

Contents

1. General	S2
2. Analytical Data of Diamine and Ligands	S2
3. General Procedure of Asymmetric Chlorination Reaction	S4
4. Analytical Data of Chlorinated Products	S4
5. Cyano-epoxidation of @-Chloro-@-Ketoester 2a	S9
6. Mechanistic Study	S11
7. ¹ H-NMR and ¹³ C-NMR Spectra	S13

8. HPLC Spectra

S35

1. General

Dry solvents were purchased from commercial suppliers and used without further purification. Analytical thin–layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck, #1.05715.0009). Silica gel column chromatography was performed on Kanto silica gel 60 (spherical, 100–210 μ m). IR spectra were recorded on JASCO FT/IR–4100 using ATR. ¹H–NMR spectra were recorded on JEOL ECS–400 (400 MHz) spectrometer. Chemical shifts of ¹H–NMR spectra were reported relative to tetramethylsilane (δ 0). ¹³C–NMR spectra were recorded on JEOL ECA–400 (100 MHz) spectrometer. Chemical shifts of ¹³C–NMR spectra were reported relative to CDCl₃ (δ 77.0). Splitting patterns were reported as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad.

 β -keto esters were synthesized according to known procedure [1,2]. The chiral bis(imidazolidine)pyridine ligands were synthesized according to known procedure [3].

2. Analytical data of Diamine and Ligands

2.1. (1S,2S)-N1-((perfluorophenyl)methyl)-1,2-diphenylethane-1,2-diamine

¹**H** NMR (400 MHz, CDCl₃) δ 1.82 (br, 3H), 3.64 (d, *J* = 13.6 Hz, 1H), 3.66 (d, *J* = 6.7 Hz, 1H), 3.77 (d, *J* = 13.6Hz, 1H), 3.96 (d, *J* = 6.7Hz, 1H), 7.07-7.25 (m, 10H); {¹⁹F}¹³C NMR (100 MHz, CDCl₃): δ 145.1, 142.9, 140.5, 140.2, 137.1, 128.1, 128.1, 127.7, 127.3, 127.0, 126.6, 113.5, 68.8, 61.7, 38.8; HRMS calcd for C₂₁H₁₈N₂F₅ (M+H)⁺: 393.1385, found: 393.1370; **[***α*] $p^{22.5} = +6.1$ (*c* = 1.0, CHCl₃); **IR** (neat) 1520, 1502, 1123, 959, 931 cm⁻¹.

2.2. (1S,2S)-N1-(cyclohexylmethyl)-1,2-diphenylethane-1,2-diamine

¹**H NMR** (400M Hz, CDCl₃) δ 0.74-0.85 (m, 2H), 1.10-1.20 (m, 3H), 1.34-1.36 (m, 1H), 1.63-1.65 (br, 5H), 1.74 (br, 3H), 2.15-2.26 (m, 2H), 3.67 (d, *J* = 6.9 Hz, 1H), 3.97 (d, *J* = 6.9 Hz, 1H), 7.08-7.23 (m, 10H); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.4, 141.6, 128.0, 127.8, 127.8, 127.6, 126.8, 126.7, 126.6, 126.6, 69.7, 61.7, 54.3, 38.0, 31.3, 31.1, 26.5, 25.9, 25.9; **HRMS** calcd for C₂₁H₂₉N₂ (M+H)⁺: 309.2325, found: 309.2319; **[** α] \mathbf{p}^{22} = -17.5 (*c* = 1.0, CHCl₃); **IR** (neat) 3270, 3082, 3060, 1600, 1406, 1368, 1348, 1250, 1181, 1092, 1067, 646, 606, 593 cm⁻¹.

