

Supplementary material

An escape from noble metals for generating urethanes via reductive carbonylation of nitroarenes over FeSe₂/ γ -Al₂O₃

Anh Vy Tran¹, Thuy Tram Huynh Nguyen¹, Thanh Tung Nguyen¹, Jayeon Baek², and Yong Jin Kim^{2,*}

¹ Department of Green Process and System Engineering, Korea University of Science and Technology (UST), 89 Yangdaegiro-gil, Ipjang-myeon, Cheonan 31056, Republic of Korea

² Green Chemistry & Material Group, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Republic of Korea

* Correspondence: yjkim@kitech.re.kr (Y. J. Kim); Tel: (+82-41) 589-8469; fax: (+82-41) 589-8580

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table S1: title, Video S1: title.

Contents:

- 1. Different types of 5 wt% FeSe₂/support for the generation of MPC (Table. S1)
- 2. TON value of the reductive carbonylation reaction using FeSe₂/ γ -Al₂O₃ as catalyst (Table. S2)
- 3. X-ray diffraction spectra (XRD) of standard Ferroselite FeSe₂ (Fig. S1)
- 4. X-ray diffraction spectra (XRD) of FeSe₂/γ-Al₂O₃ (Fig. S2)
- 5. EDX/EDS spectra of FeSe₂ and the atomic ratio calculation of Fe/Se (Fig. S3)
- 6. EDX/EDS spectra of FeSe₂/γ-Al₂O₃ (Fig. S4)
- 7. X-ray photoelectron spectroscopy (XPS) survey spectra of FeSe₂ (Fig. S5)
- 8. X-ray photoelectron spectroscopy (XPS) survey spectra of FeSe₂/γ-Al₂O₃ (Fig. S6)
- 9. X-ray photoelectron spectroscopy (XPS) spectra of FeSe₂ (Fig. S7)
- 10. X-ray photoelectron spectroscopy (XPS) of FeSe₂/ γ Al₂O₃ (Fig. S8)
- 11. High resolution TEM images of neat FeSe2 and FeSe2/γ-Al2O3 (Fig. S9)
- 12. Thermogravimetric analysis (TGA) of neat FeSe₂ (Fig. S10)

13. GC-MS of the filtrate obtained in the reductive carbonylation reaction using FeSe₂ as catalyst with molar ratio NB/FeSe₂ = 1(Fig. S11)

14. GC-MS of the filtrate obtained in the reductive carbonylation reaction using FeSe₂ as catalyst with molar ratio NB/FeSe₂ = 1 (Fig. S12)

- 15. ¹H-NMR spectra of MPC product obtained from the reductive carbonylation reaction (Fig. S13)
- 16. ¹³C-NMR spectra of MPC product obtained from the reductive carbonylation reaction (Fig. S14)
- 17. GC-MS of Methyl (4-methoxyphenyl) carbamate (Fig. S15)
- 18. GC-MS of Methyl (4-methylphenyl) carbamate (Fig. S16)
- 19. GC-MS of Methyl (4-bromophenyl) carbamate (Fig. S17)
- 20. GC-MS of Methyl (4-acetylphenyl) carbamate (Fig. S18)
- 21. GC-MS of Dimethyltoluene-2,4-dicarbamate (Fig. S19)
- 22. GC-MS of Dimethyl 1,4-phenylenebiscarbamate (Fig. S20)
- 23. SEM images of fresh FeSe₂/ γ-Al₂O₃ catalyst, and spent FeSe₂/ γ-Al₂O₃ (Fig. S21)
- 24. X-ray diffraction spectra of (a) fresh catalyst FeSe2, and (b) recovered FeSe2 (Fig. S22)
- 25. X-ray photoelectron spectroscopy (XPS) of the fresh and spent FeSe₂/ γ-Al₂O₃ (Fig. S23)

