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Abstract: Transition metal-catalyzed chemical transformation of organic electrophiles and
organometallic reagents belong to the most important cross coupling reaction in organic synthesis.
The biaryl ether division is not only popular in natural products and synthetic pharmaceuticals but
also widely found in many pesticides, polymers, and ligands. Copper catalyst has received great
attention owing to the low toxicity and low cost. However, traditional Ullmann-type couplings suffer
from limited substrate scopes and harsh reaction conditions. The introduction of homogeneous
copper catalyst with presence of bidentate ligands over the past two decades has totally changed this
situation as these ligands enable the reaction promoted in mild condition. The reaction scope has
also been greatly expanded, rendering this copper-based cross-coupling attractive for both academia
and industry. In this review, we will highlight the latest progress in the development of useful
homogeneous copper catalyst with presence of ligand and heterogeneous copper catalyst in Ullmann
type C-O cross-coupling reaction. Additionally, the application of Ullmann type C-O cross coupling
reaction will be discussed.

Keywords: Ullmann cross-coupling; copper catalyst; C-O bond; heterogeneous catalyst; homogeneous
catalyst; biaryl ether

1. Introduction

The transition metal-catalyzed chemical transformation of organic electrophiles, and organometallic
reagents have turned up as an exceedingly robust synthetic tool. The evolution of transition metal catalysts
have attained a stage of civilization that authorizes for an extensive scope of chemical bonds formation
partners to be combined efficiently [1]. In the last century, C-C bond transformation (catenation) has
permitted chemists to assemble intricate molecular frameworks of diversified interests encompassing
complete synthesis of natural products, pharmaceuticals, and industrial process improvement, as well
as biochemistry, materials, and nanotech [2,3]. The evolution of chemicals through the transition-metal
catalyzed reaction is an exciting era for the chemistry of palladium [4], ruthenium [5], platinum [6],
etc., and has been significantly adopted by the industry. For example, ruthenium-catalyzed N-H insertion
reaction for the formation of benzofused six/five-membered azaheterocycles [7] which have a wide range
of significant biological activity, such as anti-bacterial, -fungal, -tubercular, helminthic, -plasmodial, -cancer,
-inflammatory, cardiotonic, -hypertensive, -thrombotic, histaminic, -ulcer, analgesic, neuroleptic, etc. [8].
In contrast, the low cost and high abundance of copper metal seemed to be the left in the cold as a trend of
a breakthrough in this area. However, the copper-mediated C-C, C-O, C-N, and C-S bond formation is a
part of one oldest reactions, emphasizing the Ullmann cross-coupling reaction [9,10].
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In the early 20th century, Ullmann and Goldberg have reported the first and primary cleavage
of an aromatic carbon-halide bond in the presence of a stoichiometric amount of copper as catalyst
(Table 1) [11,12]. In this reaction, two moles of aryl halides are coupled in the presence of a stoichiometric
amount of copper salt to afford the homocoupling product at 210–260 ◦C (Scheme 1) [12,13]. Even though
these homocoupling reactions received considerable attention from the synthetic industry, it contributed
several applications in that century. Still, this reaction suffered from harsh conditions, which included
high temperature, strong base, a large amount of copper catalyst, limited substrate scope, etc. [14].
Later, Ullmann and Goldberg also reported a copper-catalyzed C-N [15] and C-O heteroatomic bonds
formation reaction [16]. In 1929, Hurtley found that 3-bromobenzoic acid might be utilized for the
formation of C-C bond through the homocoupling reaction [17,18] in the presence of copper-bronze
and copper acetate in diketones and malonates. Unfortunately, this reaction generally needs harsh
conditions, like the Ullmann and Goldberg reaction, and inadequate functional groups tolerance have
restricted the applications of Ullmann and Ullmann-type reactions through their study.

Table 1. History of Ullmann-type reaction by Ullmann, Goldberg, and Hurtley.

Bond Type Author Year Catalyst Source Temperature Ref.

C-C Ullmann 1901 Copper powder (stoichiometric) 200 ◦C [12]
C-N Ullmann 1903 Copper (stoichiometric) Reflux [19]
C-O Ullmann 1905 Copper 200 ◦C [20]
C-N Goldberg 1906 Copper Reflux [21]
C-C Hurtley 1929 Copper nanoparticle Reflux [22]

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 51 

 

trend of a breakthrough in this area. However, the copper-mediated C-C, C-O, C-N, and C-S bond 
formation is a part of one oldest reactions, emphasizing the Ullmann cross-coupling reaction [9,10]. 

In the early 20th century, Ullmann and Goldberg have reported the first and primary cleavage 
of an aromatic carbon-halide bond in the presence of a stoichiometric amount of copper as catalyst 
(Table 1) [11,12]. In this reaction, two moles of aryl halides are coupled in the presence of a 
stoichiometric amount of copper salt to afford the homocoupling product at 210–260 ℃ (Scheme 1) 
[12,13]. Even though these homocoupling reactions received considerable attention from the 
synthetic industry, it contributed several applications in that century. Still, this reaction suffered 
from harsh conditions, which included high temperature, strong base, a large amount of copper 
catalyst, limited substrate scope, etc. [14]. Later, Ullmann and Goldberg also reported a copper-
catalyzed C-N [15] and C-O heteroatomic bonds formation reaction [16]. In 1929, Hurtley found 
that 3-bromobenzoic acid might be utilized for the formation of C-C bond through the 
homocoupling reaction [17,18] in the presence of copper-bronze and copper acetate in diketones 
and malonates. Unfortunately, this reaction generally needs harsh conditions, like the Ullmann and 
Goldberg reaction, and inadequate functional groups tolerance have restricted the applications of 
Ullmann and Ullmann-type reactions through their study. 