2.3. (1S,2S)-1,2-diphenyl-N1-(2,4,6-trimethylbenzyl) ethane-1,2-diamine

¹**H NMR** (400 MHz, CDCl₃) δ 1.72 (br, 3H), 2.12 (s, 6H), 2.23 (s, 3H), 3.39 (d, *J* = 11.4 Hz, 1H), 3.52 (d, *J* = 11.4 Hz, 1H), 3.77 (d, *J* = 6.9 Hz, 1H), 3.97 (d, *J* = 6.9 Hz, 1H), 6.79 (s, 2H), 7.13-7.30 (m, 10H); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 141.6, 137.0, 136.2, 133.6, 128.7, 128.0, 127.7, 126.9, 126.8, 126.8, 70.4, 61.6, 46.0, 20.8, 19.1; **HRMS** calcd for C₂₄H₂₉N₂ (M+H)⁺: 345.2325, found: 345.2318; **[** α **]**p²²= +2.4 (*c* = 1.0, CHCl₃); **IR** (neat) 1579, 1375, 1222, 1028 cm⁻¹.

2.4. N-Pentafluorobenzyl pyBidine

¹**H NMR** (400 MHz, CDCl₃) δ 3.79 (d, *J* = 7.8 Hz, 2H), 3.85 (s, 4H), 4.37 (d, *J* = 7.8 Hz, 2H), 5.04 (s, 2H), 7.16-7.29 (m, 20H), 7.79-7.89 (m, 3H); {¹⁹**F**}¹³**C NMR** (100 MHz, CDCl₃): δ 160.9, 145.0, 141.0, 140.1, 139.6, 137.5, 136.8, 128.3, 128.0, 127.6, 127.5, 127.4, 126.9, 121.0, 111.4, 83.1, 77.8, 69.9, 42.6; **HRMS** calcd for C₄₉H₃₆N₅F₁₀ (M+H)⁺: 884.2806, found: 884.2783; **[***α*]_D^{20.0} = -93.4 (*c* = 1.0, CHCl₃); **IR** (neat) 3063, 1656, 1590, 1574, 1356, 1249, 1205, 1074, 817, 648, 613 cm⁻¹.

2.5. N-cyclohexylmethyl pyBidine

¹**H** NMR (400 MHz, CDCl₃) δ 0.44-0.55 (m, 4H), 0.64-0.81 (m, 4H), 0.85-0.93 (m, 4H), 1.32-1.43 (m, 4H), 1.49-1.64 (m, 6H), 2.38-2.54 (m, 4H), 3.72 (d, *J* = 8.0 Hz, 2H), 4.39 (d, *J* = 8.0 Hz, 2H), 4.93 (s, 2H), 7.19-7.35 (m, 20H), 7.78-7.88 (m, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 162.8, 141.4, 141.1, 136.9, 128.1, 128.0, 127.2, 127.1, 121.0, 84.4, 79.1, 69.6, 61.5, 36.6, 31.5, 31.4, 26.4, 25.7; HRMS calcd for C₄₉H₅₈N₅ (M+H)⁺: 716.4687, found: 716.4673; [*α*]^{p19.7} = -143.1 (*c* = 1.0, CHCl₃); **IR** (neat) 3308, 2972, 2923, 2848, 1451, 1378, 1315, 1153, 1088, 1047, 695 cm⁻¹.

2.6. N-trimethylbenzyl pyBidine

¹**H NMR** (400 MHz, CDCl₃) δ 2.02 (s, 6H), 2.09 (s, 12H), 3.65 (d, *J* = 12.7 Hz, 2H), 3.75 (d, *J* = 8.5 Hz, 2H), 3.78 (d, *J* = 13.4 Hz, 2H), 4.55 (d, *J* = 8.0 Hz, 2H), 4.89 (s, 2H), 6.40 (s, 4H), 6.76 (d, *J* = 7.6 Hz, 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 7.13-7.32 (m, 20H); ¹³**C NMR** (100 MHz, CDCl₃) δ 160.6, 141.9, 140.3, 137.4, 136.0, 135.3, 131.5, 128.4, 128.2, 128.1, 127.8, 127.1, 127.0, 126.9, 120.5, 82.4, 79.5, 69.4, 51.1, 20.6, 20.3; **HRMS** calcd for C₅₅H₅₈N₅ (M+H)⁺: 788.4687, found: 788.4670; **[α]**_{D^{19.5} = -153.1 (*c* = 1.0, CHCl₃); **IR** (neat) 3061, 3027, 2915, 2852, 1494, 1453, 1125, 1027, 755, 698 cm⁻¹.}

