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Abstract: Palladium catalysts deposited over silica gel bearing simple amine (≡Si(CH2)3NH2)
and composite functional amide pendants equipped with various donor groups in the terminal
position (≡Si(CH2)3NHC(O)CH2Y, Y = SMe, NMe2 and PPh2) were prepared and evaluated in
Sonogashira-type cross-coupling of acyl chlorides with terminal alkynes to give 1,3-disubstituted
prop-2-yn-1-ones. Generally, the catalysts showed good catalytic activity in the reactions of aroyl
chlorides with aryl alkynes under relatively mild reaction conditions even without adding a copper
co-catalyst. However, their repeated use was compromised by a significant loss of activity after the
first catalytic run.

Keywords: deposited catalysts; palladium; functional amides; Sonogashira reaction; alkynyl
ketone synthesis

1. Introduction

The first examples of Sonogashira-type cross-coupling of terminal alkynes with acyl chlorides to
give alkynyl ketones (Scheme 1) were reported by Crisp and O’Donoghue in 1989 [1], who reacted furoyl
chlorides with alkynes in the presence of [PdCl2(PhCN)2]/CuI and triethylamine to produce alkynyl
furanyl ketones. With [PdCl2(PPh3)2]/CuI and similar catalysts, this reaction subsequently made it
possible to synthesize a number of alkynyl ketones in organic solvents [2,3], in water (when adding
sodium dodecyl sulfate as a phase transfer reagent) [4–7] and even in a flow reactor (when using
unsupported Pd(OAc)2 as the catalyst) [8].
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1. Introduction 

The first examples of Sonogashira-type cross-coupling of terminal alkynes with acyl chlorides to 
give alkynyl ketones (Scheme 1) were reported by Crisp and O’Donoghue in 1989 [1], who reacted 
furoyl chlorides with alkynes in the presence of [PdCl2(PhCN)2]/CuI and triethylamine to produce 
alkynyl furanyl ketones. With [PdCl2(PPh3)2]/CuI and similar catalysts, this reaction subsequently 
made it possible to synthesize a number of alkynyl ketones in organic solvents [2,3], in water (when 
adding sodium dodecyl sulfate as a phase transfer reagent) [4–7] and even in a flow reactor (when 
using unsupported Pd(OAc)2 as the catalyst) [8]. 
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Scheme 1. Sonogashira cross-coupling of alkynes and acyl chlorides resulting in alkynyl ketones. 

Alongside the development of homogenous catalysts, various heterogeneous catalytic systems 
were devised for this cross-coupling reaction. Wang et al. [9] studied the coupling of aromatic 
chlorides and cinnamoyl chloride with ethynylbenzene mediated by [PdCl2(PPh3)2]/CuI deposited on 
KF-alumina under microwave irradiation. Subsequent reports described the use of conventional 
Pd/C [10], Pd nanoparticles supported by poly(1,4-phenylene sulfide) [11] or by functionalized 
polystyrene, PS-CH2NHC(S)NHN=C(Ph)C(Me)=N-OH (PS = polystyrene) (without a Cu co-catalyst) 
[12], and applications of Pd/BaSO4 with a ZnCl2 co-catalyst [13,14] in similar reactions. 

Scheme 1. Sonogashira cross-coupling of alkynes and acyl chlorides resulting in alkynyl ketones.

Alongside the development of homogenous catalysts, various heterogeneous catalytic systems
were devised for this cross-coupling reaction. Wang et al. [9] studied the coupling of aromatic chlorides
and cinnamoyl chloride with ethynylbenzene mediated by [PdCl2(PPh3)2]/CuI deposited on KF-alumina
under microwave irradiation. Subsequent reports described the use of conventional Pd/C [10],
Pd nanoparticles supported by poly(1,4-phenylene sulfide) [11] or by functionalized polystyrene,
PS-CH2NHC(S)NHN=C(Ph)C(Me)=N-OH (PS = polystyrene) (without a Cu co-catalyst) [12],
and applications of Pd/BaSO4 with a ZnCl2 co-catalyst [13,14] in similar reactions.
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In 2009, Tsai et al. [15] reported the application of a Pd-bipyridyl complex grafted onto the
mesoporous molecular sieve MCM-41.Coupling reactions of various substrates mediated by this
catalyst in neat triethylamine, in the presence of CuI and triphenylphosphine, proceeded satisfactorily
at low Pd loading (0.002–0.1 mol.%). More recently, Cai et al. [16] used a related Pd catalyst prepared
by depositing Pd(OAc)2 over an MCM-41 surface, modified by ≡Si(CH2)3NHCH2CH2NH2 groups.
At 0.2 mol.% Pd loading, and with 0.2 mol.% CuI as a co-catalyst, this material could be reused ten times
with only a marginal loss of activity (reaction in triethylamine at 50 ◦C). Other authors evaluated the
related catalysts obtained from supports bearing phosphine-donor groups, e.g., periodic mesoporous
silica with ≡CH2CH2PPh2 substituents [17] and polystyrene modified by the –CH2P+Ph2CH2CH2PPh2

Cl− moieties at the surface [18].
Alkynyl ketones are valuable synthetic building blocks, opening an access to a range of useful

compounds, such as intermediates for the synthesis of various heterocycles [19–23], biologically active
compounds [24], naturally occurring compounds [25], liquid-crystalline materials [26], and ligands
for transition metal ions [27]. In particular, the promising results achieved with deposited catalysts
in the cross-coupling of acyl chlorides and alkynes and the wide range of applications of coupling
products led us to consider using palladium catalysts deposited over the conventional silica gel bearing
donor-substituted amide pendants [28] at the surface (Scheme 2) [29], which were already evaluated in
Suzuki-Miyaura biaryl coupling [30]. The results from our study of these catalysts are presented in
this contribution, with a particular focus on the reaction scope and a possible influence of the donor
moieties within the functional supports that were varied.
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freshly calcined, commercial chromatography-grade silica gel (size fraction 63–200 µm) was mixed 
with (3-aminopropyl)trimethoxysilane in refluxing toluene to afford 3-aminopropylated support 1. 
Material 1 was subsequently treated with α-functionalized acetic acids in the presence of peptide 
coupling agents [31,32], yielding the corresponding amide-functionalized supports 2–4. In the final 
step, the resulting materials were treated with palladium(II) acetate in dichloromethane to produce 
the deposited Pd catalysts 5–7. As an extension of our previous work, the parent aminopropylated 
material 1 was also palladated to give material 8 containing only amine functional groups. 

