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1. Experimental Part 

1.1 General Remarks 

Starting materials were of the highest commercial quality and were employed as received, 

including silica gel (60 Å, 230-400 mesh). 1H-NMR (400 MHz) and 13C-NMR (100 MHz spectra were 

recorded with a Bruker Ascend 400 spectrometer in CDCl3 (99.8% D content) solution with the 

residual peak of CHCl3 as internal standard. FTIR spectra of reaction products were recorded from 

KBr pellets on a Fourier Transform Infrared Spectrophotometer S2 on a Jasco FT/IR-480 Plus. Gas 

chromatographic analyses were recorded on a Agilent 6890N Network GC System on an Alltech 

Econo-Cap EC-WAX column 30 m x 0.32 mm I.D. x 0.25 μm under a constant flow (2 mL/min) of He 

in split mode (split ratio 50:1); injection volume 1 μL; injector temperature 280 °C, detector (FID) 

temperature 280 °C, oven temperature 40 °C × 4 min – 15 °C/min to 220 °C × 4 min. The HRMS spectra 

were acquired on a Thermo Finnigan Q Exactive instrument with API-HESI source. Samples were 

introduced as 0.1 mg/L solutions in MS grade methanol with a 5 μL/min flow and the following 

source parameters: positive polarity; Sheath gas flow rate: 5 a.u.; Aux gas flow rate: 3 a.u.; Sweep gas 

flow rate: 0 a.u.; Spray voltage: 3.50 kV; Capillary temperature: 250 °C; S-lens RF level: 60,0 V; Aux 

gas heater temperature: 0 °C. The peroxide content of the solvents was tested employing semi-

quantitative test-strips Quantofix®, measuring range 0.5 – 25 mg/L H2O2, in agreement with the 

general indications furnished by the producer. 

1.2 General procedure for the acetalization reaction 

In a 50 mL flask fitted with a Dean-Stark distiller and bubble condenser provided with a CaCl2 

valve(for reactions run in CPME or toluene) or under an Ar atmosphere (for reactions run in 2-

MeTHF), the starting material (1, 80 mmol) was dissolved in the appropriate solvent (20 mL) together 

with the amount of the required diol (2, 88 to 160 mmol, 1.1 to 2.0 equiv), as reported in Tables 2 and 

3 and Schemes 1 and 2 and equations 1-5. After addition of the appropriate catalyst (2.4 mmol, 3 mol 

% of the starting material), the reaction mixture was heated in an oil bath under vigorous stirring and 

allowed to reflux for 6 h, then cooled to rt and the reaction mixture was filtered. Reaction run in the 

presence of 1.5 to 2.0 equivalents of diol were then washed with H2O (3 × 5 mL) and dried over 

anhydrous Na2SO4. The resulting solution was evaporated under reduced pressure and the crude 

product analysed by 1H-NMR spectroscopy. No other product, besides starting material, was 

detected, unless otherwise indicated (Table 2 and Equation 1). 

Recovery of the catalyst (washed twice with the reaction solvent and dried in vacuo) usually 

exceeded 90%. 

1.3. Characterization of reaction products 

Reaction products were identified by comparison with literature data and/or with authentic 

samples synthesized according to the literature, and characterized as follows: 

2-Methyl-2-phenyl-1,3-dioxolane, 3a:1,2 white crystals, mp 61-62 °C (CPME); 1H-NMR (400 

MHz, CDCl3)  (ppm) 1.66 (3H, s, CH3), 3.73-3.83 (2H, m, CH2O), 3.99-4.09 (2H, m, CH2O), 7.29 (1H, 

t, J = 7.6 Hz, ArH), 7.35 (2H, t, J = 7.6 Hz, 2 × ArH), 7.48 (2H, d, J = 7.6 Hz, 2 × ArH); 13C-NMR (100 

MHz, CDCl3):  (ppm) 27.6, 64.4, 108.8, 125.2, 127.8, 128.1, 143.2. 

2-Phenyl-1,3-dioxolane, 3b:1,2 colourless oil which solidifies upon standing, bp 136-138 °C/30 

mmHg; 1H NMR (400 MHz, CDCl3)  (ppm) 7.90-7.88 (m, ArH-4), 7.50-7.48 (m, 2 H, ArH-3/5), 7.39-

7.37 (m, 2 H, ArH-2/6), 5.82 (s, 1 H, OCHO), 4.16-3.99 (m, 4 H, OCH2CH2O); 13C NMR (CDCl3; 100 

MHz)  =137.9, 129.1,128.3, 126.4, 103.7, 65.3. 