3. General Procedure of Asymmetric Chlorination Reaction

N-PFB PyBidine (0.022 mmol) and Zn(OAc)² (0.02 mmol) were added to a glass tube equipped with a magnetic stirrer bar under Ar. DCM (1.0 mL) was added to the glass tube and the mixture was stirred overnight. After removal of the solvent under reduced pressure, cyclohexane (2.0 mL) was

added. Then the β -ketoesters (0.2 mmol) was added at 25°C followed by the addition of NaHCO₃ (0.02 mmol) and *N*-chlorosuccinimide (0.22 mmol). After stirring for 24 h, the reaction was directly purified by silica-gel column chromatography to afford the product. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC by using Daicel Chiralcel OJ-H, and Chiralpak AS-H and IC-3 columns.

Absolute configurations of **2a** and **2e** were determined to be (*S*) through comparison of optical rotations with reported values [4]. Absolute configurations of the other compounds were determined by analogy.

4. Analytical Data of Chlorinated Products

4.1. Methyl (S)-2-benzyl-2-chloro-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (90% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H), 3.44 (d, *J* = 14.5 Hz, 1H), 3.53 (d, *J* = 14.5 Hz, 1H), 3.77 (s, 3H), 7.19-7.21 (m, 2H), 7.25-7.32 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 167.5, 133.7, 130.5, 128.2, 127.5, 75.1, 53.6, 42.2, 26.5; HRMS calcd for C₁₂H₁₃O₃ClNa (M+Na)⁺: 263.0445, found: 263.0447; Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 98:2, 1.0 mL/min, 210

nm), minor enantiomer tr = 20.6 min, major enantiomer tr = 24.7 min, 76% ee; $[\alpha]_{D^{18.4}}$ = -2.2 (*c* = 1.0, CHCl₃, 76% ee); **IR** (neat) 2955, 1729 1495, 1455, 1356, 1322, 1251, 1183, 1170, 1084, 1032, 994, 951, 932, 838, 758, 700, 582, 556 cm⁻¹.

4.2. Ethyl (S)-2-benzyl-2-chloro-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (99% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 1.24 (t, *J* = 7.2 Hz, 3H), 2.24 (s, 3H), 3.44 (d, *J* = 14.2 Hz, 1H), 3.53 (d, *J* = 14.2 Hz, 1H), 4.16-4.28 (m, 2H), 7.16-7.22 (m, 2H), 7.26-7.32 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.8, 166.9, 133.9, 130.5, 128.1, 127.9, 127.4, 75.2, 63.0, 42.1, 26.4, 13.7; **HRMS** calcd for C₁₃H₁₅O₃ClNa (M+Na)+: 277.0602, found: 277.0605;

Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 90:10, 0.5 mL/min, 210 nm), major enantiomer tr = 17.7 min, minor enantiomer tr = 20.9 min, 78% ee; $[\alpha]_{D^{17}}$ = -7.0 (*c* = 1.0, CHCl₃, 78% ee); **IR** (neat) 2983, 2937, 2362, 2340, 1729, 1604, 1585, 1496, 1455, 1429, 1392, 1356, 1320, 1247, 1190, 1084, 1032, 1015 cm⁻¹.

4.3. tert-butyl (S)-2-benzyl-2-chloro-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 10:1) to give colorless oil (72% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.43 (s, 9H), 2.24 (s, 3H), 3.42 (d, *J* = 14.5 Hz, 1H), 3.48 (d, *J* = 14.5Hz, 1H), 7.22-7.30 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 165.6, 134.2, 130.7, 128.0, 127.8, 127.3, 84.3, 75.9, 41.8, 27.5, 26.4; HRMS calcd for C₁₅H₁₉O₃ClNa (M+Na)⁺: 305.0915, found: 305.0916; Enantiomeric excess was determined by HPLC with a Chiralpak

AD-3 column (hexane:2-propanol 500:1, 0.5 mL/min, 210 nm), major enantiomer tr = 17.8 min, minor enantiomer tr = 19.6 min, 76% ee; $[\alpha]_{D^{18.4}}$ = -6.5 (*c* = 1.0, CHCl₃, 76% ee); **IR** (neat) 2979, 2934, 1729, 1496, 1475, 1455, 1428, 1395, 1370, 1355, 1328, 1256, 1182, 1145, 1079, 1030 cm⁻¹.