Scheme 2. Deposited catalysts used in this study.

2. Results

2.1. Synthesis of the Catalysts

The deposited catalysts were prepared as reported previously (Scheme 3) [29]. In the first step,
freshly calcined, commercial chromatography-grade silica gel (size fraction 63–200 µm) was mixed
with (3-aminopropyl)trimethoxysilane in refluxing toluene to afford 3-aminopropylated support 1.
Material 1 was subsequently treated with α-functionalized acetic acids in the presence of peptide
coupling agents [31,32], yielding the corresponding amide-functionalized supports 2–4. In the final
step, the resulting materials were treated with palladium(II) acetate in dichloromethane to produce
the deposited Pd catalysts 5–7. As an extension of our previous work, the parent aminopropylated
material 1 was also palladated to give material 8 containing only amine functional groups.
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Scheme 3. Preparation of catalysts 5-8. Legend: i. (3-aminopropyl)trimethoxysilane in toluene, 
refluxing; ii. amidation with YCH2CO2H in the presence of peptide coupling agents (1-
hydroxybenzotriazole and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (EDC) or the 
corresponding hydrochloride (EDC⋅HCl)); iii. treatment with Pd(OAc)2 in dichloromethane. 

Materials 1–8 were characterized by elemental analysis and infrared (IR) spectroscopy, and the 
data on 1–7 were compared with those on the previously studied catalysts. While the IR spectra of 
the newly synthesized materials were virtually identical to those previously reported (see ref. [29]), 
elemental analysis revealed differences, most likely reflecting the amount of residual adsorbed matter 
(mostly water). Full characterization data are presented in the Experimental Section. 
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acyl chlorides (see Introduction) has been studied considerably less than their use in conventional 
Sonogashira cross-coupling between alkynes and organic halides [33]. Hence, our initial experiments 
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their performance with regard to influence of the varied functional groups modifying the support’s 
surface. As a model reaction, we chose the coupling between equimolar amounts of ethynylbenzene 
(9a) and 4-methylbenzoyl chloride (10d), producing 1-(4-methylphenyl)-3-phenyl-2-propyn-1-one 
(11ad, see Scheme 4). The influence of the solvent and base, which are known to strongly affect these 
reactions (see references in the Introduction), were evaluated first. The screening experiments were 
performed with 0.5 mol.% of catalyst 5 and 5 mol.% of CuI in neat amines and in mixtures of 
triethylamine with an organic solvent as well. When using neat morpholine and pyridine, the 
coupling reaction did not proceed in any appreciable extent. However, when replacing these bases 
with N-methylmorpholine and N,N-diisopropylethylamine (Figure 1), the yields determined by gas 
chromatography (GC yields) of the coupling product 11ad after 8 h at 50 °C were 2% and 10%, 
respectively. The best (albeit still rather low) yield of 21% after 8 h was achieved in neat triethylamine. 
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Scheme 3. Preparation of catalysts 5–8. Legend: i. (3-aminopropyl)trimethoxysilane in
toluene, refluxing; ii. amidation with YCH2CO2H in the presence of peptide coupling
agents (1-hydroxybenzotriazole and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (EDC) or the
corresponding hydrochloride (EDC·HCl)); iii. treatment with Pd(OAc)2 in dichloromethane.

Materials 1–8 were characterized by elemental analysis and infrared (IR) spectroscopy, and the
data on 1–7 were compared with those on the previously studied catalysts. While the IR spectra of
the newly synthesized materials were virtually identical to those previously reported (see ref. [29]),
elemental analysis revealed differences, most likely reflecting the amount of residual adsorbed matter
(mostly water). Full characterization data are presented in the Experimental Section.

2.2. Catalytic Assessment

Applications of deposited Pd catalysts to Sonogashira-type coupling of terminal alkynes with
acyl chlorides (see Introduction) has been studied considerably less than their use in conventional
Sonogashira cross-coupling between alkynes and organic halides [33]. Hence, our initial experiments
with catalysts 5–8 aimed to find the optimal reaction conditions for these catalysts and to compare their
performance with regard to influence of the varied functional groups modifying the support’s surface.
As a model reaction, we chose the coupling between equimolar amounts of ethynylbenzene (9a)
and 4-methylbenzoyl chloride (10d), producing 1-(4-methylphenyl)-3-phenyl-2-propyn-1-one (11ad,
see Scheme 4). The influence of the solvent and base, which are known to strongly affect these reactions
(see references in the Introduction), were evaluated first. The screening experiments were performed
with 0.5 mol.% of catalyst 5 and 5 mol.% of CuI in neat amines and in mixtures of triethylamine with
an organic solvent as well. When using neat morpholine and pyridine, the coupling reaction did not
proceed in any appreciable extent. However, when replacing these bases with N-methylmorpholine
and N,N-diisopropylethylamine (Figure 1), the yields determined by gas chromatography (GC yields)
of the coupling product 11ad after 8 h at 50 ◦C were 2% and 10%, respectively. The best (albeit still
rather low) yield of 21% after 8 h was achieved in neat triethylamine.
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Reaction tests performed in organic solvents in the presence of 5 equiv. of triethylamine (Figure 
2) revealed a marked acceleration of the coupling reaction in acetonitrile (ca. 60% yield of 11ad within 
3 h at 50 °C). In contrast, reactions in other tested solvents, viz. toluene, 1,4-dioxane, acetone and N,N-
dimethylformamide, proceeded less efficiently, achieving lower yields than the aforementioned 
reaction in neat triethylamine (below 15% after 8 h; Figure 2); no reaction was observed in methanol. 
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(), acetone (), dioxane (), toluene (). The solid lines connecting the experimental points are a 
visual guide and do not represent any fit of the data. 

