Supplementary Information

Improved NOx Reduction Using C₃H₈ and H₂ with Ag/Al₂O₃ Catalysts Promoted with Pt and WOx

Naomi N. González Hernández ¹, José Luis Contreras ^{1,*}, Marcos Pinto ¹, Beatriz Zeifert ², Jorge L. Flores Moreno ¹, Gustavo A. Fuentes ³, María E. Hernández-Terán ³, Tamara Vázquez ², José Salmones ² and José M. Jurado ¹

- ¹ Energy Department, CBI, Universidad Autónoma Metropolitana-Azcapotzalco. Av. Sn. Pablo 180, Col. Reynosa, México City C.P.02200, Mexico; iq_naomi@hotmail.com (N.N.G.H.); socram_pinto@hotmail.com (M.P.); jflores@correo.azc.uam.mx (J.L.F.M.) josemanueljuradoflores@outlook.com (J.M.J.)
- ² Instituto Politécnico Nacional, ESIQIE. U.P. López Mateos Zacatenco, Mexico City C.P. 07738, Mexico; bzeifert@yahoo.com (B.Z.); avazquezrdz@hotmail.com (T.V.); jose_salmones@yahoo.com.mx (J.S.)
- ³ Universidad Autónoma Metropolitana-Iztapalapa, CBI-IPH, Mexico City C. P. 09340, Mexico; gfuentes@xanum.uam.mx (G.A.F.); meht4@hotmail.com (M.E.H.-T.)
- * Correspondence: jlcl@azc.uam.mx; Tel.: +52-55591911047

SI.1. WOx promoter effect on Pt in the combustion of C₃H₈

To independently study how W stabilizes the Pt/Al_2O_3 catalyst during the combustion of C_3H_8 in air, the catalysts 0.4Pt/A (without W) and 0.4Pt/AW (with W) were subjected to pre-reduction in H_2 at 500 and 800°C (Pt sintering). The catalysts were evaluated under the following conditions: 300cm³/min of air mixture flow containing 999 ppm of C_3H_8 and 20 mg of catalyst.

The stabilizing effect of the addition of tungsten oxides (WOx) on Al₂O₃ of the 0.4Pt/AW catalyst can be seen in Figure A1 (a-d). Due to the H₂ reduction process up to 800°C (sintering of the Pt), there is a decrease in the dispersion of the Pt that exists when the catalyst has been reduced with H₂ at 800°C and 500°C. Consequently, a decrease in C₃H₈ conversion was observed at temperatures above 400°C (Figure A1 (a)). This decrease was not as noticeable when WOx was added to the 0.4Pt/AW catalyst (Figure A1 (b)).

Figure S1. C₃H₈ combustion in air over the (•) 0.4Pt/A; (\Box) 0.4Pt/AW catalysts reduced to 500 and 800°C. (a) Effect of reduction temperature on catalyst 0.4Pt/A without W; (b) Effect of reduction temperature on catalyst 0.4Pt/AW with W; (c) Effect of WOx during catalyst deactivation 0.4Pt/A without W and 0.4Pt/AW with W reduced to 500°C and (d) Effect of WOx during deactivation of 0.4Pt/A catalysts without W and 0.4Pt/AW with W reduced to 800°C. Evaluation conditions: 300cm³/min of air mixture flow plus 999 ppm of C₃H₈, catalyst weight: 20 mg.

The effect of the WOx promoter during the C₃H₈ combustion deactivation process can also be observed in the two catalysts when they were reduced to 500°C (Figure A1 (c)) and when they were reduced to 800°C (Figure A1 (d)). In both cases, it was observed that the 0.4Pt/AW catalyst promoted with W showed shower higher stability. As has been reported in the literature [43,44], the addition of WOx to Al₂O₃ stabilizes the Pt particles (see Figure A2). With this, the high temperatures (> 500°C) will not strongly affect Pt and Ag dispersion.

SI.2. Weisz-Prater criterion to evaluate internal mass transfer limitations in catalysts.