4.4. Benzyl (S)-2-benzyl-2-chloro-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (66% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.17 (s, 3H), 3.43 (d, *J* = 14.3 Hz, 1H), 3.53 (d, *J* = 14.3 Hz, 1H), 5.15-5.2 (m, 2H), 7.14-7.15 (m, 2H), 7.18-7.25 (m, 3H), 7.29-7.30 (m, 2H), 7.35-7.37 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 166.8, 134.3, 133.7, 130.5, 128.9, 128.7, 128.6,

128.4, 128.3, 128.1, 127.4, 75.2, 68.5, 42.1, 26.4; **HRMS** calcd for C₁₈H₁₈O₃Cl (M+H)⁺: 317.0939, found: 317.0939; **Enantiomeric excess** was determined by HPLC with a Chiralpak AS-H column (hexane:2-propanol 99:1, 0.3 mL/min, 254 nm), minor enantiomer t_r = 22.6 min, major enantiomer t_r = 26.6 min, 61% ee; $[\alpha]_{D^{15.4}}$ = -5.2 (*c* = 1.0, CHCl₃, 61% ee); **IR** (neat) 2953, 2884, 1950, 1883, 1813, 1603, 1494, 1423, 1378, 1353, 1321, 1303, 1211, 1082, 1025 cm⁻¹.

4.5. Ethyl (S)-2-chloro-2-methyl-3-oxo-3-phenylpropanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (86% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.08 (t, *J* = 7.2 Hz, 3H), 2.01 (s, 3H), 4.14-4.26 (m, 2H), 7.42-7.46 (m, 2H), 7.52-7.58 (m, 1H), 7.98-8.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 169.2, 133.4, 133.1,

129.4, 128.4, 68.5, 63.1, 26.0, 13.6; **HRMS** calcd for C₁₂H₁₃O₃ClNa (M+Na)⁺: 263.0445, found: 263.0449; **Enantiomeric excess** was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 90:10, 1.0 mL/min, 254 nm), major enantiomer t_r = 7.0 min, minor enantiomer t_r = 9.9 min, 30% ee; $[\alpha]p^{16.2} = -17.3$ (*c* = 1.0, CHCl₃, 30% ee); **IR** (neat) 2991, 2939, 1597, 1584, 1447, 1375, 1186, 1067, 1012 cm⁻¹.

4.6. Ethyl (S)-2-chloro-2-(4-methoxybenzyl)-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (93% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, *J* = 7.2Hz, 3H), 2.24 (s, 3H), 3.39 (d, *J* = 14.5 Hz, 1H), 3.47 (d, *J* = 14.7 Hz, 1H), 3.78 (s, 3H), 4.17-4.29 (m, 2H), 6.79-6.83 (m, 2H), 7.10-7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 167.0, 158.9, 131.6, 125.7, 113.5, 75.4, 63.0, 55.1, 41.3, 26.6, 13.8; HRMS calcd for C14H17O4ClNa (M+Na)⁺:

307.0708, found: 307.0708; **Enantiomeric excess** was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 95:05, 0.5 mL/min, 210 nm), minor enantiomer tr = 39.9 min, major enantiomer tr = 45.5 min, 75% ee; $[\alpha]_{D^{17.5}}$ = -0.5 (*c* = 1.0, CHCl₃, 75% ee); **IR** (neat) 2982, 2936, 2837, 2361, 1729, 1611, 1512, 1464, 1443, 1429, 1356, 1321, 1301, 1245, 1177, 1111, 1094, 1081, 1033 cm⁻¹.