A subsequent series of experiments was designed to assess the effect of the CuI additive and 
relative amounts of the starting materials. Rather surprisingly, the reaction performed in neat 
triethylamine with 0.5 mol.% of catalyst 5 without adding CuI at 50 °C ensued in a higher yield of the 
coupling product than the similar reaction in the presence of the CuI co-catalyst (5 mol.%; 39% vs. 
21%). Consistently, when using acetonitrile as the solvent (with added NEt3, 5 equiv.), the reaction 
without CuI produced 11ad in a 78% yield after 8 h, which is a higher yield than that of the reaction 
performed in the absence of CuI (63%). Subsequently, we determined whether the coupling reaction 
is affected by the amount of acyl chloride when gradually increasing the amount of 4-toulyl chloride 
(10d) up to 1.5 equiv. As shown in Figure 3, the yield of 11ad significantly increased with the amount 

Figure 1. Kinetic profiles for the model coupling reaction performed in neat amines (0.5 mol.% catalyst
5, 5 mol.% CuI) at 50 ◦C. Solid lines are added as a visual guide.

Reaction tests performed in organic solvents in the presence of 5 equiv. of triethylamine (Figure 2)
revealed a marked acceleration of the coupling reaction in acetonitrile (ca. 60% yield of 11ad within
3 h at 50 ◦C). In contrast, reactions in other tested solvents, viz. toluene, 1,4-dioxane, acetone and
N,N-dimethylformamide, proceeded less efficiently, achieving lower yields than the aforementioned
reaction in neat triethylamine (below 15% after 8 h; Figure 2); no reaction was observed in methanol.
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Figure 2. Kinetic profiles for the model coupling reaction performed in organic solvents with added
triethylamine (5 equiv. NEt3, 0.5 mol.% catalyst 5, 5 mol.% CuI) at 50 ◦C. Legend: MeCN (#), DMF (�),
acetone (H), dioxane (•), toluene (4). The solid lines connecting the experimental points are a visual
guide and do not represent any fit of the data.

A subsequent series of experiments was designed to assess the effect of the CuI additive and relative
amounts of the starting materials. Rather surprisingly, the reaction performed in neat triethylamine
with 0.5 mol.% of catalyst 5 without adding CuI at 50 ◦C ensued in a higher yield of the coupling
product than the similar reaction in the presence of the CuI co-catalyst (5 mol.%; 39% vs. 21%).
Consistently, when using acetonitrile as the solvent (with added NEt3, 5 equiv.), the reaction without
CuI produced 11ad in a 78% yield after 8 h, which is a higher yield than that of the reaction performed
in the absence of CuI (63%). Subsequently, we determined whether the coupling reaction is affected
by the amount of acyl chloride when gradually increasing the amount of 4-toulyl chloride (10d) up
to 1.5 equiv. As shown in Figure 3, the yield of 11ad significantly increased with the amount of acyl
chloride. With only 1.3 equiv. of 10d, the GC yields of the coupling product were already virtually
quantitative within 1 h of the reaction time.
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Figure 5 clearly indicate that unsupported palladium(II) acetate outperforms all deposited catalysts. 
Among the deposited catalysts, the lowest efficiency exerted catalyst 7 bearing phosphine groups, 

Figure 3. Variation in the gas chromatography (GC) yields of 11ad observed when changing the
amount of acyl chloride in the reaction mixture. Conditions: catalyst 5 (0.5 mol.%), alkyne 9a (1 equiv.),
triethylamine (5 equiv.), dodecane (1 equiv.; internal standard) in acetonitrile solvent at 50 ◦C. Reaction
time: 1 h (white bars), 3 h (grey bars), and 8 h (black bars).

Using 1.5 equiv. of 10d, we subsequently tried to reduce the catalyst loading. Under these
conditions, the reaction proceeded satisfactorily, even in the presence of 0.1 and 0.2 mol.% of the
selected model catalyst 5 and at short reaction times, as shown in Figure 4, which compares the GC
yields of the coupling product 11ad achieved over different periods of time. When decreasing the
reaction temperature, however, the yield of the coupling product dramatically decreased (100% at
50 ◦C, 67% at 40 ◦C and ≈14% at 30 ◦C after 30 min of the reaction with catalyst 5 and 0.5 mol.% Pd in
the reaction mixture).
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loading: 0.1 mol.% (white bars), 0.2 mol.% (grey bars), and 0.5 mol.% (black bars). Conditions: alkyne 9a
(1 equiv.), acyl chloride 10d (1.5 equiv.), triethylamine (5 equiv.), dodecane (1 equiv.; internal standard)
in acetonitrile solvent at 50 ◦C.