The C_{WP} criterion establishes that if $C_{WP} < 1$ is fulfilled, there are no diffusion mass transfer limitations, and therefore there is no significant concentration gradient within the granules. Thus it can be ensured that reaction rates are being obtained in a reactor in kinetic regime.

The Weisz-Prater (CWP) criterion uses the measured values of the reaction rate (-ra) to determine whether internal diffusion is limiting the evaluated reaction rate [63]:

$$C_{WP} = \frac{-r_a \rho_c R^2}{\text{De } c_{as}}$$

This criterion requires the following variables:

-r_a = Reaction rate (mol/g_c.s)

 Q_c = Catalyst granule density (g/cm³)

R = Radius of the particle (cm)

De = Effective diffusivity (cm²/s)

Using the pore model in disorder [64]

De = D_Mε_M² + [ε_μ²(1 + 3ε_M)/(1- ε_μ)]D_μ

 D_M = Combined diffusivity in the macropores (cm²/s)

 D_{μ} = Combined diffusivity in the micropores (cm²/s)

S2

 ϵ_{M} = Porosity in the in the macropore region [in our catalysts, ϵ_{M} = 0.61 for a catalyst granule density of 0.417 (gc/cm³)][64]

 ϵ_{μ} = Porosity in the in the micropore region = 0The combined diffusivity in the macropores DM was calculated as: $D_{M} = 1/[1/D_{NO-N2} + 1/(D_{K})NO]$ S3Where DNO-N2 was calculated by the Chapman-Enskog formula [64]: $D_{NO-N2} = (0.0018583)[[T^{3/2}(1/M_{NO}+1/M_{N2})^{1/2}]/ (Pt \sigma^{2}_{NO-N2} \Omega_{NO-N2})] =S4and the Knudsen diffusivity of NO is calculated by [64]:<math>(D_{K})_{NO} = 9.7 \times 10^{3} a (T/M_{NO})^{1/2}$ S5Where: $D_{NO-N2} = Global diffusivity of NO into N_2 (cm^{2}/s)$ $(D_{K})_{NO} = Knudsen diffusivity of NO into the catalyst pores (cm^{2}/s)$

T = Temperature (K)

a = pore radius (cm)

MNO = molecular weight of NO (g/mol)

M_{N2}=molecular weight of N₂ (g/mol)

Pt = Total Pressure (atm)

 σ^{2} NO-N2 = Lennard-Jones constant of potential energy (Å)[64]

 Ω_{NO-N2} = Collision integral which is function of k_BT/ \mathcal{E}_{NO-N2} [64], where: k_B = is the Boltzman constant = 1.38x10⁻²³ (J/K), \mathcal{E}_{NO-N2} = Lennard-Jones constant of potential energy for the NO and N₂.

Because in our catalysts there are no micropores, only pores between 30 to 70 Å (Table 1), the value of ε_{μ} is zero and the equation S2 simplifies to:

$De = D_M \varepsilon_M^2$	S6
C _{as} = Concentration of the reagent on the surface of the catalyst (mol/cm ³)	
$C_{as} = C_{ab} - [(-r_a)(\mu/Q D_{NO-N2})^{2/3} / a_t (G/Q) J_D$	S7
$J_D = 0.458/\epsilon_B (d_P G/\mu)^{-0.407}$	S8
$\mu = 2.6693 \times 10^{-6} (M_{\rm N2}T)^{0.5} / \sigma^2 \Omega_{\mu} $ [65]	S9

Were:

Cab = Concentration of NO in the gas phase (mol/cm³) = 1.841x10⁻⁸ mol_{NO}/cm³

 μ = Gas viscosity

q = Gas density

 a_t = external area of the catalytic granules (cm²/g) (a_t = 6/d_P Q_P)

 Q_p = Particle density (g/cm³)

G = Surface mass velocity $(g/s cm^2)$

 d_p = Diameter of the catalytic particle sphere-shaped (cm) = 0.0148 cm

 ε_{B} = Void space fraction of the intragranular space (in the catalytic bed)

 σ = Collision diameter (Å)

 Ω_{μ} = Collision integral

 $-r_a = Q C_{ab} (Xa)/W = Reaction rate (mol/g_c.s)$

Q = volumetric flow (cm³/s)

 C_{ab} = Concentration of NO in the gaseous phase (mol/cm³), calculated using the equation of ideal gas.