4.7. Ethyl (S)-2-(4-bromobenzyl)-2-chloro-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (71% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, *J* = 7.1Hz, 3H), 2.26 (s, 3H), 3.39 (d, *J* = 14.5 Hz, 1H), 3.47 (d, *J* = 14.5Hz, 1H), 4.14-4.29 (m, 2H), 7.08-7.10 (m, 2H), 7.40-7.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 166.8, 132.9, 132.3, 131.7, 131.4, 131.3, 121.7, 74.8, 63.2, 41.4, 26.4, 13.8; HRMS calcd for C₁₃H₁₅O₃BrCl (M+H)⁺:

332.9888, found: 332.9882; **Enantiomeric excess** was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 98:02, 0.3 mL/min, 210 nm), major enantiomer tr = 41.0 min, minor enantiomer, tr = 43.6 min, 82% ee; $[\alpha]_{D^{15.7}}$ = -2.4 (*c* = 1.0, CHCl₃, 82% ee); **IR** (neat) 2984, 2935, 1487, 1430, 1405, 1356, 1321, 1287, 1176, 1105, 1072, 1034 cm⁻¹.

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (94% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, *J* = 7.0 Hz, 3H), 2.28 (s, 3H), 3.39 (d, *J* = 14.5 Hz, 1H), 3.50 (d, *J* = 14.5 Hz, 1H), 4.20-4.28 (m, 2H), 7.09-7.11 (m, 1H), 7.19-7.30 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.2, 166.7, 135.9, 133.9, 130.6, 129.3, 128.7, 128.1, 127.6, 74.8, 63.2, 41.5, 26.2, 13.8; HRMS calcd for C₁₃H₁₄O₃Cl₂Na (M+Na)⁺: 311.0212, found: 311.0213; **Enantiomeric excess** was determined by HPLC with a Chiralcel OJ-H

column (hexane:2-propanol 95:05, 0.5 mL/min, 210 nm), minor enantiomer tr = 16.4 min, major enantiomer tr = 17.8 min, 70% ee; $[\alpha]_{D^{17.2}}$ = -4.3 (*c* = 1.0, CHCl₃, 70% ee); **IR** (neat) 2985, 2938, 1731, 1597, 1573, 1507, 1476, 1431, 1392, 1357, 1321, 1298, 1246, 1188, 1174, 1080, 1034, 1014 cm⁻¹.

4.9. Ethyl (S)-2-chloro-2-(naphthalen-2-ylmethyl)-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (65% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.22 (t, *J* = 7.0 Hz, 3H), 2.25 (s, 3H), 3.61 (d, *J* = 14.3 Hz, 1H), 3.70 (d, *J* = 14.3 Hz, 1H), 4.14-4.30 (m, 2H), 7.29-7.35 (m, 1H), 7.39-7.54 (m, 2H), 7.68 (s, 1H), 7.75-7.88 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 167.0, 133.1, 132.6, 131.4, 129.6, 128.4, 127.7, 127.7, 127.5, 126.0, 125.9, 75.3, 63.1, 42.2, 26.5, 13.8; HRMS calcd for C₁₇H₁₈O₃Cl (M+H)⁺: 305.0939, found: 305.0912; Enantiomeric excess was

determined by HPLC with a Chiralpak IC-3 column (hexane:2-propanol 90:10, 0.5 mL/min, 254 nm), major enantiomer t_r = 10.0 min, minor enantiomer t_r = 11.0 min, 78% ee; $[\alpha]_{D^{15.9}}$ = -1.5 (*c* = 1.0, CHCl₃, 78% ee); **IR** (neat) 2992, 1600, 1508, 1464, 1428, 1356, 1319, 1246, 1227, 1174, 1094, 1080, 1035, 1014 cm⁻¹.

4.10. Ethyl (S)-2-chloro-2(4-methylbenzyl)-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (81% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, *J* = 7.3 Hz, 3H), 2.24 (s, 3H), 2.31 (s, 3H), 3.40 (d, *J* = 14.5Hz, 1H), 3.48 (d, *J* = 14.5Hz, 1H), 4.19-4.27 (m, 2H), 7.07-7.11 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 167.0, 137.1, 130.7, 130.4, 128.8, 75.4, 62.9, 41.7, 26.5, 21.0, 13.8; HRMS calcd for C₁₄H₁₇O₃ClNa (M+Na)⁺: 291.0758, found: 291.0755;

Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 90:10, 1.0 mL/min, 210 nm), major enantiomer $t_r = 8.6$ min, minor enantiomer $t_r = 13.2$ min, 74% ee; $[\alpha]_D^{16.8} = -5.0$ (c = 1.0, CHCl₃, 74% ee); **IR** (neat) 2982, 2928, 1729, 1515, 1445, 1429, 1391, 1356, 1319, 1294, 1246, 1176, 1112, 1081, 1035, 1015 cm⁻¹.