2-(4-Nitrophenyl)-1,3-dioxolane, 3c:3 White powder, mp 89-90 °C (MeOH); 1H NMR (400 MHz, 

CDCl3)  (ppm) 8.28-8.21 (m, 2 H, 2 × ArH), 7.69-7.67 (m, 2 H, 2 × ArH), 5.90 (s, 1 H, OCHO), 4.14-4.06 

(m, 4 H, OCH2CH2O); 13C NMR (100 MHz, CDCl3)  (ppm) 148.6, 145.1, 127.6, 123.7, 102.4, 65.6. 

Spiro[1,3-dioxolane-2,3’-indolin]-2’-one, 3d:4 Light brown powder, mp 131-132 °C (CPME); 1H 

NMR (400 MHz, DMSO-d6)  (ppm) 10.43 (br s, 1 H, NH), 7.35-7.31 (m, 2 H, ArH), 7.03-6.99 (m, 1 H, 
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ArH), 6.84-6.82 (m, 1 H, ArH), 4.36-4.21 (m, 4 H, OCH2CH2O); 13C NMR (100 MHz, DMSO-d6)  (ppm) 

174.4, 142.8, 131.6, 124.9, 124.6, 122.4, 110.4, 101.6, 65.4. 

2-(3,4,5-Trimethoxyphenyl)-1,3-dioxolane, 3ea:5 light yellow oil, which solidifies upon 

standing; 1H-NMR (400 MHz, CDCl3)  (ppm) 3.84 (3 H, s, CH3O), 3.86 (6 H, s, 2 × CH3O), 4.00-4.19 (4 

H, m, 2 × CH2), 5.75 (1 H, s, CHO2), (2 H, s, 2 × ArH); 13C-NMR (CDCl3; 100 MHz)  (ppm) 153.3, 138.6, 

132.2, 103.6, 103.2, 62.2, 60.8, 56.1. 

Synthesis of 3,4,5-trimethoxybenzaldehyde dimethyl acetal, 3eb:5,6 In a 25 mL flask fitted with 

a bubble condenser provided with a CaCl2 valve, 3.0 g of 1e (15 mmol) was dissolved in CPME (10 

mL) together with 1.4 mL of CH3OH (0.034 mmol), 1,80mL of HC(OCH3)3 (16 mmol) and 0,053 g (0.45 

mmol, 3 mol %) NH4HSO4-SiO2 (25% w/w). The mixture was stirred at 65 °C during 6 h, then chilled 

to rt and filtered. The solvent was evaporated, and the crude product was analysed by 1H-NMR 

spectroscopy to evaluate the conversion (92%), and characterized as following: 

colourless viscous oil which solidifies upon standing: 1H-NMR (400 MHz, CDCl3)  (ppm) 6,69 

(2 H, s, 2 × ArH), 5,30 (1 H, s, CH), 3,88 (6 H, 2 × OCH3), 3,85 (3 H, OCH3), 3,35 (6 H, 2 × OCH3); 13C-

NMR (100 MHz, CDCl3)  153.2, 138.0, 133.8, 103,6, 103.3, 60.8, 56.1, 52.9. 

2-Methyl-2-naphthyl-4-ethyl-1,3-dioxolane, 3f:7 colourless viscous oil; IR (liquid film) 3057, 

2965, 2935, 2878, 1600, 1507, 1463, 1442, 1371, 1351, 1272, 1259, 1220, 1189, 1130, 1099, 1069, 1038, 980, 

950, 883, 860, 820, 758, 670 cm-1; the two diastereoisomers were separated by flash chromatography 

(Hexane/AcOEt/TEA = 9.8:0.2:0.1) and characterized as follows: 

first diastereoisomer, Rf = 0.46 (Hexane/AcOEt/TEA = 9.8:0.2:0.1); 1H NMR (400 MHz, CDCl3)  

(ppm) 7.97 (s, 1 H, 1 x ArH), 7.88-7.83 (m, 3 H, 3 x ArH), 7.61-7.59 (m, 1 H, 1 x ArH), 7.51-7.48 (m, 2 

H, 2 x ArH), 3.92 (m, 2 H, diast, H-5), 3.68 (t, J = 5.4 Hz, 1 H, H-4), 1.78 (m, 1 H, diast, CH2CH3), 1.76 

(s, 3 H, CH3-2), 1.66 (m, 1 H, diast, CH2CH3), 0.99 (t, J = 7.4 Hz, 3 H, CH2CH3); 13C NMR (100 MHz, 