Lastly, we compared all prepared catalysts and palladium(II) acetate under rather harsh reaction
conditions (0.1 mol.% Pd, 30 ◦C reaction temperature). Regrettably, the kinetic profiles presented in
Figure 5 clearly indicate that unsupported palladium(II) acetate outperforms all deposited catalysts.
Among the deposited catalysts, the lowest efficiency exerted catalyst 7 bearing phosphine groups,
whereas the performance of catalysts bearing the S- and N-donor groups (5 and 6) was quite similar
and slightly better than that of catalyst 8 obtained from the amine-functionalized support.
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Figure 5. Kinetic profiles for the model coupling reaction performed in the presence of different
catalysts: Pd(OAc)2 (N), catalyst 5 (•), catalyst 6 (5), catalyst 7 (�), and catalyst 8 (3). Conditions:
0.1 mol.% Pd, alkyne 9a (1 equiv.), acyl chloride 10d (1.5 equiv.), triethylamine (5 equiv.), dodecane (1
equiv.; internal standard) in acetonitrile solvent at 30 ◦C. The solid lines connecting the experimental
points serve as a visual guide and do not represent any fit of the data.

Recycled catalysts 5–8 significantly lost their activity (Figure 6), presumably due to leaching of
the deposited metal and to overall catalyst deactivation (the amount of Pd leached out during the first
run was only 1%–4% of the initial amount). Notably, CuI (5 mol.%) addition to the reaction mixture
increased the stability of the catalysts and even led to an activation of the phosphine-functionalized
catalyst 7, whereas the amount of leached-out Pd remained approximately the same (2–4% during
the first run; see the Supporting Information, Table S1). However, the yields of 11ad obtained with
recycled deposited catalysts 5–8/CuI were still considerably lower than the yields achieved during the
first runs and further decreased upon catalyst reuse.
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Figure 6. Results of catalytic experiments with fresh and reused catalysts without (left) and with
(right) added CuI (5 mol.%): catalyst 5 (white bars), catalyst 6 (grey bars), catalyst 7 (black bars),
and catalyst 8 (hatched bars). Conditions: 0.1 mol.% Pd, alkyne 9a (1 equiv.), acyl chloride 10d
(1.5 equiv.), triethylamine (5 equiv.), dodecane (1 equiv.; internal standard) in acetonitrile at 50 ◦C for
2 h.

Using catalyst 5 (0.5 mol.% Pd), we also performed reaction scope tests, which are summarized in
Table 1. Initially, we focused on the reactions of ethynylbenzene (9a) with substituted benzoyl chlorides.
In the case of methyl-substituted acyl chlorides, the yields of the coupling products increased with
the decrease in steric hindrance. Similar reactions with isomeric nitrobenzoyl chlorides proceeded
generally less efficiently and required longer reaction times to achieve isolated yields of the coupling
products higher than 50%; the reaction of 9a with 2-nitrobenzoyl chloride, the most sterically crowded
and deactivated acyl chloride, did not proceed. For the acyl chlorides, the substituents with a positive
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inductive (+I) or a mesomeric (+M) effect (4-Me, 4-Cl and 4-MeO) apparently facilitated the reaction
(isolated yields 85% or higher), whereas the nitro group, with a strong −M effect, hampered the
cross-coupling. Conversely, the outcome of the coupling reactions between benzoyl chloride (10a) and
substituted phenylacetylenes (4-Me, 4-MeO and 4-CF3) all proceeded with high isolated yields, in line
with the long distance between the substituents in position 4 of the benzene ring and the reaction site,
which inevitably minimizes their influence.

Table 1. Summary of the reaction scope tests a.

Alkyne Acyl Chloride Product Yield (%) b

PhC≡CH (9a) 2-MeC6H4COCl (10b) 11ab 66
PhC≡CH (9a) 3-MeC6H4COCl (10c) 11ac 75
PhC≡CH (9a) 4-MeC6H4COCl (10d) 11ad 85
PhC≡CH (9a) 2-NO2C6H4COCl (10e) 11ae n.d. d,e

PhC≡CH (9a) 3-NO2C6H4COCl (10f) 11af 75 d

PhC≡CH (9a) 4-NO2C6H4COCl (10g) 11ag 60 d

PhC≡CH (9a) 4-MeOC6H4COCl (10h) 11ah 87
PhC≡CH (9a) 4-ClC6H4COCl (10i) 11ai 93

4-MeC6H4C≡CH (9b) PhCOCl (10a) 11ba 95
4-MeOC6H4C≡CH (9e) PhCOCl (10a) 11ea 85
4-CF3C6H4C≡CH (9j) PhCOCl (10a) 11ja 85

PhC≡CH (9a) (E)-PhCH=CHCOCl (10k) 11ak 87
PhC≡CH (9a) PhCH2CH2COCl (10l) 11al n.d. e

PhC≡CH (9a) t-BuCOCl (10m) 11am 51
PhC≡CH (9a) (2-furanyl)COCl (10n) 11an 50
PhC≡CH (9a) (2-thienyl)COCl (10o) 11ao 25 d

FcC≡CH (9m) c PhCOCl (10p) 11pa 43 f

a Conditions: alkyne (1.0 mmol), acyl chloride (1.5 mmol) and triethylamine (5 mmol) were mixed in the presence
of catalyst 5 (0.5 mol.% Pd) in acetonitrile (5 mL) at 50 ◦C for 2 h. b Isolated yield after column chromatography.
An average of two independent runs is given. c Fc = ferrocenyl. d Reaction time was extended to 24 h. e n.d. = the
product was not detected. f The reaction was performed with 1.0 mmol of acyl chloride, and the reaction time was
extended to 4 h.