12

FeSe₂/Montmorillonite

Entry	Catalyst	NB Conversion	MPC Yield	Selectivity
		(%)	(%)	(%)
1	FeSe ₂ / γ-Al ₂ O ₃	>99	98.9	98.9
2	FeSe ₂ / basic Al ₂ O ₃	>99	91.6	91.6
3	FeSe2/ a-Al2O3	98.1	87.8	89.5
0		<i>y</i> 0.1	07.0	07.0
4	FeSe ₂ /AlPO ₄	87.0	85.7	98.5
5	FeSe ₂ /Zeolite beta	>99	79.9	79.9
6	FeSe ₂ /Activated C	>99	75.9	75.9
7	FeSe ₂ /SiO ₂	78.4	71.5	91.3
8	FeSe ₂ /CeO ₂	78.2	65.5	83.7
9	FeSe2/neutral Al2O3	71.6	64.6	90.3
フ	resezmential Al2O3	/1.0	04.0	70.3
10	FeSe2/FA-PO4	59.4	58.1	97.9
	, * * ~ *		0012	
11	FeSe2/acidic Al2O3	60.8	49.7	81.7

Table S. 1 Different types of FeSe₂/support for the formation of MPC^a

^aNB (2.46 g, 20 mmol), 4~5 wt% FeSe₂/support (1 g, [FeSe₂]: 0.2338 mmol), molar ratio of NB/FeSe₂ = 85, MeOH (30 mL), T = 160 °C, P (CO) = 8.3 MPa, *t* = 4 h.

50.8

43.2

85.0

Entry	Substrate	gNB / gFeSe2	Molar ratio NB/FeSe ₂	TON (wt)	TON			
					(mmol)			
1ª	NB	560	1000	221	384			
2 ^b	NB:ANL	560	1000	369	640			
	(1:1)							
^a Conditions: NB (7.2 g, 58.5 mmol), 5wt% FeSe ₂ /γ-Al ₂ O ₃ (0.25 g, [FeSe ₂] = 0.0125 g, 0.0585 mmol), molar ratio of								
NB/FeSe ₂ = 1000, MeOH = 30 mL, P = 8.3MPa of CO, T = 160 °C, <i>t</i> = 72 h.								
^b NB (7.2 g, 58.5 mmol), AN (5.45 g, 58.5 mmol), 5wt% FeSe ₂ /γ-Al ₂ O ₃ (0.25 g, [FeSe ₂] = 0.0125 g, 0.0585 mmol),								
MeOH = 30 mL, P = 8.3MPa of CO, T = 160 °C, <i>t</i> = 72 h.								

Table S. 2 TON value of the reductive carbonylation reaction using FeSe₂/ γ -Al₂O₃ as catalyst

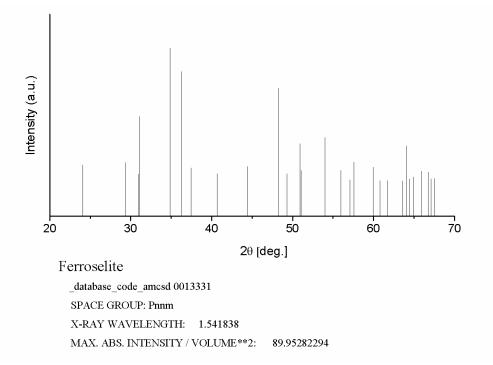
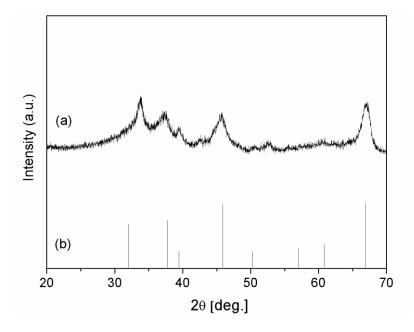



Figure S. 1 X-ray diffraction spectra (XRD) of standard Ferroselite $FeSe_2$

Figure S. 2 (a) X-ray diffraction spectra (XRD) of FeSe₂/γ Al₂O₃, (b) XRD standard spectra of Al_{2.144}O_{3.2} (γ - Aluminium oxide) PDF-number 79-1558-Cubic Fd-3m (227)

		Weight‰	Atomic‰	÷
	Fe·K₀	24.90.	31.91.	
	Se·L	75.10₊	68.09.	÷
Image: Contract of the second secon		100.00.	Ą	÷

Figure S. 3 EDX/EDS spectra of FeSe₂ and the atomic ratio calculation of Fe/Se.

