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Abstract: A PyBidine-Zn(OAc)2 complex catalyzed asymmetric chlorination of β-ketoesters. With
assistance of NaHCO3, a newly developed N-pentafluorobenzyl-PyBidine (N-PFB-PyBidine)-
Zn(OAc)2 catalyst promoted the reaction of α-benzyl-β-ketoesters with N-chlorosuccinimide (NCS)
to give the chlorinated products with up to 82% ee. Results of a mechanistic study suggested
that zinc-enolate of β-ketoesters was formed on the basic (N-PFB-PyBidine)-Zn(OAc)2 catalyst.
Theα-chlorinated-β-ketoester was successfully transformed into the chiral epoxide through sequential
asymmetric chlorination/cyano-epoxidation in a one-pot synthesis.
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1. Introduction

Halogenation is an important transformation for producing highly functionalized organic
compounds. Characteristics of chlorinated compounds have been evaluated for application in material
science, medicinal chemistry, and agrochemistry [1]. Halogenated compounds also are valuable as
synthetic intermediates in cross-coupling reactions. Among the wide range of synthetic methods for
introducing halogens to the organic compounds, the most reliable is chlorination of the α-position of
carbonyl compounds, which has been applied to the catalytic asymmetric version [2].

Asymmetric chlorination of β-ketoesters was described by Togni et al. using a Lewis acid catalyst
TiCl2(TADDOLato) in 2000 [3,4]. After seminal work by Jørgensen’s bisoxazoline-copper catalysis [5],
various metal-catalyzed enantioselective chlorinations of β-ketoesters have been developed using
Cu [6–13], Ni [14], Co [15], Zn [10], Pd [16], and Fe [17]. The use of Cu and Zn salts for a single
chiral ligand allows a switch in enantioselectivity [10]. Organocatalyzed reactions also have been
reported [18–29]. In these reports, formation of enolates from the β-ketoesters has been proposed.
Though previously reported metal-catalyzed reactions have involved relatively strong Lewis acids
with stable counter anions (e.g., TfO−), increasing the basicity of the metal catalyst should promote
formation of the enolate and smooth nucleophilic reaction of the enolate to the chlorinating reagent.

As part of a program for developing advanced halogenated compounds, a series of chiral
metal catalysts for iodolactonization were developed [30–33]. Catalytic asymmetric iodolactonization
was achieved using a newly developed chiral bis (imidazolidine) pyridine ligand (PyBidine)-metal
complex [30]. The formation of an Ni-carboxylate intermediate from the alkenyl carboxylic acid
plays a key role in promoting the iodolactonization. The PyBidine-metal complexes also have been
applied successfully to metal enolate chemistry [34–36]. For example, generation of metal-enolates
from β-ketoesters was achieved with a bis (imidazolidine)pyridine (PyBidine)-CoCl2 complex [36].
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The conjugation of the iodolactonization and enolate formation on the PyBidine-metal complex
promoted an examination of the asymmetric chlorination of β-ketoesters using basic catalysts.

2. Results

Initially, a study was done to determine the appropriate catalyst for asymmetric chlorination
of β-ketoesters.

For asymmetric chlorination of β-ketoester 1a using N-chlorosuccinimide (NCS),
various PyBidine(L1)-metal salt complexes possessed catalytic activity to give the α-chlorinated
β-ketoester 2a in an enantioselective manner (Table 1). Although L1-Co(II), Ni(II), and Cu(II) complexes,
which had been examined previously, were catalytically active, 2a was obtained in low enantiomeric
excess. Among the fourth period metal salts examined, the (S,S)-diphenyldiamine-derived PyBidine
(L1)-Zn(OAc)2 complex gave (S)-enriched 2a in 60% yield with 60% ee (entry 7). Typically, the weakly
basic metal acetate complexes showed greater catalyst activity than those complexes prepared from
neutral metal chlorides or Lewis acidic metal salts. Other chiral ligands were also examined for
applicability to the Zn(OAc)2-catalyzed reaction (entries 11–14). The trinuclear-aminoiminoBINOL
(L2)-Zn3(OAc)4 complex, which possessed outstanding catalytic activity for the iodolactonization
reaction, gave 2a in 41% yield with 21% ee (entry 11) [31,32]. Reaction using PyBim (L3) -Zn(OAc)2

gave 2a with low ee (entry 12) [37].