The coupling of 9a with cinnamoyl chloride also proceeded satisfactorily, producing 11ak in
an 87% isolated yield. In contrast, 3-phenylpropanoyl chloride (as a representative of aliphatic acyl
chlorides bearing an sp3 substituent at the acyl group) did not produce any coupling product under
analogous conditions. Conversely, pivaloyl chloride was converted into 11am with an acceptable
51% isolated yield. A similar yield was obtained with 2-furoyl chloride, whereas the reaction with
2-thiophenecarbonyl chloride had a lower yield. The ethynylferrocene/benzoyl chloride pair also
displayed a rather sluggish reaction, associated with side processes that were partly suppressed by
lowering the amount of the acyl chloride.

In addition to spectroscopic characterization, the structure of 11af was determined by single-crystal
X-ray diffraction analysis. Figure 7 shows the corresponding molecular structure along with selected
interatomic distances and angles.
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Figure 7. PLATON [34] plot of the molecular structure of 11af showing the atomic labels and
displacement ellipsoids at 50% probability level. Selected distances and angles (in Å and deg): N1=O1
1.224(4), N1=O2 1.229(3), C3-N1 1.468(4), C7=O3 1.223(4), C1-C7 1.492(4), C7-C8 1.447(4), C8-C9 1.205(4),
C9-C10 1.433(4); O1=N1=O2 123.4(2), C1-C7-C8 116.7(3), O3=C7-C1/C8 121.6(2)/121.7(2), C7-C8-C9
177.0(3), C8-C9C-10 175.5(3).

The compound crystallizes with the symmetry of the triclinic space group P–1 and
with one molecule in the asymmetric unit. Parameters describing the molecular geometry
of 11af are unexceptional and in line with the corresponding parameters reported for
1-(4-nitrophenyl)- 3-phenylprop-2-yn-1-one (4-O2NC6H4C(O)C≡CPh) [2,35] and 3-(4-methoxyphenyl)-
1-phenylprop-2-yn-1-one (PhC(O)C≡CC6H4OMe-4) [36]. The planes of the benzene rings C(1-6) and
C(10-15) in 11af are essentially coplanar (dihedral angle: 0.4(1)◦), and even the nitro group is twisted by
only 4.1(3)◦ with respect to its bonding benzene ring. In the crystal, the individual molecules assemble
into columnar stacks of inversion-related molecules (Figure 8) via offset π···π stacking interactions
of their parallel aromatic rings. These stacks, oriented along the crystallographic b axis, are further
interconnected in the direction of the crystallographic a axis by the C11-H11···O3 soft hydrogen bonds
(C11···O3 = 3.327(3) Å, angle at H11 = 158◦).
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3. Experimental

3.1. Methods and Materials

Infrared spectra were recorded in diffuse reflectance mode using a Fourier-transform infrared
spectrometer FTIR Nicolet 6700 (Thermo Fisher Scientific, Waltham, MA, USA; (scan range
400–4000 cm−1, 64 scans, 4 cm−1 resolution). The samples analyzed in this study were diluted
with KBr (grade for spectroscopy) before the measurement. Nuclear magnetic resonance (NMR)
spectra were recorded at 25 ◦C on a Varian UNITY Inova 400 spectrometer (Palo Alto, CA, USA)
operating at 399.95, 100.58 and 376.29 MHz for 1H, 13C and 19F, respectively. Chemical shifts (δ in
ppm) are expressed relative to internal tetramethylsilane (1H and 13C) and to external neat CFCl3
(19F). GC analyses were performed with an Agilent 6850 gas chromatograph (Santa Clara, CA, USA)
equipped with a DB-5 column (0.18 mm diameter, 50 m length).

Elemental composition of the deposited catalysts was determined using the standard combustion
method and a PerkinElmer PE 2400 CHN analyzer (Waltham, MA, USA). The content of palladium in
solid samples and in the reaction mixtures was determined by inductively coupled plasma optical
emission spectroscopy (ICP-OES) on an IRIS Interpid II instrument (Thermo Electron, Waltham, MA,
USA) with axial plasma and ultrasonic CETAC nebulizer U-5000AT+. The samples were dissolved in a
mixture of HF with HNO3 (3:2, suprapure from Merck; Kenilworth, NJ, USA) at 50 ◦C for 15 min and
evaporated. The residue was diluted with redistilled water for 105Pd (the wavelength used for the
spectrophotometric analysis was 324.270 nm).

Dichloromethane was dried over potassium carbonate and distilled under argon. Other solvents
were dried over activated 3 Å molecular sieves. Triethylamine was dried over sodium metal and distilled.
Other chemicals were used as obtained from commercial sources (Sigma-Aldrich, St. Louis, MO, USA).
Materials 2–7 were prepared as previously described [29]. The analytical data determined for the
newly prepared samples are as follows. The IR spectra were identical to those of the authentic samples.

Elemental analysis for 2: C 6.3, N 1.1, S 0.95 mmol·g−1. Elemental analysis for 3: C 7.0,
N 1.9 mmol·g−1. Elemental analysis for 4: C 11.3, N 1.1, P 0.77 mmol·g−1. Elemental analysis for
5: C 7.0, N 0.97, S 0.52, Pd 0.64 mmol·g−1. Elemental analysis for 6: C 7.6, N 1.7, Pd 0.62 mmol·g−1.
Elemental analysis for 7: C 11.3, N 1.1, P 0.21, Pd 0.43 mmol·g−1.

Catalyst 8 was prepared similarly by direct palladation of material 1. Thus, palladium(II) acetate
(0.449 g, 2.0 mmol) dissolved in dry dichloromethane (10 mL) was added to a suspension of support 1
(2.0 g) [29] in the same solvent (50 mL). After stirring the resulting mixture at room temperature for 1 h,
the solid was filtered off and washed with dichloromethane until the washings were colorless. Then,
the filter cake was washed a few more times (2-3×) and left to dry in the air.