CDCl3)  (ppm) 141.4, 133.1, 133.1, 128.4, 128.2, 127.7, 126.2, 126.1, 124.1, 123.9, 109.1, 77.3, 69.3, 28.4, 

26.8, 9.8. 
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Second diastereoisomer: Rf = 0.55 (Hexane/AcOEt/TEA = 9.8:0.2:0.1); 1H NMR (400 MHz, CDCl3) 

 (ppm) 7.97 (s, 1 H, 1 x ArH), 7.88-7.83 (m, 3 H, 3 x ArH), 7.61-7.59 (m, 1 H, 1 x ArH), 7.51-7.48 (m, 2 

H, 2 x ArH), 3.92 (m, 2 H, diast, H-5), 3.68 (t, J = 5.4 Hz, 1 H, H-4), 1.78 (m, 1 H, diast, CH2CH3), 1.76 

(s, 3 H, CH3-2), 1.66 (m, 1 H, diast, CH2CH3), 0.99 (t, J = 7.4 Hz, 3 H, CH2CH3); 13C NMR (100 MHz, 

CDCl3)  (ppm) 141.37, 133.14, 133.10, 128.37, 128.19, 127.74, 126.21, 126.11, 124.06, 123.88, 109.14, 

77.27, 69.26, 28.41, 26.83, 9.83. 
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2-[2-[4-(1,1-Dimethylethyl)phenyl]-1-methylethyl]-1,3-dioxolane, 3g:8 Colourless oil. 1H NMR 

(400 MHz, CDCl3)  (ppm) 7.31-7.29 (m, 2 H, ArH-3/5), 7.13-7.11 (m, 2 H, ArH-2/6), 4.76 (d, J = 4.0 Hz, 

1 H, O-CH-O), 4.00-3.88 (m, 4 H, OCH2CH2O), 2.92-2.87 (m, 1 H, diast, CH2-Ar), 2.41-2.35 (m, 1 H, 

diast, CH2-Ar), 2.09-1.99 (m, 1 H, CH), 1.32 (s, 9 H, tert-butile), 0.90 (d, J = 6.0 Hz, 3 H, CH3); 13C NMR 

(100 MHz, CDCl3)  (ppm) 148.7, 137.5, 129.0, 125.2, 107.1, 65.3, 65.3, 39.0, 37.3, 34.5, 31.6, 13.5. 

2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol, 3h:9 light yellow oil, diastereoselectivity 

65:35 (NH4HSO4) or 43:57 (NH4Br) as determined by 1H-NMR; 1H-NMR (400 MHz, CDCl3)  (ppm) 

1,35 (3 H, d, J = 6.4 Hz, CH3), 1,40 (3 H, d, J = 6.0 Hz, CH3), 3.55, (1 H, t, J = 7.2 Hz, CH), 1,61 (3H, d, J 

= 6.4 Hz, CH), 3.90 (3 H, s, CH3OAr), 3.91 (3 H, s, CH3OAr), 4.11 (1 H, t, J = 7.2 Hz, CH), 4.25-4.42 (2 

H + 1 H, m, CH), 5.68 (1 H + 1 H, br s, OH), 5.74 (1 H, s, O-CH-O), 5.87 (1 H, s, O-CH-O), 6.89 (1 H, d, 

J = 2.8 Hz, ArH), 6.91 (1 H, d, J = 2.8 Hz, ArH), 6.96-7.03 (2 H + 2 H, m, 2 × ArH); 13C NMR (100 MHz, 

CDCl3):  (ppm) 18.5, 18.6, 55.9, 55.9, 71.3, 72.0, 72.2, 73.3, 103.0, 104.1, 108.5, 108.7, 114.0, 114.1, 119.8, 

120.2, 129.7, 130.2, 146.4, 146.5, 146.5, 146.6; HRMS (ESI) m/z: calc. per C11H14O4H+ 211.09649 [M+H]+, 

found: 211.09650; IR (liquid film) 3411, 3072, 2973, 2881, 1675, 1611, 1519, 1464, 1436, 1404, 1377, 1278, 

1240, 1190, 1165, 1119, 1088, 1032, 1003, 971, 860, 822, 778, 760, 717, 631 cm -1. 
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Ethyl (2-methyl-1,3-dioxolan-2-yl)acetate, 3i:1,10 Light yellow oil, bp 105-107 °C/30 mmHg; 1H-

NMR (, CDCl3): 4,16 (q, J = 7,2 Hz, 2H), 3,98 (s, 4H), 2,67 (s, 2H), 1,51 (s, 3H), 1,27 (t, J = 7,2 Hz, 3H). 
13C- NMR (, CDCl3): 14.2, 24.5, 44.3, 60.6, 64.8, 107.7, 169.5. 

