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Abstract: The synthesis of substituted indoles has received great attention in the field of organic
synthesis methodology. C–H activation makes it possible to obtain a variety of designed indole
derivatives in mild conditions. Ruthenium catalyst, as one of the most significant transition-metal
catalysts, has been contributing in the synthesis of indole scaffolds through C–H activation and C–H
activation on indoles. Herein, we attempt to present an overview about the construction strategies
of indole scaffold and site-specific modifications for indole scaffold via ruthenium-catalyzed C–H
activations in recent years.
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1. Introduction

Substituted indoles are omnipresent in pharmaceutical industry. Some of them are the most sold
drugs worldwide, presenting extraordinary efficacy in anti-cancer [1–5], sexual health [6], or anti-genetic
disorders [7]. The indole containing compounds also exhibit wide range of pharmacological activity in
bench work, such as antihistaminic, antimicrobial, anti-HIV, anti-inflammatory, and analgesic, as well
as, anti-SARS-CoV-2 [8]. In natural products and marine compounds, indole moieties are also widely
prevalent [9]. The interesting biological activities and structural features of substituted indoles have
attracted intensive attention. Thus, the synthesis of substituted indoles has received great interest.

Since the beginning of 19th century, researchers, some of whom were written about in textbooks,
have made great contributions for the synthesis of indole scaffolds. However, most of these reactions
require well designed, uneasily synthesized, and relatively unstable substrates or harsh conditions,
such as Fischer indole synthesis, Bartoli indole synthesis, and Hinsberg indole synthesis, suffering from
poor functional group tolerance and limited substrate scopes [10].

Transition-metal-catalyzed direct C–H activation would eliminate the need for prefunctionalization
of substrates. Obviously, the direct C–H activation would provide convenient methods for the synthesis
of functionalized organic molecules. Recently, transition-metal-catalyzed C–H activation has been
well studied and established for the synthesis of indole scaffold compounds [11]; especially, the use of
more stable and easy-to-handle ruthenium catalysts has tremendously contributed to the discovery of
novel and efficient catalytic systems. The success of ruthenium catalysts is likely ascribed to their easy
transformation into cyclometalated species via CMD (concerted metalation/deprotonation) process,
their compatibility with frequently-used oxidants, and the stability to air or water. Within the last few
years, the use of ruthenium catalysts has promoted the discovery of C−H activation processes. It is the
objective of this review to show the progressive discoveries of ruthenium-catalyzed C–H activations
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for the synthesis of indole derivatives. The current review will focus on indole scaffold construction
and site-specific modifications via ruthenium-catalyzed C–H activations.

Indole Scaffold Construction via Ruthenium-Catalyzed C–H Activation

Recently, transition-metal-catalyzed carbenoid insertion has been developed as a widely used
tool to form C-C bond. Li’s group [12] reported the facile construction of 3-substituted NH
indoles and 2,3-disubstituted 3H-indoles by Ru(II)-catalyzed C–H activation of imidamides with
diazo compounds, which enabled the synthesis of two kinds of substituted indoles by [4+1]
annulation (Scheme 1). On condition A, [RuCl2(p-cymene)]2 was used to catalyze with AgSbF6 added
additionally, the transformation of αα-diazoketoesters to form C-3-substituted indoles. When changing
the diazo substrate into αα-diazomalonate, 3H-indoles were given as the designed product with
[Ru(p-cymene)(MeCN)3](SbF6)2 participated as catalyst. They also proposed the possible mechanism
of the process (Scheme 2). A CMD process is conducted to afford the metalacyclic intermediate
A with the cyclometallation of the imidamides. Then, αα-diazoketoesters or αα-diazomalonate is
coordinate to the intermediate A before denitrogenation to generate ruthenium carbene species B.
Then the seven-membered ruthenacyclic intermediate C is furnished with the migratory insertion of
the ruthenium-aryl bond. After that, intermediate D is then formed by Ru-C(alkyl) migratory insertion
into the C=N bond. For diazoketoester substrates, protonolysis and intramolecular nucleophilic
addition and subsequent elimination of one molecule of NH amide is conducted with NH-indole
product 3 eventually released from D. For diazomalonates, the intermediate D undergoes elimination of
ammonia with assistance of Ru(II) or acetic acid, forming 3H-indole 5 as the final product. This reaction
constitutes the first intermolecular coupling of arenes with diazo substrates by ruthenium-catalyzed
C–H activation, which may lead to applications in the discovery of bioactive compounds with medium
to good yields.
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Alkynes are now a developing sorts of coupling partners to construct divergent scaffolds. 
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alkynes have emerged as a powerful strategy. In addition, Ru-catalyzed C–H activation for the 
synthesis of indole scaffolds using alkynes as substrates has attracted much attention due to the high 
efficiency (Scheme 4). In 2012, Ackermann’s group [14], based on their previous work and experience 
on heterocycle construction, achieved [3+2] annulation of anilines bearing removable pyrimidyl 
group as directing group, which led to the formation of 2, 3-disubstituted indoles, with the use of the 
most applied cationic ruthenium complex [RuCl2(p-cymene)]2 as catalyst. The reaction conducting C–
H/N–H bonds cleavage efficiently occurs in water as a sustainable solvent. The initiation of the 
proposed catalytic cycle is the reversible cyclometallation with cationic ruthenium complex to form 
the key intermediate, a six-membered ruthenacycle. Then, the complex undergoes coordination and 
migratory insertion with the alkyne followed to furnish ruthacycle. At last, the desired product is 
given by reductive elimination. The scope of the substrates has a wide range. Examples, including 
electron-donating groups, such as the methyl group, and electron-withdrawing groups, such as the 
trifluoromethyl group, on the benzene are well tolerated in this method, as well as aromatic or alkyl 