Characterization data for 8. IR (DRIFTS): 3648 w, 3243 br w, 1567 m, 1430 w, 1388 w, 1330 vw,
1080 s (Si-O-Si asymetric stretch), 944 vw, 794 m (Si-O-Si symetric stretch), 688 w, 462 (Si-O-Si bending)
cm−1. Elemental analysis: C 6.1, N 1.1, Pd 0.58 mmol·g−1.

3.2. Description of the Screening Experiments

A Schlenk tube was successively charged with the catalyst (typically 0.1–0.5 mol.% Pd), CuI (9.5 mg,
5 mol.%; if appropriate), phenylacetylene (102 mg, 1.0 mmol), 4-toluoyl chloride (230 mg, 1.5 mmol)
and dodecane (internal standard; 170 mg, 1.0 mmol). The reaction vessel was flushed with nitrogen and
sealed. The solvent was introduced (5 mL of pure solvent or 5 mL of a solvent with 697 µL (5 mmol)
of triethylamine), and the reaction flask was transferred to a Heidolph Synthesis I parallel reactor
pre-heated to the required temperature. Aliquots of the reaction mixture were periodically collected,
diluted with saturated aqueous NaHCO3 and centrifuged at 4000 rpm for 5 min. The organic phase
was analyzed by gas chromatography.

During recyclation experiments, the reaction mixture obtained after 2 h at 50 ◦C was diluted
with acetone (5 mL) and cooled on ice. A small amount of the liquid phase was separated and
used to determine the conversion. The solids were filtered off, washed successively with acetone,
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methanol (removal of triethylammonium chloride) and acetone again. The filtrate and washings were
combined and used to quantify the amount of leached-out metal. The recovered solid was used in the
next catalytic experiments.

3.3. Preparative Experiments

A Schlenk tube was charged with the respective alkyne (1.0 mmol) and acyl chloride (1.5 mmol;
only 1.0 mmol of the acyl chloride was used in the reaction of ethynylferrocene with benzoyl chloride
to avoid decomposition). After flushing the reaction vessel with argon, catalyst 5 (0.5 mol.% Pd) was
introduced, followed by dry acetonitrile (5 mL) and anhydrous triethylamine (0.7 mL, ca. 5 mmol).
The reaction mixture was stirred at 50 ◦C for 2 h, diluted with ethyl acetate (10 mL) and cooled on
ice. The cold reaction mixture was filtered, and the solid residue was washed with ethyl acetate.
The combined organic washings were evaporated under vacuum, leaving a crude reaction product,
which was taken up with 1,4-dioxane. Solid NaHCO3 was added (≈0.1 g), and the resulting mixture
was stirred at room temperature for 1–7 days to hydrolyze unreacted acyl chloride. The hydrolyzed
reaction mixture was evaporated, and the residue was extracted with ethyl acetate. Organic washings
were dried over anhydrous MgSO4 and evaporated. Analytically pure coupling products were isolated
by column chromatography over silica gel using ethyl acetate-hexane (1:10 or 1:20) as the eluent
(dichloromethane was used in the case of 11ag).

3.4. Analytical Data of the Cross-Coupling Products

1-(2-Tolyl)-3-phenylprop-2-yn-1-one (11ab) [37]. 1H NMR (CDCl3): δ 2.68 (s, 3 H, CH3), 7.26–7.29
(m, 1 H, aromatics), 7.33–7.49 (m, 5 H, aromatics), 7.64–7.67 (m, 2 H, aromatics), 8.28–8.32 (m, 1 H,
aromatics). 13C{1H} NMR (CDCl3): δ 21.9 (CH3), 88.4 and 91.8 (C≡C), 120.4, 125.9, 128.6, 130.6, 132.2,
132.90, 132.93, 133.2, 135.8, 140.5 (aromatics), 179.8 (C=O).

1-(3-Tolyl)-3-phenylprop-2-yn-1-one (11ac) [37]. 1H NMR (CDCl3): δ 2.45 (bq, 3 H, JHH = 0.7 Hz,
CH3), 7.41-7.51 (m, 5 H, aromatics), 7.67–7.71 (m, 2 H, aromatics), 8.01–8.06 (m, 2 H, aromatics). 13C{1H}
NMR (CDCl3): δ 21.3 (CH3), 87.0 and 92.9 (C≡C), 120.2, 127.1, 128.5, 128.7, 129.8, 130.7, 133.1, 135.0,
136.9 and 138.5 (aromatics), 178.2 (C=O).

1-(4-Tolyl)-3-phenylprop-2-yn-1-one (11ad) [37]. 1H NMR (CDCl3): δ 2.45 (s, 3 H, CH3), 7.29–7.33
(m, 2 H, aromatics), 7.40–7.45 (m, 2 H, aromatics), 7.46–7.51 (m, 1 H, aromatics), 7.67–7.71 (m, 2 H,
aromatics), 8.10–8.14 (m, 2 H, aromatics). 13C{1H} NMR (CDCl3): δ 21.9 (CH3), 87.0 and 92.6 (C≡C),
120.3, 128.7, 129.4, 129.7, 130.7, 133.0, 134.6 and 145.2 (aromatics), 177.3 (C=O).