4.11. Ethyl (S)-2-chloro-2-(3-methylbenzyl)-3-oxobutanoate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (84% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 1.25 (t, *J* = 7.0 Hz, 3H), 2.25 (s, 3H), 2.31 (s, 3H), 3.39 (d, *J* = 14.5 Hz, 1H), 3.49 (d, *J* = 14.2 Hz, 1H), 4.18-4.27 (m, 2H), 6.99-7.01 (m, 2H), 7.06-7.08 (m, 1H), 7.15-7.21 (m, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.8, 167.0, 137.7, 133.7, 131.3, 128.2, 128.0, 127.5, 75.2, 62.9, 42.0, 26.4, 21.3, 13.8; **HRMS** calcd for C₁₄H₁₇O₃ClNa (M+Na)⁺: 291.0758,

found: 291.0760; **Enantiomeric excess** was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 90:10, 1.0 mL/min, 210 nm), minor enantiomer tr = 11.5 min, major enantiomer tr = 16.2 min, 74% ee; $[\alpha]_{D^{17.0}}$ = -3.8 (*c* = 1.0, CHCl₃, 74% ee); **IR** (neat) 2983, 2935, 1730, 1607, 1590, 1521, 1506, 1488, 1445, 1430, 1391, 1356, 1322, 1297, 1246, 1221, 1188, 1096, 1036, 1015 cm⁻¹.

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (92% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, *J* = 7.2 Hz, 3H), 2.27 (s, 3H), 2.34 (s, 3H), 2.96 (s, 3H), 3.56 (d, *J* = 15.0 Hz, 1H), 3.60 (d, *J* = 15.0 Hz, 1H), 4.17-4.31 (m, 2H), 7.07-7.13 (m, 2H), 7.15-7.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 167.3, 137.7, 132.6, 130.6, 130.1, 127.4, 125.6, 75.5, 63.1, 37.8, 26.4, 20.1, 13.7; HRMS calcd for C14H17O3ClNa (M+Na)⁺: 291.0758, found:

291.0762; **Enantiomeric excess** was determined by HPLC with a Chiralcel OJ-H column (hexane:2-propanol 90:10, 1.0 mL/min, 210 nm), major enantiomer t_r = 7.4 min, minor enantiomer t_r = 13.6 min, 79% ee; **[***α***]**_D^{17.9} = +27.6 (*c* = 1.0, CHCl₃, 79% ee); **IR** (neat) 3022, 2982, 2936, 1730, 1494, 1462, 1445, 1356, 1323, 1249, 1232, 1196, 1173, 1113, 1095, 1078, 1055, 1015 cm⁻¹.

4.13. Ethyl (S)-1-chloro-2-oxocyclopentane-1-carboxylate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (53% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.31 (t, *J* = 7.1 Hz, 3H), 2.11-2.22 (m, 2H), 2.35-2.45 (m, 2H), 2.53-2.60 (m, 1H), 2.71-2.79 (m, 1H), 4.29 (q, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 206.2, 167.2, 63.1, 38.3, 35.3, 19.0, 13.9; HRMS calcd for

C₈H₁₁O₃ClNa (M+Na)⁺: 213.0289, found: 213.0291; **Enantiomeric excess** was determined by HPLC with a Chiralpak AS-H column (hexane:2-propanol 90:10, 0.5 mL/min, 210 nm), major enantiomer tr = 12.7 min, minor enantiomer tr = 13.7 min, 53% ee; $[\alpha]_D^{16.0} = -2.7$ (c = 1.0, CHCl₃, 76% ee); **IR** (neat) 1767, 1720, 1279, 1243, 1147, 1020, 1002 cm⁻¹.