Table 1. History of Ullmann-type reaction by Ullmann, Goldberg, and Hurtley. 

Bond Type Author Year Catalyst Source Temperature Ref. 
C-C Ullmann 1901 Copper powder (stoichiometric) 200 ℃ [12] 
C-N Ullmann 1903 Copper (stoichiometric) Reflux [19] 
C-O Ullmann 1905 Copper 200 ℃ [20] 
C-N Goldberg 1906 Copper Reflux [21] 
C-C Hurtley 1929 Copper nanoparticle  Reflux [22] 

 
Scheme 1. Typical copper-mediated Ullmann condensation reaction and presumptive mechanism. 

To modernize this prominent and classical Ullmann reaction, it is essential to establish a novel 
composition and morphology of catalyst, suitable solvents, and reducing agents. Back in 1970, 
many researchers applied various metal-based catalysts involved in Ullmann’s reaction, and most 
included palladium, nickel, and gold [23]. However, palladium and nickel were found to be the best 
catalysts for Ullmann reaction due to high reactivity and regioselectivity. Unfortunately, metal 
catalysts have several drawbacks, such as high cost, highly toxic, and generally required poisonous 
organic phosphines as a stabilizing ligands [24]. Gold is the most stable metal and exhibits 

Scheme 1. Typical copper-mediated Ullmann condensation reaction and presumptive mechanism.

To modernize this prominent and classical Ullmann reaction, it is essential to establish a novel
composition and morphology of catalyst, suitable solvents, and reducing agents. Back in 1970,
many researchers applied various metal-based catalysts involved in Ullmann’s reaction, and most
included palladium, nickel, and gold [23]. However, palladium and nickel were found to be the best
catalysts for Ullmann reaction due to high reactivity and regioselectivity. Unfortunately, metal catalysts
have several drawbacks, such as high cost, highly toxic, and generally required poisonous organic
phosphines as a stabilizing ligands [24]. Gold is the most stable metal and exhibits marvelous features,
such as assemblage of different types involving materials science, the deportment of its own particles,
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size-related electronic, magnetic, and optical properties, and utilization as a catalysis in biology [25].
Besides these precious metals, silver [26], nickel [27,28], and rhodium [29] were also studied and applied
to the Ullmann coupling reaction. The cooperative stimulus of the polymetallic unlocked different
view to the field of catalysis when a unique constituent is adequately investigated. Bimetallic catalysts
revealed outstanding performance than the monometallic catalysts for their catalytic performance,
stability, and selectivity [30].

The research on Ullmann reaction is a persistent process and has adapted interested reaction today.
Under this framework and history, it is so valuable for us to investigate the reactivity and mechanism
of Ullmann’s reactions. These can assist us in scheme the new vital catalysts for the breakthrough of
the related field. In the meantime, countless work has been put in to explore the Ullmann reaction
process at the molecular level.

This review focuses summary of the evolution of catalysts in Ullmann reaction for aryl C-O-C
(diaryl ether) bond formation, the choice of reductants, and provides an ordinary outline of the
reaction mechanism. The corresponding outcomes were managed in brief here to permit this review to
stand alone.

2. Aryl C-O Bond Formation Catalyzed by Copper Metal

2.1. Heterogeneous Catalyst

A heterogeneous catalyst is referred to as a catalytic reaction where the catalyst has the phase
difference with the reactants. In short, it is an insoluble catalyst in a solution. A heterogeneous
catalyst generally continues creating the active site with the reactant under suitable reaction conditions.
These sites change the rates of chemical reactions of the reactants localized on them without changing
the thermodynamic equilibrium between the materials [31].