1-(3-Nitrophenyl)-3-phenylprop-2-yn-1-one (11af) [8]. 1H NMR (CDCl3): δ 7.46 (m, 2 H, aromatics),
7.54 (m, 1 H, aromatics), 7.74 (m, 3 H, aromatics), 8.49 (ddd, JHH = 8.2, 2.3, 1.1 Hz, 1 H, aromatics),
8.53 (dt, JHH = 7.8, 1.4 Hz, 1 H, aromatics), 9.06 (t, JHH = 1.9 Hz, 1 H, aromatics). 13C{1H} NMR (CDCl3):
δ 86.2 and 95.3 (C≡C), 119.4, 124.6, 128.2, 128.9, 129.9, 131.5, 133.4, 134.6, 138.1, 148.5 (aromatics),
175.4 (s, C=O). Crystal used for structure determination was grown from chloroform/hexane.

1-(4-Nitrophenyl)-3-phenylprop-2-yn-1-one (11ag) [38]. 1H NMR (CDCl3): δ 7.43 and 7.49 (m,
2 H, aromatics), 7.51–7.57 (m, 1 H, aromatics), 7.69–7.74 (m, 2 H, aromatics), 8.38 (m, 4 H, aromatics).
13C{1H} NMR (CDCl3): δ 86.5 and 95.4 (C≡C), 119.4, 123.9, 128.9, 130.5, 131.5, 133.3, 141.0 and 150.9
(aromatics), 175.9 (C=O).

1-(4-Anisyl)-3-phenylprop-2-yn-1-one (11ah) [37]. 1H NMR (CDCl3): δ 3.90 (s, 3 H, CH3O),
6.97–7.01 (m, 2 H, aromatics), 7.39–7.50 (m, 3 H, aromatics), 7.66–7.70 (m, 2 H, aromatics), 8.18–8.22 (m,
2 H, aromatics). 13C{1H} NMR (CDCl3): δ 55.6 (CH3), 86.9 and 92.3 (C≡C), 113.9, 120.4, 128.7, 130.3,
130.6, 132.0, 133.0 and 164.5 (aromatics), 176.7 (C=O).

1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (11ai) [37]. 1H NMR (CDCl3): δ 7.40–7.46 (m, 2 H,
aromatics), 7.47-7.52 (m, 3 H, aromatics), 7.67–7.70 (m, 2 H, aromatics), 8.14-8.18 (m, 2 H, aromatics).
13C{1H} NMR (CDCl3): δ 86.6 and 93.6 (C≡C), 119.9, 128.8, 129.0, 130.9, 131.0, 133.1, 135.3 and 140,7
(aromatics), 176.7 (C=O).
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3-(4-Tolyl)-1-phenylprop-2-yn-1-one (11ba) [38]. 1H NMR (CDCl3): δ 2.41 (s, 3 H, CH3), 7.21–7.25
(m, 2 H, aromatics), 7.49-7.54 (m, 2 H, aromatics), 7.57–7.65 (m, 3 H, aromatics), 8.20–8.24 (m, 2 H,
aromatics). 13C{1H} NMR (CDCl3): δ 21.8 (CH3), 86.8 and 93.8 (C≡C), 117.0, 128.6, 129.5, 129.6, 133.1,
134.0, 137.0 and 141,6 (aromatics), 178.1 (C=O).

3-(4-Anisyl)-1-phenylprop-2-yn-1-one (11ea) [38]. 1H NMR (CDCl3): δ 3.86 (s, 3 H, CH3O),
6.91–6.96 (m, 2 H, aromatics), 7.49–7.54 (m, 2 H, aromatics), 7.60–7.67 (m, 3 H, aromatics), 8.20–8.24 (m,
2 H, aromatics). 13C{1H} NMR (CDCl3): δ 55.5 (CH3), 86.9 and 94.3 (C≡C), 111.9, 114.4, 128.6, 129.5,
133.9, 135.2, 137.1 and 161.8 (aromatics), 178.1 (C=O).

3-[4-(Trifluoromethyl)phenyl]-1-phenylprop-2-yn-1-one (11ja) [39]. 1H NMR (CDCl3): δ 7.51–7.56
(m, 2 H, aromatics), 7.64–7.71 (m, 3 H, aromatics), 7.78–7.81 (m, 2 H, aromatics), 8.20–8.23 (m, 2 H,
aromatics). 13C{1H} NMR (CDCl3): δ 88.1 and 90.5 (C≡C), 123.6 (q, 1JFC = 273 Hz, CF3), 124.0, 125.6 (q,
3JFC = 4 Hz), 128.8, 129.6, 132.3 (q, 2JFC = 33 Hz), 133.2, 134.5 and 136.6 (aromatics), 177.7 (C=O) 19F
NMR (CDCl3): δ − 63.4 (s).

1-(2-Phenylvinyl)-3-phenylprop-2-yn-1-one (11ak) [39]. 1H NMR (CDCl3): δ 6.88 (d, 3JHH = 16.1
Hz, 1 H, CH=), 7.39–7.50 (m, 5 H, aromatics), 7.58–7.68 (m, 4 H, aromatics), 7.91 (d, 3JHH = 16,1 Hz,
1 H, CH=). 13C{1H} NMR (CDCl3): δ 86.6 and 91.5 (C≡C), 120.2, 128.6, 128.7, 128.7, 129.1, 130.6, 131.2,
133.0, 134.1 and 148.3 (CH=CH and aromatics), 178.2 (C=O).

1-(t-Butyl)-3-phenylprop-2-yn-1-one (11am) [40]. 1H NMR (CDCl3): δ 1.28 (s, 9 H, CH3), 7.36–7.41
(m, 2 H, aromatics), 7.43–7.48 (m, 1 H, aromatics), 7.56–7.60 (m, 2 H, aromatics). 13C{1H} NMR (CDCl3):
δ 26.1 (CH3), 44.9 ((CH3)3C), 86.0 and 92.2 (C≡C), 120.3, 128.6, 130.6 and 133.0 (aromatics), 194.3 (C=O).