Acetic acid 2-methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenyl ester, 3j: In a 50 mL flask fitted 

with a Dean-Stark apparatus and a bubble condenser provided with a calcium chloride valve, vanillin 

acetate (7.77 g, 40 mmol) was mixed with CPME or toluene (10 mL), ethylene glycol (2.45 mL, 44 

mmol, 1.1 eq) and the catalyst (1.2 mmol, 3 mol % of the aldehyde). The mixture was set to reflux for 

6 h. WORKUP A (catalysts NH4Br or NH4HSO4): after cooling to room temperature, the mixture was 

filtered to remove heterogeneous catalyst and a small aliquot was withdrawn, evaporated and 

submitted to 1H-NMR analysis (conversion ≥95%). The solution was kept in the refrigerator overnight 

and the obtained solid was filtered over Buchner funnel to obtain the product as white crystals 

(NH4Br/78% yield; NH4HSO4/63% yield). WORKUP B (catalyst p-TSA): after cooling to room 

temperature, a small aliquot was withdrawn, kept 15 minutes over K2CO3, evaporated and submitted 

to 1H-NMR analysis. The solution was washed with Na2CO3 1M solution (3 × 10 mL), dried over 

K2CO3 and the solvent removed to obtain a gray solid. 

White powder (from CPME); 1H NMR (400 MHz, CDCl3) δ ppm 2.31 (s, 3 H), 3.85 (s, 3 H), 4.00 - 

4.15 (m, 4 H), 5.81 (s, 1 H), 7.01 - 7.08 (m, 2 H), 7.09 – 7.12 (m, 1 H); 13C NMR (100 MHz, CDCl3) δ ppm 

168.80, 151.11, 140.31, 136.89, 122.60, 118.86, 110.30, 103.12, 65.19, 55.86, 20.60; HRMS (ESI) calculated 

for C12H15O5K ([M+K]+) 277,04783 found 277,04715. 



Catalysts 2020, 10, x FOR PEER REVIEW 7 of 26 

Catalysts 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/catalysts 

 

 

2-Methyl-2-(4-hydroxyphenyl)ethyl-1,3-dioxolane, 3k:11 Colourless oil. IR (film di liquido) (cm-

1) 3375, 3072, 2982, 2954, 2935, 2884, 1614, 1595, 1516, 1448, 1337, 1225, 1172, 1136, 1086, 1055, 949, 860, 

849, 833, 795, 668; 1H NMR (400 MHz, CDCl3)  (ppm) 7.06-7.04 (m, 2 H, ArH-3/5), 6.75-6.73 (m, 2 H, 

ArH-2/4), 5.23 (br s, 1 H, OH), 3.99 (m, 4 H, OCH2CH2O), 2.64 (m, 2 H, Ar-CH2-CH2-R), 1.93 (m, 2 H, 

Ar-CH2-CH2-R), 1.38 (s, 3 H, CH3); 13C NMR (100 MHz, CDCl3)  (ppm) 153.87, 134.28, 129.48, 115.35, 
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109.99, 64.87, 41.37, 29.45, 24.11. Elemental Analysis: C12H16O3 requires C, 69.21; H, 7.74; found: C, 

69.35; H, 7.93. 

 

 

2-(4-Methylethylphenyl)-1,3-dioxolane, 3l:12 light yellow oil, bp 95-98 °C/1 mmHg; 1H-NMR 

(400 MHz, CDCl3)  (ppm) 1.24 (6 H, d, J = 6.8 Hz, 2 × CH3), 2.92 (1 H, ept, J = 6.8 Hz, CH), 3.99-4.17 

(4 H, m, OCH2CH2O), 5.80 (1 H, s), 7.22-7.26 (2 H, m, 2 × ArH), 7.38-7.42 (2 H, m, 2 × ArH); 13C NMR 

(100 MHz, CDCl3):  (ppm) 23.9, 34.0, 65.3, 104.0, 126.4, 126.5, 135.4, 150.0. 
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Synthesis of 1,1-bis(nonyloxy)nonane, 3m: In a 100 mL flask fitted with a Dean-Stark distiller 

and bubble condenser provided with a CaCl2 valve, nonanal (1m, 11.4 g, 13.8 mL, 80 mmol) was 

dissolved in CPME (30 mL) together with 1-nonanol (2e, 136 mmol, 19.6 g, 23.7 mL mL, 1.7 equiv). 