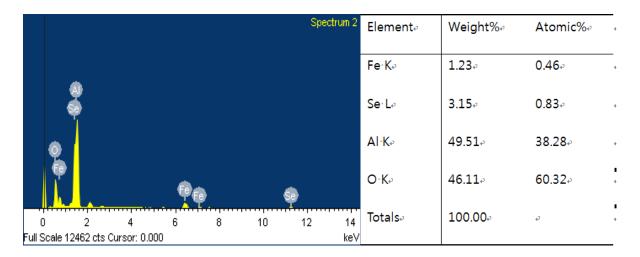


Figure S. 4 EDX/EDS spectra of FeSe₂/ γ -Al₂O₃ and the atomic ratio calculation.

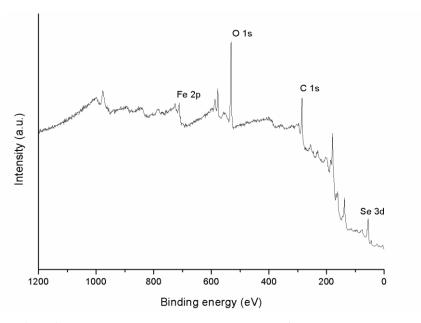


Figure S. 5 X-ray photoelectron spectroscopy (XPS) survey spectra of FeSe2

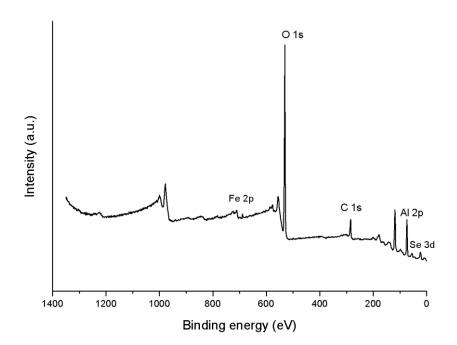
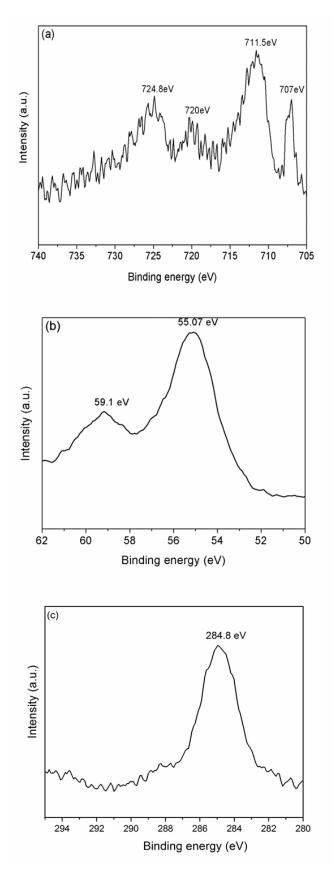



Figure S. 6 X-ray photoelectron spectroscopy (XPS) survey spectra of FeSe₂/ γ Al₂O₃

8 of 18

Figure S. 7. X-ray photoelectron spectroscopy (XPS) spectra of FeSe₂ in the region of (a) Fe3p, (b) Se3d, and (c) C1s.

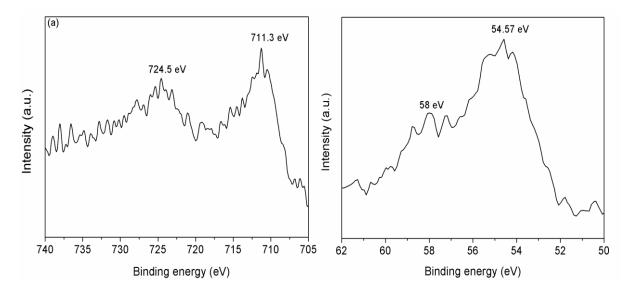


Figure S. 8 X-ray photoelectron spectroscopy (XPS) of FeSe₂/ γ-Al₂O₃ in the region of (a) Fe3p and (b) Se3d