Scheme 2. Proposed reaction mechanism.

Inspired by the high reactivity of diazo compounds, our group [13] developed a highly
efficient synthetic strategy to construct 3-phosphorylindole scaffolds via selective reversible C–H
bond activations of N-phenylbenzimidamide, and the subsequent divergent couplings with
diazophosphonate compounds were achieved successfully with Ru(II) catalyst systems (Scheme 3).
The yields of the examples are 60–90%.
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Scheme 3. Carbene insertion reaction to afford phosphorous indoles.

Alkynes are now a developing sorts of coupling partners to construct divergent scaffolds. Recently,
Rh-catalyzed and Pd-catalyzed C–H activation leading to the construction of indoles with alkynes
have emerged as a powerful strategy. In addition, Ru-catalyzed C–H activation for the synthesis of
indole scaffolds using alkynes as substrates has attracted much attention due to the high efficiency
(Scheme 4). In 2012, Ackermann’s group [14], based on their previous work and experience on
heterocycle construction, achieved [3+2] annulation of anilines bearing removable pyrimidyl group as
directing group, which led to the formation of 2, 3-disubstituted indoles, with the use of the most applied
cationic ruthenium complex [RuCl2(p-cymene)]2 as catalyst. The reaction conducting C–H/N–H bonds
cleavage efficiently occurs in water as a sustainable solvent. The initiation of the proposed catalytic
cycle is the reversible cyclometallation with cationic ruthenium complex to form the key intermediate,
a six-membered ruthenacycle. Then, the complex undergoes coordination and migratory insertion
with the alkyne followed to furnish ruthacycle. At last, the desired product is given by reductive
elimination. The scope of the substrates has a wide range. Examples, including electron-donating
groups, such as the methyl group, and electron-withdrawing groups, such as the trifluoromethyl
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group, on the benzene are well tolerated in this method, as well as aromatic or alkyl alkynes.
The catalytically active cationic complex is regenerated with reoxidation. In 2017, Cai [15] reported
a similar method using PEG400/water as solvent to provide a sustainable way to achieve indole
derivatives. Notably, the catalyst can be recycled in this catalytic system. In addition, Kumara [16]
and his coworkers described a similar Ru-catalyzed [3+2] annulation of 6-anilinopurines with internal
alkynes, giving indole-substituted purine nucleobases. In this work, a ruthenacycle intermediate
was characterized indicating that the N-1 nitrogen atom of the purine acts as a directing group for
this transformation.Catalysts 2020, 10, x 5 of 28 

 