After addition of the catalyst (NH4Br, 235 mg, 2.4 mmol, 3 mol % of the starting material), the reaction 

mixture was heated in an oil bath under vigorous stirring and allowed to reflux for 6 h, then cooled 

to rt and the reaction mixture was filtered. The solvent was evaporated under reduced pressure and 
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the product was purified by fractional distillation to afford 23.1 g (56 mmol, 82%) of 3m, which was 

characterized as following: 

purified by fractional distillation, bp 165-170°C/1 mmHg, light yellow oil. IR (liquid film) 2955, 

2925, 2855, 1466, 1378, 1349, 1117, 1074 cm-1; 1H NMR (400 MHz, CDCl3) δ (ppm) 4.45 (t, J = 5.5 Hz, 1 

H, OCHO), 3.56 (q, J = 7.3 Hz, 2 H, OCH2), 3.40 (q, J = 7.3 Hz, 2 H, OCH2), 1.55 (m, 11 H), 1.27 (s, 62 

H), 0.88 (t, J = 6.1 Hz, 9 H).; 13C NMR (100 MHz, CDCl3) δ (ppm) 103.32, 65.59, 33.64, 32.05, 30.09, 29.75, 

29.70, 29.65, 29.45, 29.40, 26.45, 24.96, 22.82, 14.23; Elemental Analysis: C27H56O2 requires: C, 78.57; H, 

13.68; found: C, 79.06; H, 14.01. 
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2-(Hepten-3-yl)-1,3-dioxolane, 3n:1,16 purified by fractional distillation, bp 105 °C/30 mmHg, 

light yellow oil; 1H NMR (400 MHz, CDCl3)  (ppm) 0.85-0.95 (6 H, m, CH3), 1.25-1.52 (7 H, m, 3 × 

CH2, CH), 3.78-3.97 (4 H, m, OCH2CH2O), 4.77 (1 H, d, J = 4.0 Hz, O-CH-O); 13C NMR (100 MHz, 

CDCl3):  (ppm) 11. 5, 14.1, 21.7, 23.1, 28.2, 29.4, 42.9, 64.8, 106.7. 

2-(4-Bromophenyl)-1,3-dioxolane, 3o:1,13 white powder, mp 36-38 °C (EtOH); 1H NMR (400 

MHz, CDCl3) δ (ppm) 3.98-4.15 (4 H, m, OCH2CH2O), 5.77 (1 H, s, O-CH-O) 7.32-7.38 (2 H, m, 2 × 

ArH), 7.49-7.54 (2 H, m, 2 × ArH); 13C NMR (100 MHz) δ 65.3, 103.0, 123.2, 128.1, 131.5, 137.0. 

2-(4-Chlorophenyl)-1,3-dioxolane, 3p:1,14 Purified by fractional distillation, bp 145-148 °C/30 

mmHg, olio giallo chiaro; 1H NMR (400 MHz, CDCl3) δ (ppm) 3.98-4.15 (4 H, m, OCH2CH2O), 5.78 (1 

H, s, O-CH-O) 7.32-7.38 (2 H, m, 2 × ArH), 7.39-7.44 (2 H, m, 2 × ArH); 13C NMR (100 MHz) δ 65.3, 

103.1, 127.9, 128.5, 134.9, 136.5. 

Methyl 4-(1,3-dioxolan-2-yl)benzoate, 3q:1,15 white powder, mp 31-33 °C (heptane); 1H NMR 

(400 MHz, CDCl3) δ (ppm) 3.92 (3 H, s, CH3O), 4.00-4.18 (4 H, m, OCH2CH2O), 5.86, (1 H, s, OCHO), 

7.53-7.57 (2 H, m, 2 × ArH), 8.04-8.07 (2 H, m, 2 × ArH); 13C NMR (100 MHz) δ 52.1, 65.4, 103.0, 126.4, 

129.7, 130.8, 142.7, 166.8. 