2.1.1. The Mono-Element of Cu Nanoparticle

In 2007, Kidwai research group reported using mono element copper nanoparticles as a catalyst
for the O-arylation through the Ullmann coupling reaction. The biaryl ether was rapidly formed
using 10 mol% of the catalyst in the presence of 1.5 equivalent (equiv.) of Cs2CO3 under mild reaction
conditions (50–60 ◦C) in acetonitrile (Scheme 2). The cross-coupling reactions were highly selective in
a wide variety substituted phenols and aryl halides. A very successful finding in this study was the
low reactive aryl bromides efficiently promoted the Ullmann coupling reaction. The steric hindered
2,6-disubstituent, and bicyclic phenols also resulted with the biaryl ether in an acceptable to high yield.
The copper nanoparticle size was 18 ± 2 nm, and it was determined by TEM, as well as quasi-elastic
light scattering data (QELS). It should be expressed that the size of the nanoparticle profoundly affect
the catalytic cross-coupling reactions [32]. Unfortunately, these copper nanoparticles did not performed
well in the reusability experiment. The catalytic activity started to decrease after the second run of the
coupling reaction (iodobenzene and phenol) with increasing of the reaction time: 87% (6 h), 81% (9 h),
72% (11 h), and 63% (12 h), respectively [33].
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Shortly afterward, Schouten and Wheatly described Ullmann coupling (C-O) reaction using
copper nanoparticles (CuNPs) (~9.6 nm) under microwave eradiation conditions without the presence
of a base to afford the corresponding biaryl ether with high yield [34,35]. Continuing, Yuto Isomura,
and his co-workers used colloidal CuNPs (~2 nm) as an efficient catalyst in the formation biaryl
ethers. Their finding showed that the reaction was conducted according to the inferiority of catalyst
loading and ligand-free environment at 110 ◦C in dimethylformamide (DMF) for a day (Scheme 3).
The copper nanoparticle was synthesized by a surfactant-free in DMF reduction method. These colloidal
CuNPs were investigated by HRTEM, along with the dynamic light scattering (DLS) spectrum.
The characterization of colloidal CuNPs demonstrated that copper species is predominantly low
oxidation state and high probability protected by a layer of an oxide. This unwarranted copper
nanoparticle facilitated the coupling of an aryl halide with phenol in the presence of 0.01 mM loading
of nanoparticles. The aryl-iodide and bromide were efficiently forwarded to the O-arylation Ullmann
coupling reaction with a variety of substituted phenols. However, iodothiophene was not forwarded
to the coupling reaction under this reaction conditions, and no product was extracted after the reaction.
Additionally, the colloidal CuNPs was dramatically deactivated after three consecutive runs when
iodobenzene and 3,5-dimethylphenol were used: 51% and 18% [36].
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In 2014, researcher Mahmoud Nasrollahzadeh’s team described a green synthesis method for
the formation of copper nanoparticles via phytoextraction and rhizofiltration of the Euphorbia esula L.
leaves (Figure 1). The synthesized Cu-NPs used in Ullmann O-arylation to evaluate its catalytic
ability without adding of any surfactant. The Cu-NPs (20–110 nm) was characterized by using XRD,
TEM, and UV-Vis. All electrons rich and electrons poor aryl halides efficiently reacted with phenols
and provided the corresponding aryl ether in the presence of Cs2CO3 in DMF at 120 ◦C (Scheme 4).
The formation of biaryl ether formation was quite impressive and provided 65–92% yield [37].
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Two years later, Claude Grison’s team followed the same method in the synthesis of eco-Cu-NPs
via the Eichhornia crassipes plant. The synthesis of this bio-eco catalyst is based on the extraction of
metals via phytoremediation and innovative chemical valorization [38,39]. The Cu-NPs was adsorbed
on the surface of Eichhornia crassipes root via phytoextraction with rhizofiltration methods and utilized
as a heterogeneous catalyst in the O-arylation Ullmann coupling reaction. The eco-Cu-NPs was
characterized by inductively coupled plasma mass spectrometry (ICP-MS), transmission electron
microscope (TEM), X-ray diffraction (XRD), and model reactions to clarify the chemical constitution
and catalytic performance of the eco-Cu NPs. Based on the study, the Eichhornia crassipes extract about
10.3–18.1 wt% of Cu2+ with 4–8 nm average particles size (Figure 2). The synthesized bio-Cu-NPs were
used for the synthesis of biaryl ether where 50 µmol (1 mol%) of catalyst was loaded. The reaction
was carried out under inert condition for 15 h to give a promising yield of the biaryl ether (Scheme 5).
The quite exciting result is that bio-cat can be compatible for a wide range of functionalities aryl halides
and phenol, including nitriles, ketones, ethers, alkyl, and nitro groups with regeneration of the eco-Cu
NPs (Figure 3) [40].
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Figure 2. (a) Chemical composition on the eco-Cu-NPs Eichhornia crassipes; (b,c) the XPS analysis of
eco-Cu-NPs; (d) The analytical characterization eco-Cu-NPs. Reproduced by permission of Royal
Society of Chemistry. [40]
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In 2019, researcher Tomasz K. Olszewski et al. also applied the same method in the synthesizing of
bio-Cu-NPs via rhizofiltration and biosorption of copper contaminant effluent using Eichhornia crassipes
root. The Cu-NPs were well characterized using ICP-MS, XRD, XPS, and Brunauer-Emmett-Teller
(BET) analyses. Tomasz K. Olszewski found that Eichhornia crassipes root can adsorb around 10.37 wt%
of Cu2+-NPs. The synthesized Cu-NPs provided high yield of the biaryl product (51–98%) using
1 mol% of Cu-NPs within 15 h (Scheme 5). The rhizofiltration and adsorption technique was applied
to refill the copper nanoparticles that were lost on the Eichhornia crassipes root (Figure 3) so that the
bio-Cu-NPs can efficiency promote the reaction [41].