4.14. Ethyl (S)-1-chloro-2-oxocyclohexane-1-carboxylate

The title compound was prepared according to the general procedure and purified by column chromatography (Hexane:AcOEt = 20:1) to give colorless oil (61% yield). ¹H NMR (400 MHz, CDCl₃) δ 1.32 (t, *J* = 7.3 Hz, 3H), 1.73-1.96 (m, 4H), 2.10-2.17 (m, 1H), 2.40-2.47 (m, 1H), 2.77-2.88 (m, 2H), 4.28 (q, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 167.2, 73.4, 62.8, 39.5, 38.8, 26.6, 22.1, 13.8; HRMS calcd

for C₉H₁₄O₃Cl (M+H)⁺: 205.0626, found: 205.0627; **Enantiomeric excess** was determined by HPLC with a Chiralpak IC-3 column (hexane:2-propanol 95:05, 0.5 mL/min, 210 nm), minor enantiomer t_r = 29.9 min, major enantiomer t_r = 31.5 min, 61% ee; $[\alpha]_D^{16.1}$ = -1.5 (*c* = 1.0, CHCl₃, 61% ee); **IR** (neat) 2946, 2868, 1450, 1366, 1289, 1141, 1123, 1095, 1071, 1039, 1014 cm⁻¹.

5. Cyano-epoxidation of *-chloro-*-ketoester 2a

5.1. Stepwise synthesis

To@a solution of@e-chloro-@-ketoester **2a** (0.1 mmol, 75% ee) in DMSO (1.5 mL) in a glass test tube equipped with a magnetic stirrer bar was added potassium cyanide (0.24 mmol) under Ar. The mixture was stirred for 4 h. After completion of the reaction, NaHCO₃aq was added and the mixture was extracted by Et₂O. Combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by preparative thin layer chromatography (Hexane:AcOEt = 10:1) to afford the epoxide **3** in 83% yield (dr = 65/35, major diastereomer:74% ee, minor diastereomer:73% ee).

5.2. One-pot synthesis

N-PFB PyBidine (0.022 mmol) and Zn(OAc)² (0.02 mmol) were added to a glass tube equipped with a magnetic stirrer bar under Ar. DCM (1.0 mL) was added to the glass tube and the mixture was stirred overnight. After removal of the solvent under reduced pressure, cyclohexane (2.0 mL) was added. Then the β -ketoesters (0.2 mmol) was added at rt followed by the addition of NaHCO₃ (0.02

mmol) and *N*-chlorosuccinimide (0.22 mmol). After stirring for 24 h, the solvent was removed under reduced pressure. To the residue were added DMSO (3 mL) and potassium cyanide (0.48 mmol) under Ar. The mixture was stirred for 5 h. After completion of the reaction, NaHCO₃aq was added and the mixture was extracted by Et₂O. Combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by preparative thin layer chromatography (Hexane:AcOEt = 10:1) to afford the epoxide **3** in 87% yield (dr = 65/35, major diastereomer:71% ee, minor diastereomer:51% ee).

Diastereomeric ratios were determined through analysis of crude ¹H NMR spectra.

Relative configurations of the products were determined through difference nOe experiments of the major diastereomer.

Figure S1. nOe experiment of major epoxide 3.

5.3. Ethyl (2R,3R)-2-benzyl-3-cyano-3-methyloxirane-2-carboxylate (major diastereomer)

¹**H NMR** (500 MHz, CDCl₃) δ 1.17 (t, *J* = 7.2 Hz, 3H), 1.84 (s, 3H), 2.81 (d, *J* = 14.9 Hz, 1H), 3.61 (d, *J* = 14.9 Hz, 1H), 4.13-4.23 (m, 2H), 7.24-7.32 (m, 5H) ; ¹³**C NMR** (125 MHz, CDCl₃) δ 166.3, 133.8, 129.2, 128.7, 127.5, 116.6, 66.9, 62.6, 52.1, 34.4, 17.6, 13.8; **HRMS** calcd for C14H16NO3 (M+H)⁺: 246.1125, found: 246.1126; **Enantiomeric excess** was determined by

HPLC with a Chiralcel OZ-3 column (hexane:2-propanol 100:1, 0.5 mL/min, 210 nm), major enantiomer tr = 37.1 min, minor enantiomer tr = 35.2 min, 74% ee; $[\alpha]_{D^{26.1}=+4.4}$ (*c* = 1.0, CHCl₃, 74% ee); **IR** (neat) 2985, 2937, 2360, 1737, 1300, 1194, 1086, 1038, 750, 700 cm⁻¹.