2-[4-(1-Ethyl-1-hydroxypropyl)phenyl-1,3-dioxolane, 5a:17 40 mmol of crude 3q were 

synthesized in 20 mL of dry 2-MeTHF as described in the General Procedure and Scheme 3, then 

transferred under Ar in a dropping funnel and dropwise added at rt to a freshly prepared vigorously 

stirred solution of EtMgBr in 2-MeTHF (prepared from 120 mmol of EtBr and 132 mg atom of Mg in 

60 mL of the solvent). After stirring at rt during 2 h, the reaction mixture was chilled to 0 °C and 

quenched by slow dropwise addition of a sat. solution of NH4Cl (60 mL). The resulting mixture was 

extracted with 2-MeTHF (3 × 10 mL), the organic phases were collected, dried (K2CO3) and the solvent 

evaporated to afford of a colourless oil which was purified by flash chromatography and 

characterized as following: 

5a, purified by flash chromatography (Petroleum Ether/AcOEt/Et3N = 8:2:0.5), colourless oil, 7.6 

g (32.4 mmol, 81%); 1H NMR (400 MHz, CDCl3)  (ppm) 7.48-7.43 (2 H, 2 × ArH), 7.41-7.37 (2 H, 2 × 

ArH), 5.80 (1 H, s, OCHO), 4.19-4.10 (2 H, m, CH2O), 4.08-4.00 2 H, m, CH2O), 1.91-1.75 (4H, m. 2 × 

CH2),1.64 (1 H, br s, OH), 0.74 (6 H, t, J = 7.4 Hz, 2 x CH3) ;13C NMR (100 MHz, CDCl3): δ (ppm) 147.1, 

135.8, 126.4, 125.7, 103.8, 77.5, 65.4, 35.1, 7.9. 

4-(1,3-Dioxolan-2-yl)phenylmethanol, 5b:1,18 40 mmol of crude 3q were synthesized in 20 mL of 

dry 2-MeTHF as described in the General Procedure and Scheme 3, then transferred under Ar in a 

dropping funnel and dropwise added at 0 °C to a vigorously stirred suspension of LiAlH4 (1.52 g, 40 

mmol) in 2-MeTHF (20 mL). The mixture was allowed to reach rt and vigorously stirred overnight. 

After chilling to 0 °C, the mixture was quenched by slow dropwise addition of H2O (20 mL, caution!) 

and, after ceasing of the gas evolution, the organic phase was separated. The aqueous phase was 

diluted with a NaHCO3 saturated solution (20 mL) and extracted with 2-MeTHF (3 × 10 mL). The 

organic phases were collected, dried (K2CO3) and evaporated to afford a colourless oil which was 

purified by flash chromatography and characterized as following: 

5b, purified by flash chromatography (Petroleum Ether/AcOEt/Et3N = 7:3:0.5), colourless oil, 5.5 

g (30.4 mmol, 76%); 1H NMR (400 MHz, CDCl3)  (ppm) 7.47-7.40 (2 H, m, 2 × ArH), 7.35-7.29 (2 H, 

m, 2 × ArH), 5.77 (1 H, s, CH), 4.61 (2 H, d, J = 8.0 Hz, CH2O), 4.13-3.95 (4 H, m, OCH2CH2O), 2.30 (1 

H, br s, OH); 13C NMR (100 MHz, CDCl3): δ (ppm) 142.2, 137.2, 126.9, 126.7, 103.7, 65.4, 64.9. 

1.4 Recovery of reaction solvents. 

Both solvents were recovered via evaporation of the reaction mixtures obtained as described in 

the General Procedure. Evaporation were realized employing a rotatory evaporator operating in 

vacuo (ca. 50 mmHg), by gently warming (40- 45 °C for CPME; 30-35 °C for 2-MeTHF) the boiling 

flak with a water bath, condensing the vapour phase with efficient cooling (-5 °C) and chilling the 

condensate-collecting flask with an ice-salt bath. Solvents recovered from several runs (at least 100 

mL) were washed with H2O, filtered under N2 pressure over a small pad of acidic alumina, dried 

(KOH), distilled at atmospheric pressure (CaCl2 valve) and finally stabilized by addition of BHT (50 
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ppm for CPME and 200 ppm for 2-MeTHF). The recovered solvents (80 to 85% mass recovery) were 

analytically pure (1H- and 13C-NMR) and were successfully recycled to successive runs. 
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1.5 General procedure for the preparation of SiO2 supported ammonium salts. 

Silica supported ammonium salts (25% w/w) were prepared by wet impregnation. 17.4 g of SiO2 

(column chromatographic grade, 60 Å, 200-400 mesh) were added to a stirred solution of 50 mmol of 

the appropriate ammonium salt dissolved in 30 mL of H2O. The resulting suspension was stirred at 

50 °C during 1 h, followed by solvent evaporation under reduced pressure. The resulting white 
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powder was dried at 120 °C during 48 h, then transferred and stored in a desiccator over anhydrous 

CaCl2.  
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Table S1. Performance of the recycled catalysts in the synthesis of dioxolane 3a 1. 