2.1.2. Cu-Nanoparticles in the Presence of Ligands (A)

In 2017, researcher Damkaci’s team described commercially nano-sized Cu-catalyzed C-O bond
formation of phenols with a variety of aryl halides efficiently in the presence of N-phenylpicolinamide
(A1) as a ligand (Scheme 6). The hetero(aromatic)aryl halides and phenols provided 30–93% yield of
the corresponding O-arylation products selectively [42].
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2.1.3. Copper Oxide Nanoparticle

In 2008, Zhang Jin Tang first discovered the nanocrystalline copper oxide nanoparticle, and it
was applied to the O-arylation of Ullmann reaction. The CuO-NPs was synthesized from an aqueous
solution of copper (II) nitrate trihydrate in pH 10 at room temperature. The CuO-NPs was collected
and calcinated at 350 ◦C for 24 h. The synthesized CuO-NPs (28.5 nm) was employed to the Ullmann
etherification reaction of a variety of substituted phenols and aryl halides in the presence of base
(KOH/Cs2CO3) in dimethyl sulfoxide (DMSO) at ~100 ◦C under an inert atmosphere (Scheme 7).
The result suggested that the phenols substituted with electron-donating groups provided a better yield
compare to the electron-withdrawing substituted group. The reactivity of the aryl halide was followed
by Ph-I > Ph-Br > Ph-Cl. The substituted aryl chloride played significantly role in the coupling reaction.
For example, neutral chlorobenzene provided only 17% of diphenyl ether, whereas 4-nitrochlorobenzene
afforded the respective product with 87% yield. In the study, the aryl-iodine and aryl-bromide showed
little substituent effect that attached to the benzene ring [43].

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 51 

 

 
Scheme 6. (a) C-O bond formation in the presence of nano-sized copper with ligand (A1); (b) 
selectivity of benzyl halides vs. aryl halides; (c) heterocyclic biaryl ether. 

2.1.3. Copper Oxide Nanoparticle 

In 2008, Zhang Jin Tang first discovered the nanocrystalline copper oxide nanoparticle, and it 
was applied to the O-arylation of Ullmann reaction. The CuO-NPs was synthesized from an 
aqueous solution of copper (II) nitrate trihydrate in pH 10 at room temperature. The CuO-NPs was 
collected and calcinated at 350 ℃ for 24 h. The synthesized CuO-NPs (28.5 nm) was employed to the 
Ullmann etherification reaction of a variety of substituted phenols and aryl halides in the presence 
of base (KOH/Cs2CO3) in dimethyl sulfoxide (DMSO) at ~ 100 ℃  under an inert atmosphere 
(Scheme 7). The result suggested that the phenols substituted with electron-donating groups 
provided a better yield compare to the electron-withdrawing substituted group. The reactivity of 
the aryl halide was followed by Ph-I > Ph-Br > Ph-Cl. The substituted aryl chloride played 
significantly role in the coupling reaction. For example, neutral chlorobenzene provided only 17% 
of diphenyl ether, whereas 4-nitrochlorobenzene afforded the respective product with 87% yield. In 
the study, the aryl-iodine and aryl-bromide showed little substituent effect that attached to the 
benzene ring [43]. 

 
Scheme 7. Ullmann etherification using CuO NPs. Scheme 7. Ullmann etherification using CuO NPs.



Catalysts 2020, 10, 1103 8 of 50

One year later, Jee Yong Kim’s research group has synthesized copper oxide nanoparticle in
cubic shape. The color of the CuO nano cubic was yellow, with an average size of 45.1 ± 3.1 nm
(Figure 4). A number of functionalized biphenyl ethers were smoothly produced from the respective
nucleophiles and substituted aryl halides (I, Br, Cl) at 150 ◦C in the presence of 0.1 mol% of CuO
nano cubic (Scheme 8). The overall reaction combination provides the competitive advantages of low
catalyst loading, wide-ranging substrate applicability, good recoverability of the catalyst, and excellent
yield of biaryl ether in short reaction time [44].
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A few years later, S. Ganesh Babu and R. Karvembu designed a gentler method for the formation
of biphenyl ether derivatives through Ullmann etherification reaction. A variety of substituted biaryl
ethers were produced from respective nucleophiles and substituted aryl bromide/chloride at room
temperature in the presence of 3 mol% CuO-NPs and 2 mol equivalent of KOH in N,N-dimethyl
acetamide (DMAc) under inert condition (Scheme 9). Additionally, CuO-NPs catalyzed C-O bond
formation reaction of phenol with (hetero)phenyl bromide smoothly to afford the respective heteroaryl
ethers in excellent yield [45].
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In 2014, Mohammad A. Khalilzadeh research team described Ullmann coupling (C-O) reaction
using CuO-NPs as a catalyst in the presence of base potassium fluoride (KF)/clinoptilolite [46].
Clinoptilolite (CP) is a natural zeolite mineral, with an open aluminosilicate framework and inner
surface area with broad applications in the catalytic reaction [47]. Clinoptilolite has a high cation
switching capacity, especially for K+ [48]. Thus, the utilization of this feature by impregnation of KF
on CP causes a freer F- anion that has ability to work as an active base for the etherification reaction.
The cross-coupling result showed 10 mol% of CuO-NPs efficiently provided good to high yield of
biaryl ethers (Scheme 10). Base on the study, a probable mechanism for CuO-NPs catalyzed reductive
O-arylation coupling reaction shown in Scheme 11. The reaction was started by (i) adsorption of aryl
halide on the surface of CuO-NPs through an oxidative addition. (ii) A proton was abstracted by
a negatively charged fluoride moiety from phenol to generate a phenoxide anion stabilized at the
potassium surface. (iii) Then, the reaction underwent anion substitution and followed by a reductive
elimination process on the surface of the CuO-NPs to produce biphenyl ether [46].
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2.1.4. Maghemite-Copper Nanoparticles (CuFe2O4 Nanoparticles)