XPS analysis was carried out to investigate the oxidation state of Fe and Se in FeSe₂/ γ -Al₂O₃. XPS survey spectra of FeSe₂/ γ -Al₂O₃, (see Fig.S-6) shows the photoelectron lines of Fe, Se, Al, and O. In Fig S.7a, two peaks of Fe 2p_{1/2} and Fe 2p_{3/2} at 711.3 and 724.5 eV clearly indicates the existence of Fe²⁺, which is well in accordance with the literature [1]. Meanwhile, the peak at 54.57 eV and 58 eV in Fig.S7b can be ascribed to Se 3d_{5/2} and Se 3d_{3/2}, indicating the existence of Se²⁻ species in the FeSe₂ [1-3]. From these data, it is clear that the FeSe₂ after loading on support appeared with binding energy values almost the same as those values of the neat FeSe₂.

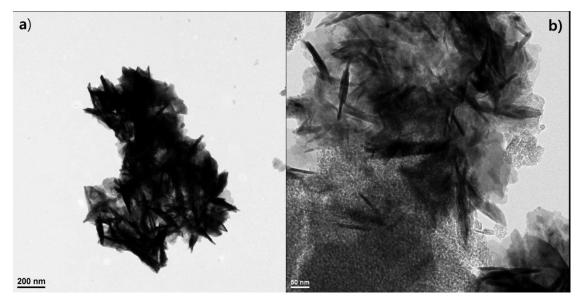


Figure S.9 High resolution TEM images of (a) neat FeSe2 prepared with the presence of pyridine, and (b)

FeSe₂/ γ -Al₂O₃ prepared with the presence of pyridine.

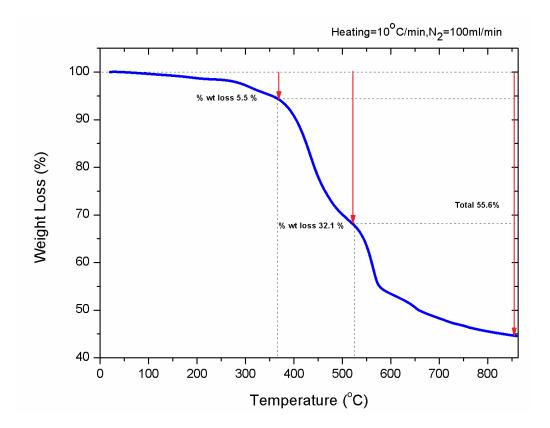
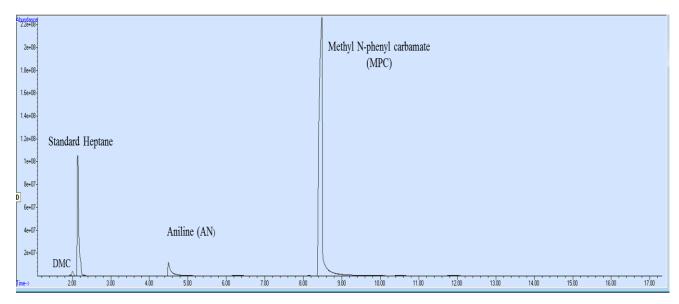
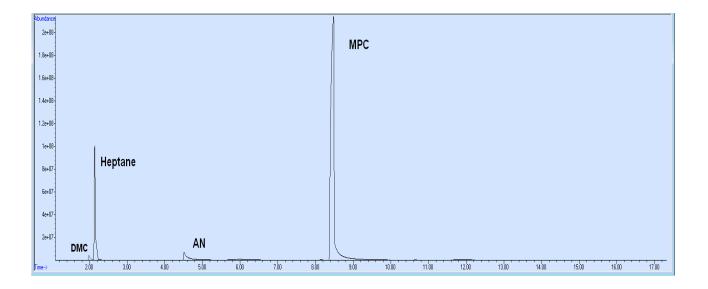
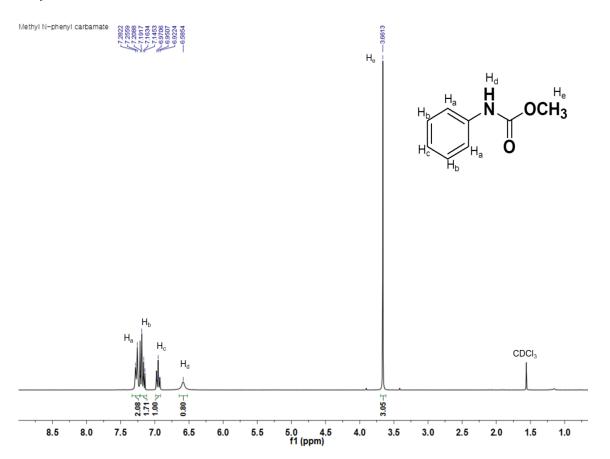
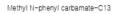