 

Entry 2a (equivalent) Catalyst 
Product Distribution 

1a/3a (%) 2 

1 1.1 NH4Cl 35/65 

2 3 1.1 NH4Cl 33/67 

3 4 1.1 NH4Cl 37/63 

4 1.1 NH4Br 21/79 

5 3 1.1 NH4Br 24/76 

6 4 1.1 NH4Br 20/80 

7 1.1 HCl.Gly 36/64 

8 3 1.1 HCl.Gly 36/64 

9 4 1.1 HCl.Gly 38/62 

10 1.1 (NH4)HSO4 10/90 

11 3 1.1 (NH4)HSO4 12/88 

12 4 1.1 (NH4)HSO4 9/91 

13 5 1.1 (NH4)HSO4 11/89 

14 6 1.1 (NH4)HSO4 13/87 

15 2.0 (NH4)HSO4 <5/>95 

16 3 2.0 (NH4)HSO4 <5/>95 

17 4 2.0 (NH4)HSO4 <5/>95 

1 All reactions were run at reflux for 6 h in the presence of 3 mol% of the catalyst, unless otherwise 

indicated; 2 Determined by 1H-NMR analyses of crude reaction mixtures; no other reaction products 

were detected, unless otherwise indicated; 3 1st recycling the recovered catalyst; 4 2nd recycling the 

recovered catalyst; 5 3rd recycling the recovered catalyst; 6 4th recycling the recovered catalyst. 

Table 2. Performance of the recycled catalysts in the synthesis of dioxolane 3a in the presence of SiO2-

supported ammonium salts 1. 

 

Entry 2a (equivalent) Catalyst 
Product Distribution 

1a/3a (%) 2 

1 1.1 HCl.Gly-SiO2 35/65 

2 3 1.1 HCl.Gly-SiO2 35/65 

3 4 1.1 HCl.Gly-SiO2 38/62 

5 1.1 NH4HSO4-SiO2 14/86 

6 3 1.1 NH4HSO4-SiO2 17/83 

7 4 1.1 NH4HSO4-SiO2 15/85 

8 5 1.1 NH4HSO4-SiO2 18/82 

9 2.0 NH4HSO4-SiO2 <5/>95 

10 3 2.0 NH4HSO4-SiO2 <5/>95 

11 4 2.0 NH4HSO4-SiO2 7/93 

12 5 2.0 NH4HSO4-SiO2 <5/>95 

1 All reactions were run at reflux for 6 h in the presence of 3 mol% of the catalyst, unless otherwise 

indicated; 2 Determined by 1H-NMR analyses of crude reaction mixtures; no other reaction products 
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were detected; 3 1st recycling the recovered catalyst; 4 2nd recycling the recovered catalyst; 5 3rd recycling 

the recovered catalyst. 

 

Figure S1. Representative SEM micrograph of the as-received SiO2 support. 

 

Figure S2. Wide-angle XRD patterns of the as-received SiO2, (NH4)HSO4, HCl Gly and NH4Br 

supported systems. 

The patterns of the (NH4)HSO4 and HCl Gly -based systems, reported in Figure S2, do not show 

any Bragg crystalline peaks pertaining to these compounds, because both amorphous at room 

temperature. In fact, only the wide haloes due to the amorphous structures can be clearly visualized. 

On the other hand, crystalline peaks belonging to NH4Br cubic phase (space group: Pm-3m) emerged 
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from the background, which proved the crystalline nature of this compound and its presence in the 

SiO2 support. 

EDX Spectra of SiO2 supported Ammonium Salts 

 

Figure S3. EDX spectrum of NH4HSO4-SiO2. 

 

Figure S4. EDX spectrum of NH4Br-SiO2. 
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Figure S5. EDX spectrum of HCl.GlyOH-SiO2. 
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2. Green Metrics. 

