catalytic activity. This work
provides a good theoretical basis for how to improve the catalytic activity of HER in the future.
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