Figure S. 10 Thermogravimetric analysis (TGA) of FeSe2.


Thermal stability of neat FeSe₂ as prepared catalyst is confirmed by TGA. The fig S.9 shows that the major mass loss started from 380 to 520 °C is due to the decomposition of FeSe₂. It is indicating that FeSe₂ have high thermal stability up to 380 °C.


Figure S. 11 GC-MS of the filtrate obtained in the reductive carbonylation reaction using FeSe₂ as catalyst with molar ratio NB/FeSe₂ = 1,

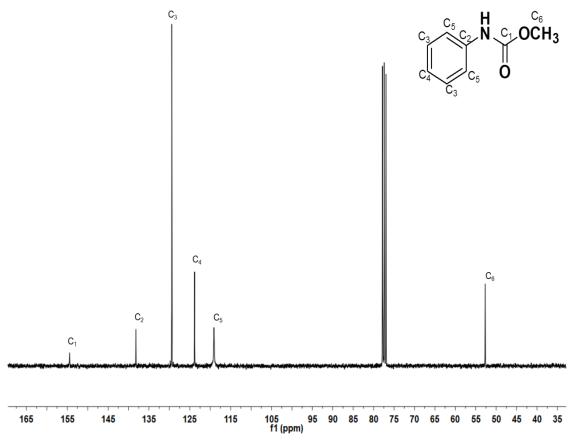


Figure S. 12 GC-MS of the filtrate obtained in the reductive carbonylation reaction using FeSe₂ as catalyst with molar ratio NB/FeSe₂ = 4

Figure S. 13 ¹H-NMR spectra of Methyl N-phenyl carbamate (MPC) product obtained from the reductive carbonylation rxn. ¹H NMR (300 MHz, CDCl₃, δ 3.66 (s, 3H, OCH₃); 6.59 (s, 1H, NH); 6.95 (t, 1H, ArH); 7.17(m, 2H, ArH); 7.27 (d, 2H, ArH).

Figure S. 14 ¹³C-NMR of MPC product obtained from the reductive carbonylation reaction of nitrobenzene. ¹³C NMR (300 MHz, CDCl₃, δ 52.5 (OCH₃); 118.85 (C₆H₅-); 123.6 (C₆H₅-); 129.1 (C₆H₅-); 137.9 (C₆H₅-); 154.19 (C₆H₅-).