 
Scheme 4. Ru-catalyzed C–H activation with alkynes and anilines to afford indoles derivatives. Scheme 4. Ru-catalyzed C–H activation with alkynes and anilines to afford indoles derivatives.
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In 2019, the first ruthenium-catalyzed double aryl C(sp2)–H bond activation of antipyrine and
alkyne annulation reaction was reported by Sanjib Gogoi [17] and his co-workers. Two equivalents
of anilines participated in the reaction to afford indolo [2,1-a]isoquinolines (Scheme 5). The possible
mechanism was proposed (Scheme 6). First of all, ruthenium catalyst conducted irreversible C(sp2)–H
activation with the directing group assisted. Subsequently, ruthenium–alkyne coordination occurs,
followed by migratory alkyne insertion into Ru-C bond. Then, the weak N-N bond cleavages with the
oxidation of Ru(II) to Ru(IV) to provide a six-membered Ru(IV) complex. Next, before further C(sp2)–H
activation of the substituted phenyl ring, the Ru metal is reductive eliminated, and a nine-membered
Ru complex is formed. After that, the nine-membered ring is contracted by elimination of a ketene
type of fragment to generate Ru(IV) complex. Again, 3aa is afforded with the insertion of another
molecular of 2a into the Ru-C bond and reductive elimination of Ru.Catalysts 2020, 10, x 6 of 28 
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Inspired by the C–H activations directed by the groups on benzenes, Chen [18] and his coworkers
developed Ruthenium(II)-catalyzed [3+2] annulation of N-nitrosoanilines with alkynes for the
synthesis of indole derivatives (Scheme 7). This ruthenium(II)-catalyzed C–H bond redox-neutral
[3+2] cycloaddition features a broad range of functional group tolerance and excellent sterically
controlled regioselectivity.Catalysts 2020, 10, x 7 of 28 
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Scheme 7. Ruthenium(II)-catalyzed C–H bond [3+2] annulation of N-nitrosoanilines with alkynes
in water.

Emma Gallo [19] and his coworkers screened out ruthenium bis-imido Ru(TPP)(NAr)2

complex(TPP=dianion of tetraphenyl porphyrin, Ar=3,5-(CF3)2C6H3), also named ruthenium
porphorin, to catalyze indole synthesis from alkynes with aryl azide (Scheme 8). The alkyne interacts
with one NAr imido ligand of Ru(TPP)(NAr)2 to form a residually dangling C(Ph) group, forming a
5+6 bicyclic molecule by coupling with a C(H) unit of the N-aryl substituent, a two-step outer
sphere H-migration occurs to make the bicycle isomerize to indole. Eventually, a Ru(TPP)(NAr)
mono-imido active catalyst is reformed after each azide/alkyne reaction. The steric hindrance of
alkynes influenced the reaction productivity to a greater extent than the electronic effect, as the
mono-substituted alkynes were efficiently converted into corresponding indole independently for
the position where the substituent was placed, while the substitution on the phenyl azide shows
lower selectivity.
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In the methods above, most of the catalytic cycle needs additional oxidant to reform the catalyst
such as Cu salt. Xu’s group [20] developed a ruthenium-catalyzed electrochemical dehydrogenative
annulation reaction of aniline derivatives and alkynes (Scheme 9). Electric current is used to recycle
the active ruthenium-based catalyst, and the reaction, notably, is operationally convenient due to a
simple undivided cell employed. The process is insensitive to air, proceeding in an aqueous solution.Catalysts 2020, 10, x 8 of 28 
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Similarly, alkenyl groups can also be applied to form indole derivatives with C–H activation
reactions. Xiao [21] and his coworkers developed a visible light-induced intramolecular cyclization
of styryl azide in the presence of Ru(bpy)3Cl2, to construct 2-substituted N-free indoles in good
to excellent yields with high functional group tolerance. Through this method, 2 aromatic indoles
including electron-donating phenyl and electron-withdrawing phenyl indoles are efficiently obtained.
(Scheme 10). A molecular of N2 is removed under irradiation of visible light, and then a concerted
nitrene insertion occurs through the transition state to deliver the designed indoles.
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Scheme 10. Ruthenium-catalyzed cyclizations of styryl azides induced by visible light.