In 2014, Zhang Yi Peng’s research group reported impregnation of copper into magnetic substrate
as a heterogeneous catalyst for Ullmann etherification reaction. The CuFe2O4 nanoparticles synthesized
by Fe3O4 encapsulated CuO. This magnetic CuFe2O4 catalyst smoothly affords respective biphenyl
ethers without using any ligand, and it can be quickly recovered by using of an additional magnet
and could be reused up to three times without loss of activity (Scheme 12). The quite exciting results
explored by Zhang using CuO-Fe3O4 as the catalyst are: (1) electron-rich substituted phenol lead to
produce higher yield of biphenyl ethers, even the substituent in ortho- or meta-location which proficient
of providing a steric bias. (2) The electron-rich phenol performs differently from electron-deficient one;
the phenol is bearing strong withdrawing group is challenging to undergo an O-arylation reaction.
For example, p-nitrophenol and p-hydroxybenzaldehyde dramatically decreased the yield of the
product. (3) The electron-withdrawing substituted aryl halides give an excellent yield. (4) The reactivity
of aryl iodide showed better reactivity compare to aryl chlorides I > Br > Cl. A reasonable mechanism
for the CuO-Fe3O4-catalyzed O-arylation is shown in Scheme 13 [49].
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Similarly, Sharma et al. also employed a magnetically copper nanoparticles from cost-effective
precursors, and it was utilized for C-O, C-N, and C-S bonds formation reactions. The CuFe2O4 nanoparticles
were synthesized and characterized by a dull wet impregnation technique and dehydration technique
(Figure 5) [50] and XRD, atomic adsorption spectroscopy (AAS), TEM, field emission gum scanning electron
microscope energy dispersive X-ray (FEG-SEM-EDS), XPS, Mossbauer spectroscopy, and high-angle
annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM), respectively.
The size of the magnetic-copper nanoparticles was 28.7 nm and containing 4.7 mol% of copper in the
Fe2O4. The catalytic activity of CuFe2O4 was then investigated using various type of substituted phenols
and aryl iodide in present Cs2CO3 in DMF at 130 ◦C (Scheme 14). The result showed that phenol with
substituents at ortho and meta position gave a lower yield of the corresponded ether [51].
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A few years later, an improvement method was described by Nasim Kazemi groups using CuFe2O4

under ligand-free conditions. In his study, the maghemite-copper nanoparticles are in the form of
spherical-spinal phase with the average diameter 37.47 ± 4.92 nm. The spinel maghemite-copper
nanoparticles were prepared by the formation of hydroxyl co-precipitation of Cu(OH)2 and Fe(OH)3 in
aqueous ethanol. Then, the Cu(OH)2 and Fe(OH)3 react together to give spinel CuFe2O4 (Scheme 15).
The spinal phase of CuFe2O4 exhibited superparamagnetic behavior; 56.3 emug−1, and it can be easily
removed by using a magnetic bar after the reaction (Figure 6). The nanocat-CuFe2O4 utilized in the
etherification reaction with various type of substituted phenols and aryl halides under ligand-free
conditions at 70 ◦C. The proposed mechanism is presented in Scheme 16 [52].
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2.1.5. Supported-Copper Nanoparticles Catalyst

Maghemite-Copper Nanoparticles (CuFe3O4 Nanoparticles)

As more attention on reusable of waste and waste control of by-product after the reaction,
many researchers are more likely using the waste as a source in synthesis of catalyst. The agglomeration
of nanoparticles is a drawback in the catalytic reaction which causes the decease of catalytic activity.
The ideal support is one of the methods that can reduce the agglomeration of nanoparticles during
the reaction [53]. In 2015, Mahmoud Nasrollahzadeh’s team first discovered that extracted fruit
juice from Barberry vulgaris fruit is an excellent reducing and stabilizing agent in the synthesis of
Cu/RGO-Fe3O4 nanocomposite. The preparation of nanocomposite of Cu/RGO-Fe3O4 are involved in
4 steps: (1) Formulation of GO from natural graphite powder by a modified Hummers method [54].
(2) The reduced graphene oxide (RGO) (Figure 7) nanosheets were prepared by the reduction of a
colloidal suspension of graphene oxide-based on glucose [55]. (3) The coprecipitation route was used
to synthesize the RGO-Fe3O4 magnetic nanocomposite [55]. (4) The barberry fruit juice was used in
the synthesis of copper nanoparticles onto the RGO-Fe3O4 surface by treating of RGO-Fe3O4 magnetic
nanocomposite with CuCl2 in water at 60 ◦C for 7 h (Scheme 17) [56]. The synthesized Cu/RGO-Fe3O4

nanoparticles were 35 nm, and the magnetic saturation was 22.4 emug−1. The catalytic activity of
Cu/RGO-Fe3O4 provides good to excellent yield, even in electron-donation and electron-withdrawing
substituted of aryl halides (Scheme 18) [56].