Table 1. First screening of metal catalysts for asymmetric chlorination of β-ketoester.
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Entry Ligand Metal Salt Yield (%)  ee (%) 
1 L1 FeCl2 9 44 
2 L1 Co(OAc)21 54 42 
3 L1 CoCl2 34 27 
4 L1 Ni(OAc)21 64 28 
5 L1 Cu(OAc)2 57 10 
6 L1 Cu(OTf)2 23 22 
7 L1 Zn(OAc)2 60 60 
8 L1 Zn(OBz)2 85 56 
9 L1 ZnCl2 13 −21 

10 L1 Zn(OTf)2 22 21 
11 L2 Zn(OAc)2 41 21 
12 L3 Zn(OAc)2 90 −6 
13 L4 Zn(OAc)2 98 13 
14 L5 Zn(OAc)2 52 15 

1 Tetrahydrate was used. 

Based on the first screening of catalysts for asymmetric chlorination, the PyBidine-Zn(OAc)2 
catalyst system was chosen for further optimization (Table 2). 
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Entry Ligand Metal Salt Yield (%) ee (%)

1 L1 FeCl2 9 44
2 L1 Co(OAc)2

1 54 42
3 L1 CoCl2 34 27
4 L1 Ni(OAc)2

1 64 28
5 L1 Cu(OAc)2 57 10
6 L1 Cu(OTf)2 23 22
7 L1 Zn(OAc)2 60 60
8 L1 Zn(OBz)2 85 56
9 L1 ZnCl2 13 −21

10 L1 Zn(OTf)2 22 21
11 L2 Zn(OAc)2 41 21
12 L3 Zn(OAc)2 90 −6
13 L4 Zn(OAc)2 98 13
14 L5 Zn(OAc)2 52 15

1 Tetrahydrate was used.

Based on the first screening of catalysts for asymmetric chlorination, the PyBidine-Zn(OAc)2

catalyst system was chosen for further optimization (Table 2).
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Table 2. Optimization of asymmetric chlorination of β-ketoester catalyzed by PyBidine-Zn(OAc)2.
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1 10 mol % were added. 

The substitution effect on the imidazolidine ring of the PyBidine ligand (R-group) was examined 
(Table 2, entries 1–6). Although the bulky N-trimethylbenzyl-PyBidine (L6)-Zn(OAc)2 catalyst 
resulted in lower asymmetric induction to give 2a, the catalysts prepared from N-cyclohexylmethyl-
PyBidine (L7) and N-1-naphthylmethyl-PyBidine (L8) slightly improved asymmetric induction 
(entries 3–4). By introducing an electron-withdrawing substituent directly onto the imidazolidine-
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18 L10 cyclohexane NCS NaHCO3 99 78

1 10 mol % were added.

The substitution effect on the imidazolidine ring of the PyBidine ligand (R-group) was
examined (Table 2, entries 1–6). Although the bulky N-trimethylbenzyl-PyBidine (L6)-Zn(OAc)2

catalyst resulted in lower asymmetric induction to give 2a, the catalysts prepared from
N-cyclohexylmethyl-PyBidine (L7) and N-1-naphthylmethyl-PyBidine (L8) slightly improved
asymmetric induction (entries 3–4). By introducing an electron-withdrawing substituent directly onto
the imidazolidine-ring, N-tosyl-PyBidine (L9) reduced the catalytic activity to give 2a in 25% yield,
which can be explained by a reduction in basicity of the PyBidine-Zn(OAc)2 complex (entry 5).
Finally, the N-pentafluorobenzyl-PyBidine (L10), referred to as N-PFB-PyBidine, improved the
Zn(OAc)2-catalyzed reaction to give 2a in 86% yield with 70% ee. For N-PFB-PyBidine (L10)-Zn(OAc)2
catalysis, additional reaction optimization was conducted in entries 7–18. Reactions conducted in
a polar solvent tended to reduce asymmetric induction, while the use of cyclohexane improved the
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asymmetric induction of 2a with up to 79% ee (entry 11). Although other chlorinating reagents were
investigated (entries 12–15), reaction using the original NCS provided 2a with the greatest ee value.
Based on the weaker basic character of the PyBidine-Zn(OAc)2 complex, some basic additives were also
examined (entries 16–18). The best reaction conditions were the addition of 1 equivalent NaHCO3 to
the N-PFB-PyBidine (L10)-Zn(OAc)2 catalyst (10 mol%), which gave 2a in 99% yield while maintaining
the asymmetric induction of 78% ee (entry 18).

With the optimized reaction conditions in hand, the generality of β-ketoesters was examined
in Scheme 1.
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Scheme 1. General applicability of β-ketoesters. 15 mol % of catalyst were used. 2 N-bromosuccinimide
(NBS) was used instead of N-chlorosuccinimide (NCS).

The methyl ester 2b and tert-butyl ester 2c were obtained with 76% ee. For the benzyl substituent
of β-ketoesters, both electron-donating and -withdrawing substituents on the benzene ring were
tolerated to give products ranging from 74% ee to 82% ee. Similarly, the 2-naphthylmethyl substituted
product 2i was obtained with 78% ee. However, the simple methyl substituent of the β-ketoester
reduced the asymmetric induction to 30% ee in generating 2e. Cyclic β-ketoesters could be used and
gave 2m and 2n with 53% ee and 61% ee, respectively. When N-bromosuccinimide (NBS) was used
instead of NCS, α-bromo-β-ketoester 2o was obtained in 46% yield and 21% ee. Even in the decreased
catalyst loading (5 mol %), 2a was obtained in quantitative yield with 74% ee.