Yang’s group [22] developed a new approach to the synthesis of 2-phosphinoylindoles from
1-isocyano-2-styrylbenzenes through photoredox catalysis (Scheme 11). Unlike Xiao’s work, the benzyl
group on the alkenylphenylisocyanide is ultimately substituted on the C3 of the synthesized
indole. The proposed mechanism of the phosphorylation/ cyclization reaction was outlined by
the author (Scheme 12). The photoredox catalyst A Ru(bpy)3Cl2·6H2O irradiated by visible light,
leading to the formation of excited state B *RuII. After that, oxidation of the conjugate base of
B should be thermodynamically feasible, to generate phosphorus radical D. Then, a proton from
diphenylphosphine oxide 2 is captured by DBU. After that, phosphorus radical D is rapidly trapped by
1-isocyano-2-styrylbenzene (1a) to generate alkene radical E, followed by 5-exo-trig cyclization-forming
benzyl radical F. Finally, the reduction in the resulting benzyl radical F by SET from available Ru
species C should generate benzyl anion G and regenerate the ground-state photoredox catalyst A.
A range of 1-isocyano-2-styrylbenzenes can be applied efficiently in this transformation, making it
appealing for late-stage synthesis strategies.
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Sulfur ylides also serve as significant substrates forming indole derivatives in ruthenium-catalyzed
reactions. Our lab [23] developed the first sulfoxonium ylides derived from a Ru(II)-carbene complex
insertion arene C–H bond cascade reactions to constitute 3-ketoindole skeleton via C–H activation.
The catalytic system generated 3-acetyl indole scaffolds by C-N and C-S bond cleavage with imidamides
and sulfoxonium ylides through a [4+1] cyclization process. In addition, Huang and his coworkers
developed a method for the synthesis of 2-arylindoles with N-aryl-2-aminopyridines and α-carbonyl
sulfoxonium ylides (Scheme 13). Some 2-aromatic-substituted indoles including halogenatedphenyl,
trifluoromethylphenyl, and methoxylphenyl indoles are obtained in good yields.
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In 2017, Dilman’s group [24] developed a method for the synthesis of 3-fluoroindoles starting from
-CF2I-substituted N-arylamines, which was mediated by a ruthenium photocatalyst upon irradiation
with blue light in the presence of a substoichiometric amount of triphenylphosphine (Scheme 14).
The combination of ruthenium photocatalyst and triphenylphosphine to generate fluoroalkyl radicals
is the key factor affecting the reaction efficiency.Catalysts 2020, 10, x 10 of 28 
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There are also additional methods using variety of substrates. According to Shim’s
report [25], substituted indoles can be synthesized from anilines and alkanolammonium chlorides
in the presence of a ruthenium catalyst together with SnCl2·2H2O in moderate to good yields.
In this transformation, SnCl2·2H2O is important for the formation of indoles. Karvembu [26]
utilizes [RuCl2(p-cymene)]2 complexes containing picolyl-based pseudo-acylthiourea ligands to
form 3-isopropoxy-1H-indole from nitro 2-nitrocinnamaldehyde and 2-propanol. Jana [27]
and his coworkers developed a ruthenium-catalyzed divergent synthesis of 2-methylindoles
and indolines via a C–H allylation/oxidative cyclization cascade. The 2-methylindoles are
obtained through a C−H allylation/carboamination/β-hydride elimination/double bond isomerization
cascade, whereas for ortho-substituted anilines, the indolines are obtained via a C−H
allylation/carboamination/protodemetalation cascade in trifluoroethanol. Yi [28] and his coworkers
reported a dehydrative C–H coupling reaction of arylamines with 1,2-diols catalyzed by the cationic
ruthenium–hydride complex to afford 2-phenyl indoles (Scheme 15).
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2. Site-Specific Modification for Indole Scaffold via Ruthenium-Catalyzed C–H Activation

Site-specific direct C–H functionization is a simple and significant way to obtain desired indole
derivatives [29]. In order to discuss conveniently, these C–H activation strategies will be sorted
according to the site of C–H bond on indoles.
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2.1. C–H Activation on C2 and C3

Cross coupling is gradually becoming the most significant and one of the most applied reactions in
the pharmaceutical industry. A significant number of methods exist for Ru-catalyzed functionalization
at the C2 position of indole scaffolds, such as alkylation, arylation, and so on. In 2011, Ackermann [30]
and his coworkers reported C–H bond arylations in a high chemo- and site-selective manner using
the removable directing group with aryl halides as coupling partners. The catalytic system is
reported broadly applicable and tolerated a variety of valuable functional groups, such as halogen,
cyano, and carbonyl group, as well as additional heteroaromatic moieties in medium-to-good yields.
Based on Ackermann’s work, in 2015 and 2018, Pilarski [31] and Szostak [32] reported the similar C–H
arylation reactions for the synthesis of 2-arylated indoles with aryl borate and aryl silicone compounds,
respectively (Scheme 16).
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In 2016, Ackermann [33] reported a methylation reaction using MeBF3K as methylating agent,
with the catalysis of [RuCl2(p-cymene)]2 (Scheme 17). Notably, the reaction can be applied in the
methylation of tryptophan, which may be used in the chemical biology field or pharmaceutical industry.Catalysts 2020, 10, x 13 of 28 
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Diazo compounds are critical and reactive substrates to participate all sorts of insertion
reactions by forming metal carbenes. In 2010, Yu reported a directing group-free approach for
C2-selective carbenoid functionalization of NH indoles [34]. With [RuCl2(p-cymene)]2 as catalyst
and 2-aryldiazoesters as carbenoid source, 2-alkylated indoles were obtained in up to 96% isolated
yield. In 2019, Gryco [35] described the photoalkylation of indoles and pyrroles with diazo esters.
C2- alkylated indoles are obtained with good yields even though the photocatalyst loading is as low
as 0.075 mol % (Scheme 18). Both EWG (electron donating groups)–EWG- and EWG–EDG (electron
withdrawing groups)-substituted diazo esters are suitable as alkylating agents in this transformation.
For EWG-substituted substrates, the addition of a catalytic amount of N, N-dimethyl-4-methoxyaniline
is required to promote the transfer from the Ru(bpy)3*2+ to Ru(bpy)3