Catalysts 2020, 10, x FOR PEER REVIEW 14 of 51 

 

 
Figure 7. The image of graphene oxide and reduced graphene oxide (RGO). 

 
Scheme 17. Berberis vulgaris fruits extracted as an eco-synthesis of copper NPs. 

 
Scheme 18. Maghemite-Reduce RGO Copper nanoparticles catalyzed synthesis of biphenyl ethers. 

Similarly, Akhil V. Nakhate and Ganapati D. Yadav also reported the catalytic performance of 
Cu NPs/RGO/Fe3O4 nanocomposite in the O-arylation Ullmann cross-coupling reaction. The 
difference in their study is the synthesized method of Cu NPs/RGO/Fe3O4. In Akhil’s study, 
synthesis of supported RGO copper ferrite is done through solvothermal process, using ethane-1,2-
diol as a solvent and sodium acetate as a reducing agent. Akhil also focused on the optimization 
process and comparison in using of copper ferrite-supported RGO with homogeneous copper 
catalyst and other types of heterogeneous catalysts. In this study, he observed that combination of 
CuNPs/RGO/Fe3O4 was the best catalyst. The optimization showed that the best agitation rate 600 

Figure 7. The image of graphene oxide and reduced graphene oxide (RGO).

Catalysts 2020, 10, x FOR PEER REVIEW 14 of 51 

 

 
Figure 7. The image of graphene oxide and reduced graphene oxide (RGO). 

 
Scheme 17. Berberis vulgaris fruits extracted as an eco-synthesis of copper NPs. 

 
Scheme 18. Maghemite-Reduce RGO Copper nanoparticles catalyzed synthesis of biphenyl ethers. 

Similarly, Akhil V. Nakhate and Ganapati D. Yadav also reported the catalytic performance of 
Cu NPs/RGO/Fe3O4 nanocomposite in the O-arylation Ullmann cross-coupling reaction. The 
difference in their study is the synthesized method of Cu NPs/RGO/Fe3O4. In Akhil’s study, 
synthesis of supported RGO copper ferrite is done through solvothermal process, using ethane-1,2-
diol as a solvent and sodium acetate as a reducing agent. Akhil also focused on the optimization 
process and comparison in using of copper ferrite-supported RGO with homogeneous copper 
catalyst and other types of heterogeneous catalysts. In this study, he observed that combination of 
CuNPs/RGO/Fe3O4 was the best catalyst. The optimization showed that the best agitation rate 600 

Scheme 17. Berberis vulgaris fruits extracted as an eco-synthesis of copper NPs.



Catalysts 2020, 10, 1103 14 of 50

Catalysts 2020, 10, x FOR PEER REVIEW 14 of 51 

 

 
Figure 7. The image of graphene oxide and reduced graphene oxide (RGO). 

 
Scheme 17. Berberis vulgaris fruits extracted as an eco-synthesis of copper NPs. 

 
Scheme 18. Maghemite-Reduce RGO Copper nanoparticles catalyzed synthesis of biphenyl ethers. 

Similarly, Akhil V. Nakhate and Ganapati D. Yadav also reported the catalytic performance of 
Cu NPs/RGO/Fe3O4 nanocomposite in the O-arylation Ullmann cross-coupling reaction. The 
difference in their study is the synthesized method of Cu NPs/RGO/Fe3O4. In Akhil’s study, 
synthesis of supported RGO copper ferrite is done through solvothermal process, using ethane-1,2-
diol as a solvent and sodium acetate as a reducing agent. Akhil also focused on the optimization 
process and comparison in using of copper ferrite-supported RGO with homogeneous copper 
catalyst and other types of heterogeneous catalysts. In this study, he observed that combination of 
CuNPs/RGO/Fe3O4 was the best catalyst. The optimization showed that the best agitation rate 600 

Scheme 18. Maghemite-Reduce RGO Copper nanoparticles catalyzed synthesis of biphenyl ethers.