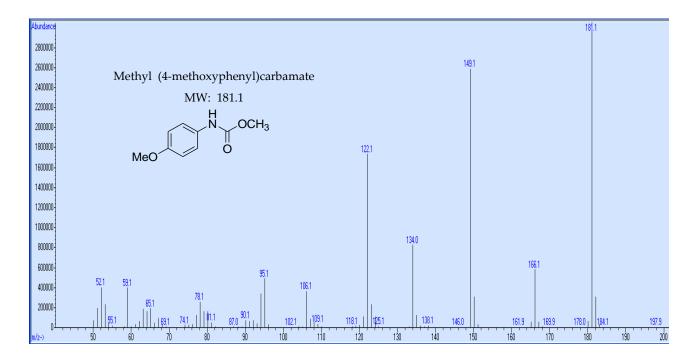


Figure S. 15 GC-MS of Methyl (4-methoxyphenyl) carbamate

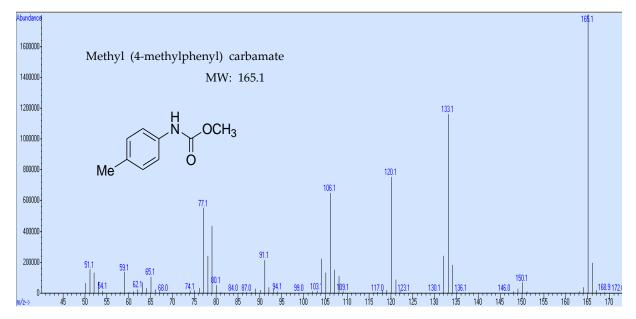


Figure S. 16 GC-MS of Methyl (4-methylphenyl) carbamate

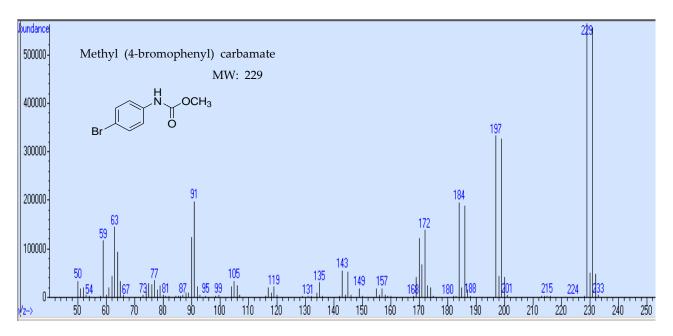


Figure S. 17 GC-MS of Methyl (4-bromophenyl) carbamate

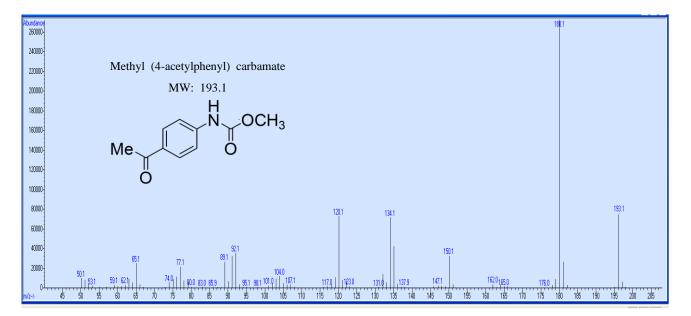


Figure S. 18 GC-MS of Methyl (4-acetylphenyl) carbamate

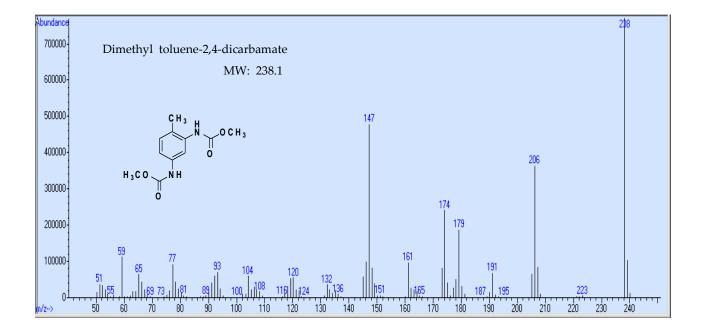


Figure S. 19 GC-MS of Dimethyl toluene-2,4-dicarbamate

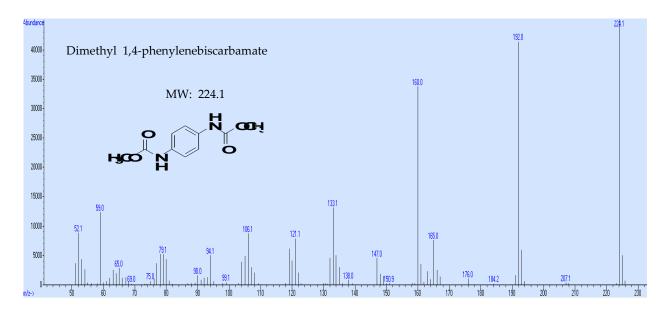


Figure S. 20 GC-MS of dimethyl 1,4-phenylenebiscarbamate

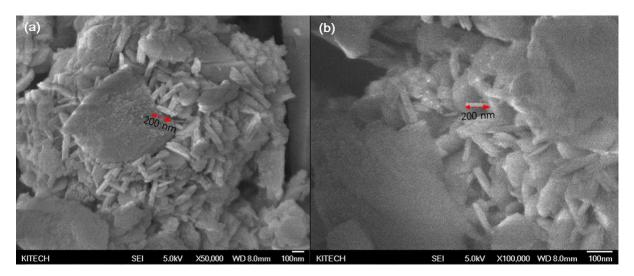
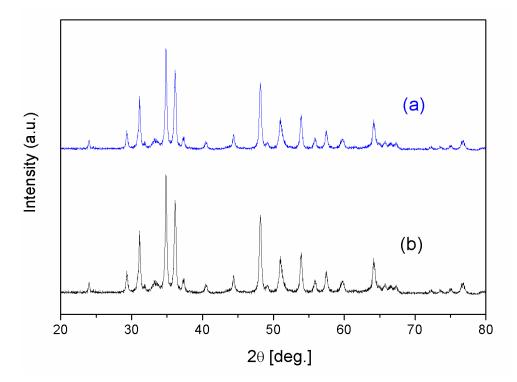



Figure S. 21 Scanning electron microscopy (SEM) figures of (a) fresh $FeSe_2/\gamma$ -Al₂O₃ catalyst, and (b) spent $FeSe_2/\gamma$ -Al₂O₃

As shown in Fig. S20, SEM analysis was conducted to compare the morphology of the fresh and reused catalysts. There are no noticeable differences between the fresh catalyst and the reused one. It indicates the high recyclability of the catalyst.

Figure S. 22 X-ray diffraction spectra of (a) fresh catalyst FeSe₂, (b) recovered FeSe₂ after 5th recycling in the reductive carbonylation reaction of NB.

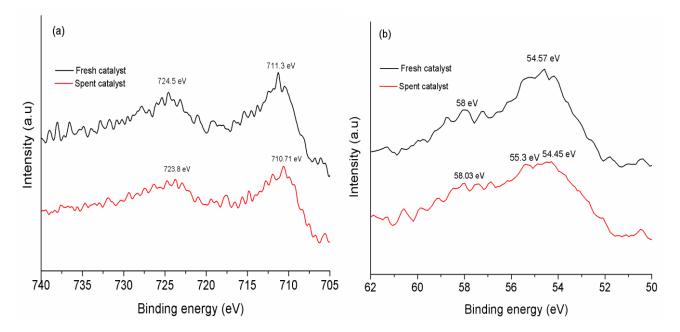