+, which has much more potential
to catalyze the reaction.

Catalysts 2020, 10, x 13 of 28 

 

 
Scheme 17. Ruthenium-catalyzed C–H methylation on C2 of indoles. 

Diazo compounds are critical and reactive substrates to participate all sorts of insertion reactions 
by forming metal carbenes. In 2010, Yu reported a directing group-free approach for C2-selective 
carbenoid functionalization of NH indoles [34]. With [RuCl2(p-cymene)]2 as catalyst and 2-
aryldiazoesters as carbenoid source, 2-alkylated indoles were obtained in up to 96% isolated yield. In 
2019, Gryco [35] described the photoalkylation of indoles and pyrroles with diazo esters. C2- 
alkylated indoles are obtained with good yields even though the photocatalyst loading is as low as 
0.075 mol % (Scheme 18). Both EWG (electron donating groups)–EWG- and EWG–EDG (electron 
withdrawing groups)-substituted diazo esters are suitable as alkylating agents in this transformation. 
For EWG-substituted substrates, the addition of a catalytic amount of N, N-dimethyl-4-
methoxyaniline is required to promote the transfer from the Ru(bpy)3*2+ to Ru(bpy)3+, which has much 
more potential to catalyze the reaction. 

 
Scheme 18. Visible-light-induced C–H activation catalyzed by ruthenium with diazo compounds. 

The same situation appears in Stephenson’s work [36]. Substituted indoles were obtained by 
photoredox intermolecular direct C–H functionization with indoles and diethyl bromomalonate. The 
replacement of Et3N with N, N-dimethyl-4-methoxyaniline increased the yield of desired product 
from 25% to 85%. Meanwhile, furans and pyrroles were also investigated and found to work well 
under the conditions. In 2017, Hansen reported a similar method and developed a novel visible-light 
photocatalytic double C–H functionalization of indoles to afford 2,3-difunctionalized indoles 
(Scheme 19). Mechanistic studies indicated that electrophilic C-3 bromination occurs through an 

Scheme 18. Visible-light-induced C–H activation catalyzed by ruthenium with diazo compounds.

The same situation appears in Stephenson’s work [36]. Substituted indoles were obtained by
photoredox intermolecular direct C–H functionization with indoles and diethyl bromomalonate.
The replacement of Et3N with N, N-dimethyl-4-methoxyaniline increased the yield of desired product
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from 25% to 85%. Meanwhile, furans and pyrroles were also investigated and found to work
well under the conditions. In 2017, Hansen reported a similar method and developed a novel
visible-light photocatalytic double C–H functionalization of indoles to afford 2,3-difunctionalized
indoles (Scheme 19). Mechanistic studies indicated that electrophilic C-3 bromination occurs through
an independent photocatalytic oxidation of bromide ions formed during the reaction to generate
molecular bromine [37].
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In the field of drug research and development, metabolism of drugs leading to low bioavailability
or toxicity is a huge challenge to be solved [38]. Trifluoromethylation on the active metabolic site
gives medicinal chemists new hope to guarantee the efficacy of drugs [39]. It is clearly important
to develop easy methods to realize trifluoromethylation reaction under mild conditions with simple
starting materials. In 2011, MacMillan [40] introduced a photoredox-based method allowing for facile
trifluoromethylation of heteroaromatic systems including indoles without the need for an aryl ring
pre-activation (Scheme 20). With the Ru(phen)3

2+ as photoredox catalyst, as well as trifluorosulfonyl
chloride as CF3 source, 2-CF3-indole and 3-CF3-N-Ac-indole were afforded in this catalytic system,
respectively. In addition, on all kinds of hetero- or benzene cycles, the substitutions majorly rely on
the electro property. In 2012, Cho [41] reported the similar trifluoromethylation of indole substrates
utilizing CF3I as CF3 source. The trifluoromethylation reaction can occur on substituted indoles. Then,
in 2014, continuous flow was used to accelerate the trifluoromethylation and multifluoroalkylation
process, shortening the time from tens of hours to dozens of minutes [42].