Similarly, Akhil V. Nakhate and Ganapati D. Yadav also reported the catalytic performance of Cu
NPs/RGO/Fe3O4 nanocomposite in the O-arylation Ullmann cross-coupling reaction. The difference in
their study is the synthesized method of Cu NPs/RGO/Fe3O4. In Akhil’s study, synthesis of supported
RGO copper ferrite is done through solvothermal process, using ethane-1,2-diol as a solvent and
sodium acetate as a reducing agent. Akhil also focused on the optimization process and comparison
in using of copper ferrite-supported RGO with homogeneous copper catalyst and other types of
heterogeneous catalysts. In this study, he observed that combination of CuNPs/RGO/Fe3O4 was the
best catalyst. The optimization showed that the best agitation rate 600 rpm and only 1 × 10−3 g/cm3 of
CuFe2O4@RGO catalyst is needed to obtain the highest yield of the products (Scheme 19). The kinetic
study of the C-O bond formation was the second-order rate of reaction where the activation energy
was observed to be 14.36 kcal/mol, and the catalyst could be reused up to five times without losing its
catalytic activity (Figure 8) [57].
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In a continuous study on the preparation of new recoverable magnetic nanoparticles,
Iman Radfar et al. proposed a new magnetic nanoparticle functionalized sugar onto the silicon dioxide
solid (Scheme 20). In that study, Fe3O4@SiO2-copper(I) sucrose xanthate provided an excellent catalytic
activity in the formation of ether bond, and it can be recycled up to five times without loss of its
catalytic activity [58].
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In 2019, a few research groups also involved in utilization of ideal solid support in the synthesis of
magnetically copper catalyst for O-arylation Ullmann cross-coupling reaction. These research groups
are included Sepideh Bagheri (Tables 2 and 3, Entry 1) [59], Muhammad Aqeel Ashraf (Tables 2 and 3,
Entry 2) [60], Dariush Khalili (Tables 2 and 3, Entry 3) [61], Mohammad Mehdi Khodaei (Tables 2 and 3,
Entry 4) [62], Seyed Ali Mousavi Mashhadi (Tables 2 and 3, Entry 5) [63], and Razieh Zahedi (Tables 2
and 3, Entry 6) [64]. Different solid supports for the synthesis of magnetic copper nanocomposites and
O-arylation reactions are depicted in Tables 2 and 3, respectively.

Table 2. The complete synthesis route of corresponding recoverable magnetic nanoparticles catalyst.

Entry Synthesis Route

1
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biphenyl ethers.
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Ar-X Nucleophile

1 Creatine Aryl-Br Phenol Glycerin, 24 h,
80 ◦C, K2CO3

35–80 Up to 5 times [59]

2 Glycerol Aryl-I, Br, Cl Phenol H2O, 5 min-18 h,
reflux, KOH

I-84–97
Br-62–91
Cl-38–86

Up to 5 times [60]

3 Mesoporous graphitic carbon
nitrile (mpg-C3N4) Aryl- I, Br, Cl Phenol DMF, 5 h,

110 ◦C, K2CO3

I-75–90
Br-77–82
Cl-33–40

Up to 5 times [61]

4 Isatin@4-(aminomethyl) benzoic
acid- functionalized (IS-AMBA) Aryl-I, Br Phenol DMF, 4 h,

110 ◦C, K2CO3

I-21–98
Br-30–63 Up to 5 times [62]

5 Chitosan Aryl-I Phenol DMSO, 15 h,
120 ◦C, K2CO3

55–95 Up to 5 times [63]

6 Covalent anchoring
of the ligand (AS) Aryl-Br Phenol DMF, 24 h,
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45–98 Up to 4 times [64]

Carbon-Based Materials Supported

Carbon-based materials owe several specialities in the applied physical chemistry due to its
comparative broadness in aqueous media, cost-effectiveness, and being chemically inert in most
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of the electrolyte solutions [65,66]. There are various type of accessible microstructures of carbon
materials, such as graphite, carbon fiber, nanotube, amorphous powders, and diamond [67]. With the
persist breakthrough of nanotech in materials science, carbon nanomaterials, especially carbon
nanotubes (CNT) and carbon nanofiber (CNF), have gained considerable focus in electroanalysis [68],
electronic [69,70], optics [70], polymer composite [71], catalyst [72–74], and other related fields. In 2014,
researcher Zhai Zhao Yang’s team described the using graphene as solid support in synthesis the
catalyst and applied in O-arylation Ullmann cross-coupling reaction. This carbon-supported catalyst
can prevent the oxidation of nanosize copper oxide and increase the catalytic performance in coupling
reaction [75,76]. The copper oxide supported graphene catalyst was synthesized through two-step
liquid-phase procedure, using ethane-1,2-diol as the reducing agent (Figure 9). These methods can
provide copper oxide nanoparticles with an average size of 8 nm dispersed homogeneously on the
surface of the graphene sheet and show outstanding performance in the organic transformation.
The Cu2O/graphene catalyst shows a very high turnover frequency (TOF) of 1282 h−1 for the
etherification of phenol and aryl iodide in the optimized condition (Scheme 21) [76].
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ethers.