1-(2-Furanyl)-3-phenylprop-2-yn-1-one (11an) [41]. 1H NMR (CDCl3): δ 6.61 (dd, 3JHH = 3.6 Hz,
3JHH = 1.71 Hz, 1 H, furanyl), 7.39–7.51 (m, 4 H, furanyl and aromatics), 7.63–7.67 (m, 2 H, aromatics),
7.70 (dd, 3JHH = 1.7 Hz, 4JHH = 0.9 Hz, 1 H, furanyl). 13C{1H} NMR (CDCl3): δ 86.2 and 91.0 (C≡C),
112.7, 119.9, 120.9, 128.7, 130.9, 133.1, 148.1, 153.2 (aromatics and furanyl), 164.8 (C=O).

1-(2-Thienyl)-3-phenylprop-2-yn-1-one (11ao) [39]. 1H NMR (CDCl3): δ 7.19 (dd, 3JHH = 4.92 Hz,
3JHH = 3.8 Hz, 1 H, thienyl), 7.39–7.51 (m, 3 H, aromatics), 7.65–7.69 (m, 2 H, aromatics), 7.73 (dd, 3JHH

= 4.9 Hz, 4JHH = 1.2 Hz, 1 H, thienyl), 8.01 (dd, 3JHH = 3.8 Hz, 4JHH = 1.2 Hz, 1 H, thienyl). 13C{1H}
NMR (CDCl3): δ 86.5 and 91.7 (C≡C), 120.0, 128.4, 128.7, 130.9, 133.1, 135.1, 135.3 a 145.0 (thienyl and
aromatics), 169.8 (C=O).

3-Ferrocenyl-1-phenylprop-2-yn-1-one (11pa) [42]. 1H NMR (CDCl3): δ 4.29 (s, 5 H, C5H5),
4.43 (virtual t, 3JHH = 1.9 Hz, 2 H, C5H4), 4.69 (vt, 3JHH = 1.9 Hz, 2 H, C5H4), 7.49–7.55 (m, 2 H,
aromatics), 7.59–7.65 (m, 1 H, aromatics), 8.17–8,21 (m, 2 H, aromatics). 13C{1H} NMR (CDCl3): δ 60.3,
70.5, 70.8 and 73.2 (ferrocene), 85.5 and 96.6 (C≡C), 128.5, 129.4, 133.7, 137.2 (aromatics), 177.6 (C=O).

3.5. Structure Determination

Crystal data for 11af: C15H9NO3, M = 251.23 g·mol−1, light yellow plate, 0.10 × 0.32 × 0.55 mm3,
triclinic, space group p − 1 (no. 2), a = 6.8003(6) Å, b = 7.1934(7) Å, c = 13.471(1) Å; α = 75.075(4)◦,
β = 79.161(3)◦, γ = 69.530(3)◦, V = 593.0(1) Å3, Z = 2, Dcalc = 1.407 g·mL−1.

Full-set diffraction data were collected with an Apex 2 (Bruker, Billerica, MA, USA) diffractometer
equipped with a Cryostream Cooler (Oxford Cryosystems, Oxford, UK) at 150(2) K using
graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The data were corrected for absorption
(µ = 0.10 mm−1) using a multi-scan routine incorporated in the diffractometer software. A total of
5295 diffractions was recorded (θmax = 26◦, data completeness = 99.3%), of which 2309 were unique
(Rint = 2.50%) and 1652 were observed according to the I > 2σ(I) criterion.

The structure was solved using direct methods (SHELXS-97 [43]) and refined by a full-matrix
least-squares routine based on F2 (SHELXL-2017 [44]). The non-hydrogen atoms were refined with
anisotropic displacement parameters. All hydrogen atoms were included in their theoretical positions
and refined as riding atoms with Uiso(H) assigned to 1.2Ueq(C). The refinement converged (∆/σ = 0.000,
172 parameters) to R = 5.77% for the observed, and R = 8.42%, wR = 15.8% for all diffractions. The final
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difference map revealed no peaks of chemical significance (∆ρmax = 0.22, ∆ρmin = −0.23 e Å−3).
CCDC deposition no. 2015269.

4. Conclusions

In summary, we have described the catalytic applications of palladium catalysts deposited over
silica gel bearing composite amide-donor functional moieties at the surface in the Sonogashira-type
cross-coupling of acyl chlorides with terminal alkynes producing synthetically useful 1,3-disubstituted
prop-2-yn-1-ones. The collected data suggest a generally good catalytic performance of these
heterogeneous catalysts alone (i.e., without a co-catalyst) in the reactions of aromatic acyl chlorides
with aryl alkynes under relatively mild reaction conditions. Nevertheless, a careful optimization is
required for achieving good catalytic results, as the catalytic properties are significantly affected by
the reaction conditions (solvent and base) and depend on the nature of the functional pendant at
the support’s surface. Of the tested catalysts, the poorest performance surprisingly exerted catalyst
7 bearing the phosphine moieties, which contrasts with the general notion that phosphine ligands
give rise to active cross-coupling catalysts. When recycled, however, the studied catalysts lost their
catalytic activity and, therefore, could not be efficiently reused. Very likely, the catalysts serve as a
source of catalytically active Pd species that efficiently mediate the cross-coupling reaction but are not
redeposited without deactivation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1186/s1,
Table S1: Yields of the coupling product 11ad and the amount of leached-out Pd in the recycling experiments.

Author Contributions: P.Š. conceived the study and, in collaboration with M.S. and F.H., interpreted the collected
data and wrote this article; M.S. and F.H. performed all syntheses and catalytic tests; all authors contributed
to the characterization of the coupling products. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been supported by Charles University Research Centre program No. UNCE/SCI/014.
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