 $C_{ab} = P_{\rm NO}/R_gT$

PNO = Partial pressure of NO (atm)

T = Gas temperature in the reactor (K)

Rg = Gas constant

Xa = NO conversion

W = Catalyst weight (g)

The experimental and calculated values are shown in Table S1.

Table S1. Microreactor operating conditions to evaluate the SCR of NO at 250°C (average temperature).

Property name (units)	Experimental or calculated value	
$-r_a = Reaction rate (mol/g_c.s)$	4.10 x 10 ⁻⁷ (NO conv.= 50%)	
Qc = Catalyst granule density (gc/cm3)	0.417	
R = Radius of the particle (cm)	7.45x10 ⁻³	
μ = N ₂ gas viscosity (Pa.s) (250°C) [65]	2.6x10-5	
Xa = NO conversion	0.5	
d _p = Diameter of the catalytic particle sphere-shaped (cm)	0.0148 cm	
C _{ab} = Concentration of NO in the gas phase (mol/cm ³)	1.841x10 ⁻⁸	
C_{as} = Concentration of NO on the surface of the catalyst	1.826 x 10 ⁻⁸	
(mol/cm ³) (using the Ec.S7)		
D_{NO-N2} = Gaseous diffusivity of NO in N ₂ (cm ² /s) (T = 250°C)	0.603	
From Chapman-Enskog equation.		
D_{K} = Knudsen diffusivity (cm ² /s), (T = 250°C)	0.0133	
D = Combined diffusivity (cm2/s)	0.013	
De = Effective diffusivity (cm2/s) (Ec. S6)	0.00483	
ε_{M} = Porosity in the in the macropore region	0.61	
ϵ_{μ} = Porosity in the in the micropore region	0	
T = Gas temperature in the reactor (K)	523	
Pt = Total Pressure (atm)	1	
<i>a</i> = pore radius (cm)	3.3x10-7	
M _{NO} = molecular weight of NO (g/mol)	30	
M _{N2} =molecular weight of N ₂ (g/mol)	28	
ϱ = Gas density (g/cm³)	0.001145	

a_t = external area of the catalytic granules (cm ² /g)	579
ϵ_B = Void space fraction of the intragranular space (in the	0.42
catalytic bed)	0.45
Q_P = Particle density (g/cm ³)	0.695
Q = volumetric flow (cm3/s)	6.667
G = Surface mass velocity (g/s cm^2)	9.719x10 ⁻³
P _{NO} = Partial pressure of NO (atm)	4.5x10 ⁻⁴ atm
W = Catalyst weight (g)	0.15
Rg = Gas constant (cm ³ atm/mol K)	82
σ = Collision diameter (Å)	3.798
Ω_{μ} = Collision integral	0.86
C_{WP} (Value evaluated at 250°C and 1 atm)	0.37

References

- [43] Schott F. J. P.; Balle P.; Adler J.; Kureti S. Reduction of NOx by H₂ on Pt/WO₃/ZrO₂ catalysts in oxygen-rich exhaust. Appl. Catal. B Environ. **2009**, 87, 18–29.
- [44] Contreras J. L.; Fuentes G. A.; García L. A.; Salmones J.; Zeifert B. WOx effect on the catalytic properties of Pt particles on Al₂O₃. Journal of Alloy and Compounds **2009**, 483, 450-452.
- [63] Fogler S. H. Elements of Chemical Reaction Engineering, 3rd. Ed.; Prentice Hall Inc. New Jersey, USA, 1999; pp.738-758.
- [64] Smith J. F. Chemical Engineering kinetics, 3rd. Ed.; McGraw-Hill Inc., USA, 1986; pp.524-534.
- [65] Hirshfelder J. O.; Curtis C. F. and Bird R. B. Molecular theory of gases and liquids, 1^{ra} Ed.; Wiley, 1964. ISBN 0-471-40065-3.