5.4. Ethyl (2R,3S)-2-benzyl-3-cyano-3-methyloxirane-2-carboxylate (minor diastereomer)

¹**H NMR** (400 MHz, CDCl₃) δ 1.13 (t, *J* = 7.2 Hz, 3H), 1.68 (s, 3H), 3.07 (d, *J* = 15.0 Hz, 1H), 3.73 (d, *J* = 14.7 Hz, 1H), 4.08-4.16 (m, 2H), 7.26-7.33 (m, 5H); ¹³**C NMR** (125 MHz, CDCl₃) δ 165.7, 133.9, 129.3, 128.7, 127.5, 116.6, 67.4, 62.3, 53.0, 38.0, 17.4, 14.0; **HRMS** calcd for C₁₄H₁₆NO₃ (M+H)⁺:

246.1125, found: 246.1125; **Enantiomeric excess** was determined by HPLC with a Chiralcel OZ-3 column (hexane:2-propanol 100:1, 0.5 mL/min, 210 nm), major enantiomer tr = 16.5 min, minor enantiomer tr = 19.6 min, 73% ee; $[\alpha]_{D^{263}}$ =-20.6 (*c* = 0.5, CHCl₃, 73% ee); **IR** (neat) 2983, 2935, 2359, 1751, 1281, 1198, 1080, 1047, 754, 700 cm⁻¹.

6. Mechanistic study

Figure S2. ESI-MS analysis of a mixture of *N*-PFB-PyBidine (**L10**)-Zn(OAc)₂ complex, **1a** (1 eq) and NaHCO₃ (1 eq) in CH₂Cl₂.

Figure S3. ¹H-NMR study of L10-Zn(OAc)² complex, 1a (1 eq), NaHCO₃ (1 eq), and CD₃OD (50 eq) in CDCl₃.

7. ¹H-NMR and ¹³C-NMR spectra

8. HPLC spectra

Intensity [µV]

Chiralcel OJ-H column (hexane:2-propanol= 98:2, 1.0 mL/min, 210 nm)

Chiralcel OJ-H column (hexane:2-propanol= 90:10, 0.5 mL/min, 210 nm)

Chiralpak AD-3 column (hexane:2-propanol= 500:1, 0.5 mL/min, 210 nm)

Chiralpak AS-H column (hexane:2-propanol= 99:1, 0.3 mL/min, 254 nm)

Chiralcel OJ-H column (hexane:2-propanol= 90:10, 1.0 mL/min, 254 nm).

Chiralcel OJ-H column (hexane:2-propanol= 95:5, 0.5 mL/min, 210 nm)

Chiralcel OJ-H column (hexane:2-propanol= 98:2, 0.3 mL/min, 210 nm)

Chiralpak IC-3 column (hexane:2-propanol= 90:10, 0.5 mL/min, 254 nm)

Chiralcel OJ-H column (hexane:2-propanol= 90:10, 1.0 mL/min, 210 nm)

Chiralcel OJ-H column (hexane:2-propanol= 90:10, 1.0 mL/min, 210 nm)

Chiralcel OJ-H column (hexane:2-propanol= 90:10, 1.0 mL/min, 210 nm)

Chiralpak AS-H column (hexane:2-propanol= 90:10, 0.5 mL/min, 210 nm)

Chiralcel OZ-3 column (hexane:2-propanol= 100:1, 0.5 mL/min, 210 nm)

Chiralcel OZ-3 column (hexane:2-propanol= 100:1, 0.5 mL/min, 210 nm)

References

- 1. Kamlar, M.; Císařová, I.; Veselý, J. Org. Biomol. Chem. 2015, 13, 2884.
- Hong, S.; Shin, Y.; Jung, M.; Ha, M. W.; Park, Y.; Lee Y. J.; Shin, J.; Oh, K. B.; Lee, S. K.; Park, H. G. Eur. J. Med. Chem. 2015, 96, 218.
- 3. Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.
- 4. Marigo, M. Kumaragurubaran, N. Jørgensen, K. A. Chem. Eur. J. 2004, 10, 2133.