Growing interest in the utility of arylsilanes or heteroarylsilanes in synthesis [43] and medicinal
chemistry has fueled the development of powerful C–H silylation methods. Tatsumi [44] and his group
developed selective Ru-catalyzed C3–H silylation of N-methyl indoles (Scheme 21). Either with
or without the assistance of the directing group, the transformation proceeds well. The C–H
activation occurs as a manner of merging cooperative Si–H bond activation and electrophilic aromatic
substitution, which make the C3 selective functionalization controlled by electronic factors (Scheme 22).
Ru cooperates with S to form an unsaturated cationic complex before splitting the Si–H bond,
which gives a sulfur-stabilized silicon electrophile. The sulfur atom then participates the deprotonation
of the Wheland intermediate of the Friedel–Crafts-type process. Solvent does not participate the overall
catalysis, with only dihydrogen liberated.
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Pilarski [45] and his coworkers utilize [RuH2(CO)(PPh3)3] as catalyst to conduct direct C–H
sililation at C2 position of NH indoles (Scheme 23). Gramines and tryptamines can be converted
efficiently, although the C–H activation on C-4 site was detected when conducting mechanism research
with little side reactions. Good-to-excellent yields of designed products were effectively obtained from
a different silane source such as triaryl, trialkyl, and mixed alkyl/aryl silanes.
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Alkynes also serve as a vital sort of substrates for C–H activation. In 2010, Gimeno [46] and his
coworkers reported a ruthenium/trifluoroacetate-catalyzed regioselective C-3-alkylation reaction of
indoles with terminal alkynes, affording a branch alkyl chain on the scaffold (Scheme 24).
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In 2016, Dixneuf’s group [47] developed an indole-fused isocoumarins synthetic method from
1-methylindole-3-carboxylic acid by annulation with alkynes under [RuCl2(p-cymene)]2 catalyst
(Scheme 25). It shows that this catalytic annulation performs well in water, with medium-to-good
yields and regio-selectivity, with dialkylalkynes, diarylalkynes, or mixed alkynes as substrates.
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Our lab [48] reported Ru(II)-catalyzed redox-neutral [3+2] annulation reactions on
N-ethoxycarbamoyl indoles with substituted alkynes (Scheme 26). Many sorts of internal alkyne show
good-to-excellent regio-selectivities and mild reaction conditions, and various aryl/alkyl-, alkyl/alkyl,
and diaryl-substituted alkynes are included.
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In 2012, Haak [49] and his coworkers introduced a ruthenium-catalyzed functionalization of
indoles and pyrroles with propargyl alcohols utilizing ruthenium complex 1Ba (Scheme 27). Notably,
this protocol can be used for the construction of multi-substituted indole scaffolds with the cascade
cyclization on pyrroles. In 2018, they also developed a cascade annulation reaction with propargyl
alcohols catalyzed by ruthenium to give benzene-fused indoles [50].

Catalysts 2020, 10, x 17 of 28 

 

Scheme 26. Ruthenium-catalyzed C2–H activation of indoles with alkynes to afford Pyrroloindolone 
Scaffold. 

In 2012, Haak [49] and his coworkers introduced a ruthenium-catalyzed functionalization of 
indoles and pyrroles with propargyl alcohols utilizing ruthenium complex 1Ba (Scheme 27). Notably, 
this protocol can be used for the construction of multi-substituted indole scaffolds with the cascade 
cyclization on pyrroles. In 2018, they also developed a cascade annulation reaction with propargyl 
alcohols catalyzed by ruthenium to give benzene-fused indoles [50]. 

 
Scheme 27. Ruthenium-catalyzed C–H activation to afford substituted indoles with alkynol. 