For synthetic application of chiral α-chloro-β-ketoesters, Shibatomi et al. reported the SN2
substitution reaction using azide and thiol nucleophiles [9]. In contrast, when KCN was applied
to the chiral α-chloro-β-ketoester 2a, epoxide 3 was obtained in 83% yield, which was generated
by 1,2-addition of cyanide to the α-chloro-β-ketoester 2a and subsequent intramolecular epoxide
formation (Scheme 2). Although 3 was obtained as a diastereo-mixture, both isomers retained their
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optical purity of the α-position. Epoxide formation also was possible from sequential asymmetric
chlorination/cyano-epoxidation in a one-pot synthesis.
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Zn + enolate (1a - H)]+ and [L10-ZnOAc + enolate (1a - H) + H]+, respectively (Figure 2a). Furthermore, 
in the 1H-NMR study, mixing L10-Zn(OAc)2 complex, 1a (1 eq), NaHCO3 (1 eq), and CD3OD (50 eq) 
in CDCl3, reduced the intensity of the α-proton of 1a to 0.64 proton, which suggests smooth formation 
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3. Discussion

Figure 1a presents a proposed reaction mechanism. The β-ketoesters coordinate to the PyBidine-Zn
complex to form intermediate A. The Zn-enolate B then is generated with assistance of base (e.g.,
NaHCO3). Enolate B reacts with the chlorinating reagent (NCS) to give the product along with
regeneration of the catalyst.
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N-PFB-PyBidine (L10)-Zn(OAc)2 complex: (a) catalytic cycle; (b) reaction model.

Formation of Zn-enolate B was suggested by 1H-NMR and ESI-MS results. When the N-PFB-PyBidine
(L10)-Zn(OAc)2 complex was treated with 1a (1 eq) and NaHCO3 (1 eq) in CH2Cl2, new peaks were
observed in the ESI-MS spectrum at 1166.3037 and 1226.3250, corresponding to the [L10-Zn + enolate
(1a − H)]+ and [L10-ZnOAc + enolate (1a − H) + H]+, respectively (Figure 2a). Furthermore, in the
1H-NMR study, mixing L10-Zn(OAc)2 complex, 1a (1 eq), NaHCO3 (1 eq), and CD3OD (50 eq) in
CDCl3, reduced the intensity of the α-proton of 1a to 0.64 proton, which suggests smooth formation of
the enolate 1a under the reaction conditions (Figure 2b).
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The PyBim (L3)-Zn(OAc)2 gave (R)-2a with only 6% ee (Table 1, entry 11),
and an N,N-Me4-PyBidine)-Zn(OAc)2 resulted in poor asymmetric induction under the optimized
reaction conditions (Scheme 3) [36]. These results suggest that the NH-proton of the imidazolidine
ring in the N-PFB-PyBidine (L10)-Zn(OAc)2 complex apparently plays a significant role in organizing
the appropriate reaction sphere [35].
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The reaction model described in Figure 1b explains the formation of (S)-enriched 2a using
(S,S)-diphenyldiamine-derived N-PFB-PyBidine (L10)-Zn(OAc)2 catalyst, in which the formation of
hydrogen bonding between NCS and the NH-proton of imidazolidine ring is involved.

4. Materials and Methods

N-PFB PyBidine (L10) (0.022 mmol) and Zn(OAc)2 (0.02 mmol) were added to a glass tube
equipped with a magnetic stirrer bar under Ar. Then, DCM (1.0 mL) was added to the glass tube
and the mixture stirred overnight. After removal of the solvent under reduced pressure, cyclohexane
(2.0 mL) was added, followed by the addition of the β-ketoesters (0.2 mmol) at 25 ◦C and then the
addition of NaHCO3 (0.02 mmol) and N-chlorosuccinimide (0.22 mmol). After stirring for 24 h,
the reaction mixture was directly purified by silica-gel column chromatography to afford the product.
The enantiomeric excess of the products was determined using chiral stationary phase HPLC with
Daicel Chiralcel OJ-H and Chiralpak AS-H and IC-3 columns.

The detailed experimental procedure and analytical data are available in the
Supporting Information.

5. Conclusions

In conclusion, an efficient Zn-catalyzed enantioselective chlorination reaction of β-ketoesters was
developed. The N-PFB-PyBidine (L10)-Zn(OAc)2 complex acts as a basic catalyst to generate the enolate
of the β-ketoesters, and to promoteα-chlorination in high yield with moderate to good enantioselectivity.
Transformation of the α-chlorinated product into chiral epoxide by one-pot sequential asymmetric
chrolination/cyano-epoxidation reaction was also achieved.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1177/s1,
Detailed experimental procedure, analytical data, Figure S1: nOe experiment of major epoxide 3, Figure S2:
ESI-MS analysis of a mixture of N-PFB-PyBidine (L10)-Zn(OAc)2 complex, 1a (1 eq) and NaHCO3 (1 eq) in CH2Cl2,
Figure S3: 1H-NMR study of L10-Zn(OAc)2 complex, 1a (1 eq), NaHCO3 (1 eq), and CD3OD (50 eq) in CDCl3.
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