In order to evaluate the sustainability of our procedure, we calculated and compared some green 

metrics for the synthesis of acetals 3c, 3d, 3o and 3j run with our green solvent/heterogeneous catalyst 

protocol with literature data for reactions run under the widely diffused procedure employing an 

aromatic solvent in the presence of p-TSA.19-24, for each of them RME, PMI, AE and EF have been 

calculated: 

• Reaction Mass Efficiency (RME) 

RME is the percentage of the mass of the reactants that remain in the product. It is similar to AE 

but it consider the excess of reactants used25 

𝑅𝑀𝐸 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠
∗ 100 

 

• Process Mass Intensity (PMI) 

Process mass intensity is defined as the “total mass of materials used to produce a specified mass 

of product” where “materials include reactants, reagents, solvents used for reaction and purification, 

and catalysts”26 

𝑃𝑀𝐼 =
𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑖𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 

 

• Atom Economy (AE) 

AE is a theoretical number which assumes the use of exact stoichiometric quantities of starting 

materials and a theoretical chemical yield and disregards substances, such as solvents and auxiliary 

chemicals which do not appear in the stoichiometric equation. The strength of AE, and what its critics 

tend to forget, is that it can be applied without the need for experimentation27. 

𝐴𝐸 =
𝑀𝑊 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑇𝑜𝑡𝑎𝑙 𝑀𝑊𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠
∗ 100 

 

• Environmental Factor (EF) 

The E factor, in contrast, is the actual amount of waste produced in the process and takes waste 

from all auxiliary components, for example, solvent losses and chemicals used in workup, into 

account27. The ideal E Factor is zero and it is possible to reduce its value considering a possible 

percentage of solvent recovery.  

𝐸 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑠𝑡𝑒

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 

 

Atom Economy is not useful in this case, since all reactions are run with the same stoichiometric 

reactants. Due to the lack of literature data concerning the recovery of solvents, E Factor can be 

calculated by considering that total mass of waste is equal to total mass used in process minus the 

final mass of product, thus E factor is equal Process Mass Intensity minus one and it doesn’t give 

additional information.  
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Synthesis of 2-(4-Nitrophenyl)-1,3-dioxolane, 3c 

 

 Yield RME E Factor PMI 

This work 95% 65% 3,59 4,59 

Yang et al.20  100% 70% 19,48 20,48 

Wang et al.21  100% 61% 11,44 12,44 
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RME 85% 70% 61%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Azzena et al. Ting et al. Wang et al.

E Factor 3.59 19.48 11.44

PMI 4.59 20.48 12.44

 -

 5.00

 10.00

 15.00

 20.00

 25.00



Catalysts 2020, 10, x FOR PEER REVIEW 21 of 26 

Catalysts 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/catalysts 

Synthesis of Spiro[1,3-dioxolane-2,3’-indolin]-2’-one, 3d 

 

 Yield AE RME E Factor PMI 

This work 95% 91% 67% 2,87 3,87 

Cliffe et al. 22  99% 91% 48% 62,41 63,41 

Wenkert et al. 23  89% 91% 82% 43,72 44,72 

 

 

 

  

Azzena et al. Cliffe et al. Wenkert et al.

Yield 95% 99% 89%

AE 91% 91% 91%

RME 67% 48% 82%
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Synthesis of 2-(4-Bromophenyl)-1,3-dioxolane, 3o  

 

 Yield AE RME E Factor PMI 

This work 95% 93% 78% 2,30 3,30 

Xu et al. 24 100% 93% 28% 36,38 37,38 

Nishi et al. 25 95% 93% 25% 19,44 20,44 
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Yield 95% 100% 95%

AE 93% 93% 93%

RME 78% 28% 25%
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Synthesis of 2-(4-acetoxy-3-methoxyphenyl)-1,3-dioxolane1 

 

  Yield AE RME E Factor PMI 

This  

work 

Toluene / p-TsOH 69% 93% 62% 5,04 6,04 

CPME / NH4HSO4 78% 93% 71% 1,59 2,59 

CPME / NH4Br 63% 93% 57% 2,20 3,20 

 

 

 

 

 

Azzena et al (Toluene)
Azzena et al (CPME

NH4Br)
Azzena et al. (CPME e

NH4HSO4)

Yield 69% 78% 63%

AE 93% 93% 93%

RME 62% 71% 57%
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SM 1. Previous synthesis of acetals and aminals in CPME. Reaction conditions: 4 M solution of 1 in 

CPME, 1.1 equiv of 2a-d (unless otherwise indicated), 3 mol% of NH4X (with respect to 1), reflux 

(Dean-Stark conditions); NH4X = NH4Cl, NH4Br or NH4HSO4; percentages represent conversion of 

the starting materials as determined by 1H-NMR; no other product, besides starting material, was 

detected. aIn the presence of 1.4 equiv of diol; bA comparable result was obtained recycling the 

recovered catalyst. cIn the presence of 2.0 equiv of diol. For more details and product characterization 

see ref. 1. 
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Equations S1-S3. Two-steps one-pot reactions in CPME. For more details and product 

characterizations see ref. 1. 
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