Similarly, olefins are widely used in indole substitution to perform vinylation or alkylation 
reactions. In 2013, Wang’s lab [51] and Song’s lab [52], respectively, developed a similar efficient 
protocol for vinylation selectively on C2 of indoles assisted by the employment of N,N-
dimethylcarbamoyl moiety as a directing group (Scheme 28). A wide scope of olefins, including 
electron-donating groups, such as the phenyl group, and electron-withdrawing groups, such as 
sulfonyl, phosphate, and cyano groups, are applicable in this reaction. 

 
Scheme 28. Ruthenium-catalyzed C2–H activation with active olefins. 

Among the substituted alkenes, α, β-unsaturated esters are well studied. Prabhu [53] and his 
coworkers developed a novel versatile regioselective C-2 alkenylation strategy catalyzed by 
ruthenium for the synthesis of indole derivatives with benzoyl group as a directing group (Scheme 

Scheme 27. Ruthenium-catalyzed C–H activation to afford substituted indoles with alkynol.

Similarly, olefins are widely used in indole substitution to perform vinylation or alkylation reactions.
In 2013, Wang’s lab [51] and Song’s lab [52], respectively, developed a similar efficient protocol for
vinylation selectively on C2 of indoles assisted by the employment of N,N-dimethylcarbamoyl moiety
as a directing group (Scheme 28). A wide scope of olefins, including electron-donating groups, such as
the phenyl group, and electron-withdrawing groups, such as sulfonyl, phosphate, and cyano groups,
are applicable in this reaction.

Among the substituted alkenes, α, β-unsaturated esters are well studied. Prabhu [53] and his
coworkers developed a novel versatile regioselective C-2 alkenylation strategy catalyzed by ruthenium
for the synthesis of indole derivatives with benzoyl group as a directing group (Scheme 29). A variety of
esters such as methyl, ethyl, cyclohexyl, and phenyl esters perform in good yield. Notably, hydrolysis
happens on tert-butyl ester after the designed reaction. Similar conclusions can be found in Wu’s
work [54].

In 2018, Liu [55] reported a traceless directing group assisted by C2–H vinylation reaction on
indoles with broad substrate scope in an aqueous solution (Scheme 30). Decarboxylation occurs after
intramolecular alkenylation affording tetrahydropyridoindoles. This method provides efficient access
to synthesize various indole-fused derivatives under mild conditions.
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In 2014, Dong [56] developed a simple and highly efficient Ru-catalyzed C3 alkylation of indoles
with α, β-unsaturated ketones without the chelation assistance (Scheme 31). Besides indoles, a broad
scope of substances, such as pyrroles and other azoles, are exhibited with further applications leading
to 3,4-fused tricyclic indoles.

Dong [57] also reported direct alkylation or cascade cyclization reactions on C3 of indoles
(Scheme 32). With the Ru(PPh3)3Cl2 catalyst, the reaction provides C3-substituted β-ketone indoles
and [Ru(p-cymene)Cl2]2 affords 5,12-dihydrobenzo [6,7] cyclohepta [1,2-b] indoles. The selective
pathway may be attributed to the difference in binding affinity of a metal center with but-3-en-2-ol.

Allylation reactions are universally researched in organic chemistry. Bruneau [58] in 2009
constructed a tertiary carbon center on C3 of indole utilizing dimethyl allyl alcohol with the synthesized
catalyst complex C, resulting in the formation of the branched product as a major compound. In 2007,
Pregosin [59] developed a regioselective allylation of a variety of indole compounds using allyl alcohol
as substrate with a novel Ru(IV) salt under mild conditions (Scheme 33).
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alkylation process, based on the so-called “borrowing hydrogen methodology”, which is initially
dehydrogenated before undergoing a functionalization reaction, followed by a re-hydrogenation
reaction, led to ammonia as the only side product.Catalysts 2020, 10, x 20 of 28 
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In the same year, Che’s group [61] reported work involving ruthenium-catalyzed alkylation of
indoles with tertiary amines by C(sp3)–H Bond activation and dehydrogenation coupling (Scheme 35).
Interestingly, products with one carbon insertion between the para-site of the phenyl ring and C3 of
the indoles were detected at good yields. A mechanism proposed in the article shows that Ru catalyst
is oxidized by peroxide before participating the oxidation from the N-methyl compound to imine
intermediate. Then, a molecular of formaldehyde is removed to form the one carbon insertion product
with the presence of Lewis acid.
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Scheme 35. Ruthenium-catalyzed C3–H activation with methylated amines.

