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Schemes 

 

Scheme S1. Synthesis of the key bicyclononyne derivatives (6). Syntheses of 2 - 5 were reported 
previously [1]. a: cystamine, Et3N, MeOH/DCM, 50˚C. 

 

Scheme S2. Obliteration of the FRET effect in 11 and release of the EDANS fluorescence initiated by 
nucleophilic attack of 11 by thiolates (highlighted in pink in Scheme 1 and here). R1-SH: thiol-
containing reactants; R2 and R3: H or thiolate groups. The disulfide group in 11 is highlighted in red. 
k2, the second-order rate constant for the SN2 nucleophilic substitution reaction of 11 with a thiolate. 
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Figures 

 

Figure S1. The UV-Vis spectra for 50 M of the FRET probe 11 (－, the blue curve), EDANS (－, the 
red curve) and DABCYL (－, the green curve) in phosphate buffered saline (PBS). 

 

Figure S2. Visualization of the EDANS fluorescence to explore the properties of the fluorescent 
emission from 11 in the presence of various reactants. Each vial contained 25 M of 11 in PBS in the 
presence or the absence of an indicated reactant (50 mM). 

The reactions were carried out in the dark at rt for 1 h before the photograph was taken. Samples: 
1, 11 in the absence of reactants; 2, 11 + 2-mercaptoethanol; 3, 11 + GSH; 4, 11 + L-cysteine; 5, 11 + 2-
aminoethanethiol; 6, 11 + DTT; 7, 11 + L-methionine; 8, 11 + L-lysine; 9. 11 + glycine; 10, 11 + L-serine; 
11, 11 + L-glutamate.  
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Figure S3. Pseudo-first-order reactions of 11 (25 M) with 50 mM of (A) DTT, (B) GSH, (C) L-cysteine, 
(D) 2-mercaptoethanol, (E) 2-aminoethanethiol, or (F) five non-thiol amino acids (L-methionine, L-
lysine, L-serine, L-glutamate, and glycine) in PB. Progress of each reaction was monitored by 
measuring fluorescence emission at. 

505 nm at specific time intervals. Data of normalized EDANS fluorescence (FL) intensity vs time 
were fitted to a single-exponential equation for first-order kinetics F(t) = F0 + Fmax(1 - e-k1t) [F(t), EDANS 
fluorescence at a specific time point t] to afford the values of the first-order rate constant k1 
(GraphPad, La Jolla, CA, USA) illustrated in the graphs. In Panels S3A-S3E, the black lines represent 
original FL changes in the reaction time courses, and the red curves show the results calculated by 
the single-exponential equation. The normalized FL intensity data at 505 nm were acquired by 
subtracting a background FL505 intensity of 11 from the original FL505 intensity measurements. 
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Figure S4. Effects of metal ion (1 mM) on the pseudo-first-order reactions of 11 (25 M) with 50 mM 
DTT in PB. The k1 values were determined by a method analogous to that as described above. The 
symbol * indicates that 11 had no detectable EDANS fluorescence change in presence of Ni(II) or 
Co(II); the EDANS fluorescence change was so insignificant so that the values of averaged k1 and 
standard deviation could not be determined. 
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Figure S5. Kinetic analysis of the pseudo-first-order reactions of 11 (25 M) with 50 mM of one of the 
structure-modified GSH derivatives 12 and 13 in PB. The k1 values were again determined by a 
method similar to that as described above. The symbol * indicates that the reaction of 11 with 12 had 
no detectable EDANS fluorescence and very low reactivity. Therefore, the values of averaged k1 and 
standard deviation could not be determined for the reaction. 

 

 

Figure S6. Presence of 50 M or 50 mM of GSH in the BChE-BTCh-11 reaction did not affect release 
of the EDANS fluorescence. BChE activity was determined by measuring the EDANS fluorescence 
released from 11 (A) at the end of the reactions or (B) at the time-dependent increments measured by 
the spectrofluorometer. An enzymatic reaction consisted of BChE (182 U L-1), BTCh (5 mM), 11 (25 
M), and GSH [50 M in (A) or 50 mM in (B)], if present, in PB. The reactions were carried out at rt in 
(A) or 37˚C in (B) for 90 min. The normalized FL intensity data at 505 nm were acquired by subtracting 
a background FL505 intensity of 11 from the original FL505 intensity readings. Each reaction was 
analyzed three times in order to acquire the averaged FL505 values and standard deviation (the error 
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bar) in (A). In (B), the time-fluorescence curves and enzyme activities of the BChE-BTCh-11 reaction 
were almost identical in the presence or absence of 50 mM GSH (the initial velocities vi: 12.9 ± 2.0 min-

1 vs 12.2 ± 1.6 min-1, respectively). 

 

Figure S7. Tacrine inhibition on BChE catalysis analyzed by the fluorescence assay based on 11. (A) 
Time-course kinetic analysis of tacrine inhibition on BChE (182.2 U L-1) catalysis was performed in the 
presence of BTCh (250 M) in PB. Each BChE reaction contained 0, 50, 100 or 200 nM of tacrine. 

Table 

Table S1. Comparison on analytical performance of optical assays for BChE activity quantification. 

Probe Linear Range LOD Detection 
Mode Reference 

2,6-Dichloroindophenol 
Acetate 72–36600 U L-1 72 U L-1 Colorimetry [2] 

Gold Nanorod 0.042–8.4 mU L-1 0.018 mU L-1 Colorimetry [3] 
Resorufin Butyrate 0.3–60 U L-1 0.3 U L-1 Fluorometry [4] 

2-(2-(5,6-Dimethoxy- 
1,3-dioxoisoindolin-2-yl) 

Acetoxy)-N,N,N- 
trimethylethan-1- 
ammonium Iodide 

1,000–10,000 U L-1 1,000 U L-1 Fluorometry [5] 

BChE-FP N/A N/A Fluorometric [6] 
CdTe Quantum Dots 10-1000 U L-1 10 U L-1 Fluorometric [7] 

Carbon Quantum Dots 60.0–220.0 U L-1 2.7 U L-1 Fluorometric [8] 
CdTe Quantum Dots 4-400 U L-1 0.96 U L-1 Fluorometric [9] 

Prussian Blue 2,000-15,000 U L-1 800 U L-1 Colorimetry [10] 
Carbon Quantum Dots 100–5,000 U L-1 40 U L-1 Fluorometric [11] 

Gold Nanoclusters 5-100 ng mL-1 4 ng mL-1 Fluorometric [12] 
G-Quadruplex DNA 1-1,000 ng mL-1 0.15 ng mL-1 Fluorometric [13] 

2,3-Dicyano-1,4-
phenylene Diacrylate 0.2-9 U L-1 0.06 U L-1 Fluorometric [14] 

MnO2 Nanosheets 10-500 U L-1 0.035 U L-1 Fluorometric [15] 
Compound 11 4.3-182.2 U L-1 4.3 U L-1 Fluorometric This work 
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