Figure S. 23 XPS of the fresh and spent FeSe₂/ γ-Al₂O₃ in the region of (a) Fe 3p; (b) Se 3d.

XPS results of fresh and spent FeSe₂/ γ -Al₂O₃ over the spectra regions of Fe 3p and Se 3d were showed in Fig. S21. In the Fe 3p region of fresh and spent catalysts, there was no difference in the binding energy. In the Se 3d region, the spent catalyst shows the shifting of Se 3d peak from 54.45 eV to 55.3 eV, it is indicating the partial formation of Se (0) species during the reductive carbonylation process. These results are in good agreement with the presence of carbonyl selenide (Se-CO) species, which was shown in FT-IR result.

18 of 18

References:

[1] Q. Zheng, X. Cheng, H. Li, Microwave Synthesis of High Activity FeSe2/C Catalyst toward Oxygen Reduction Reaction, Catalysts. 5 (2015) 1079-1091. https://doi.org/10.3390/catal5031079

[2] M. Shenasa, S. Sainkar, D. Lichtman, XPS study of some selected selenium compounds, J electron spectrosc. 40 (1986) 329-337. https://doi.org/10.1016/0368-2048(86)80043-3

[3] J. Jia, Q. Zhang, Z. Li, X. Hu, E. Liu, J. Fan, Lateral heterojunctions within ultrathin FeS–FeSe2 nanosheet semiconductors for photocatalytic hydrogen evolution, Journal of Materials Chemistry A. 7 (2019) 3828-3841. https://doi.org/10.1039/c8ta11456k

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).