There are also additional C–H functionalization reactions on C2 or C3 of indoles. Prabhu [62]
selectively functionalize C-2 in the presence of highly reactive C-3 in indole derivatives using
[Ru(p-cymene)Cl2]2 catalyst, with a conjugate addition product instead of Heck-type product or C3
substitution achieved (Scheme 36). Wu [63] developed a Ru-catalyzed carbonylative coupling of
indoles and aryl iodides for the synthesis of 3-acylindoles. However, no desired products were detected
when indole or 3-methyl-1H-indole was used as the substrate, indicating that the C2 methyl group of
indoles played a crucial role in this C−H activation reaction.
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directing group at the C3 position (Scheme 38). Fukui index was calculated in this work indicating 
that the coordination and C–H activation of the Ru at C2 gives the most active C–H at C6. A 
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2.2. C–H Activation on C4–C7

There are fewer reports on ruthenium-catalyzed C–H functionalization of indoles on the C4 to C7.
However, the use of ortho-directing groups has become the preeminent strategy. With the assistance of
an aldehyde group on C3, Prabhu [64] achieved vinylation on C4 of indoles under mild conditions
(Scheme 37). In this study, it was found that the reaction may involve a six membered transition state
that leads to the expected 4-substituted indoles. Many sorts of olefins including α, β-unsaturated
esters, cyano olifins, or vinyl phosphorate can proceed in good yields.
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Frost [65] achieved remote C-6 selective ruthenium-catalyzed C–H alkylation of pyrimidinyl-indole
derivatives via a C2 cyclometallation σ-activation pathway with the assistance of an ancillary directing
group at the C3 position (Scheme 38). Fukui index was calculated in this work indicating that the
coordination and C–H activation of the Ru at C2 gives the most active C–H at C6. A mechanism study
shows that the reaction is involved in a free radical process (Scheme 39). First of all, The proposed
catalytically active monomer [RuCl2(p-cymene)] is formed by breaking apart the dimer using KOAc.
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Then, carboxylate-assisted cyclometallation at C2 occurs, including a proposed ring slip of the
para-cymene to accommodate the primary and ancillary directing groups. Tertiary alkyl radical is
created by the Ru(II) via single electron transfer before the cyclometalated species being attacked by
the alkyl radical at the most activated vacant position, C6. After that, redox rearomatization takes place
using the Ru(III) generated previously and an equivalent of potassium acetate. Protodemetalation
then occurs using AcOH to give the C6 C–H alkylated product (4a).
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With the assistance of the carboxyl group on the C5 position of indoles, C–H functionalization on
C4 and C6 of indole scaffolds can be achieved. Larrosa’s group developed a Ru-catalyzed C–H arylation
reaction on indole carboxylic acids allowing access to C7-, C6-, C5-, C4-arylated indole compounds [66].
In addition, Echavarren [67] discovered ruthenium-catalyzed ortho-alkynylation of benzoic acids with
bromoalkynes under mild conditions (Scheme 40). In one example of this work, 1H-indole-5-carboxylic
acid was alkynylated to give the double alkynylation products in moderate yield.
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N-pyridylindoles underwent regioselective acetoxylation, which is expected to be applicable to a
variety of dehydrogenative C–O coupling reactions.
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In this year, Ackermann [69] disclosed the first ruthenium bicarboxylate-catalyzed C7–H activation
of indoles via a weak coordinated unfavorable six membered ruthenacycle intermediate with pivaloyl
directing group (Scheme 42). Sulfonamidation with azide as well as vinylization with unsaturated esters
were reported in this work. Notable features of this strategy include unprecedented carboxylate-assisted
ruthenium-catalyzed C7–H activation of indoles and expedient C7–H activations enabling amidations
and alkenylations under exceedingly mild conditions.
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3. Summary

The importance of indoles as valuable structural subunits in pharmaceuticals, natural products,
and biologically active compounds means that new synthetic methods are being perpetually developed.
The last two decades have seen a remarkable development of ruthenium-catalyzed C–H activations for
the synthesis of indole derivatives. There are still many challenges to overcome, such as the control of
regioselectivity at other C−H sites than at the ortho-position of directing groups or the development of
new directing groups. Moreover, installation and removal of directing auxiliaries decrease the overall
efficiency of the C–H activation process. More importantly, enantioselective C–H functionalization
are highly desired to produce indole derivatives, and the relevant methodologies should also be paid
considerable attention in this area. Therefore, further developments are expected to be able to address
these questions.
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