In 2018, Ved Vati Singh and Ajai Kumar Singh first discovered the nanoparticles of phase, Cu1.8S in
a blossom-shape by the reaction of 3-(phenylthiol)propylamine in octadecene as the source of sulfur
with copper chloride at 250–280 ◦C. The nanoflowers of Cu1.8S were anchored onto the graphene oxide
(GO) at room temperature to give nanocomposite (GO-Cu1.8S) (Scheme 22) [77]. The synthesis method
of nanoflowers Cu1.8S and GO-Cu1.8S composites are different than earlier report [78,79], which required
expensive trioctylphosphine (TOP) that is highly toxic and has pyrophoric nature. Besides, the choosing
of GO other than RGO is due to that fact that graphene oxide has a number of functional groups that are
important to bind Cu1.8S nanoparticles strongly onto the solid surface. These characteristics minimize
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the metal leaching problem during the reaction. The average size of nanoflowers of Cu1.8S was
∼14–21 nm (high surface area). The Cu1.8S nanoflower and GO-Cu1.8S nanocomposite were explored as
a catalyst for Ullmann etherification reaction for several substituted aryl halides with phenols. Based on
the studies, the GO-Cu1.8S nanocomposite significantly enhanced the catalytic performance (>30%) than
the Cu1.8S nanoflowers. The ether bond formation efficiency follows the order ArBr > ArCl (Scheme 23).
Both anchored and unanchored nanoflowers copper particles were found recyclable three times without
decreasing its catalytic performance. The heterogeneous nature and chemo selectivity of synthesized
catalyst was determined by using a three-phase test (Scheme 24). For a total heterogeneous process,
the immobilized ArX is not expected to undergo conversion to the coupled product. 4-bromobenzoic
acid was anchored on silica (Scheme 24). In the presence of 4-bromoacetophenone, it reacted with
phenol under optimum reaction conditions. The yield of the 4-phenoxyphenylacetophenone was
56% and 86% for Cu1.8S nanoflowers and GO-Cu1.8S nanocomposites, respectively. The coupling of
immobilized aryl benzoic acid afforded 4-phenoxybenzoic acid in 7% and 19% yield for Cu1.8S and
GO-Cu1.8S nanoflowers, respectively. If there was any leaching of Cu from the catalyst, immobilized
aryl benzoic acid would have given better yield. This explanation was proved by several reports [80,81],
which show good yield of coupled product from heterogeneous halide due to the leaching of metal.
The substrate 4-bromoacetophenone present in the solution was converted to 4-phenoxyacetophenone
in good yield. Thus, both nanoflowers and composite behave predominantly as a heterogeneous
catalyst [77].
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Carbon nanotubes (CNTs) regularly hold the promise of molecular ‘properties-by-design’ toward
countless daily life applications from electronics to energy to biomedicine [82]. CNTs can be in
single-wall (SW) and multiwall-CNTs (MWCNTs). Both nanotubes are useful owing to substantial
mechanical, electrical properties, and thermal conductivity. Besides, the turnable surface area, as well
as perfect mechanical and chemical stability, makes them a potentially and ideal useful selection for
the various field [83]. The reactivity of nanotubes was associated with its diameter and morphology,
disclosing the SW-CNTs as the most reactive representative [84]. In 2018, Marym Akhavan et al.
described a synthesized MWCNTs-Met/CuCl nanocatalyst for Ullmann coupling reaction. The synthesis
of MWCNTs-Met/CuCl nanocatalyst is through grafting of metformin covalent on the surface
of carbon nanotubes and anchored copper nanoparticles onto the MWCNTs-Met (Scheme 25).
The MWCNTs-Met/CuCl nanocatalyst exhibit higher conversion yield, high stability, and high
reusability compared to other reported catalyst (Table 4) [85].

Catalysts 2020, 10, x FOR PEER REVIEW 21 of 51 

 

 
Scheme 24. Three-phase tests for nanoflowers of Cu1.8S and GO−Cu1.8S nanocomposite. 

Carbon nanotubes (CNTs) regularly hold the promise of molecular ‘properties-by-design’ 
toward countless daily life applications from electronics to energy to biomedicine [82]. CNTs can be 
in single-wall (SW) and multiwall-CNTs (MWCNTs). Both nanotubes are useful owing to 
substantial mechanical, electrical properties, and thermal conductivity. Besides, the turnable surface 
area, as well as perfect mechanical and chemical stability, makes them a potentially and ideal useful 
selection for the various field [83]. The reactivity of nanotubes was associated with its diameter and 
morphology, disclosing the SW-CNTs as the most reactive representative [84]. In 2018, Marym 
Akhavan et al. described a synthesized MWCNTs-Met/CuCl nanocatalyst for Ullmann coupling 
reaction. The synthesis of MWCNTs-Met/CuCl nanocatalyst is through grafting of metformin 
covalent on the surface of carbon nanotubes and anchored copper nanoparticles onto the 
MWCNTs-Met (Scheme 25). The MWCNTs-Met/CuCl nanocatalyst exhibit higher conversion yield, 
high stability, and high reusability compared to other reported catalyst (Table 4) [85]. 

 
Scheme 25. The route of synthesis of multiwall-carbon nanotubes (MWCNTs)-Met/CuCl 
nanocomposite. 

Scheme 25. The route of synthesis of multiwall-carbon nanotubes (MWCNTs)-Met/CuCl nanocomposite.



Catalysts 2020, 10, 1103 21 of 50

Table 4. The MWCNTs-Met/CuCl catalyzed synthesis of biphenyl ethers.
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In 2019, Kolanowska reported the synthesis method of MWCNTs with iodine monochloride. 
Kolanowska’s team modified the current method (ultrasonication step) to magnetically stirred 
method to maintain the integrity of the MWCNTs carpet. They applied ‘wet chemistry’ method 
during chlorination of carbon nanotubes. This method can hypothetically enable preferential bis-
1,4-addition over bis-1,2-addition from ICl3 existing in solution as a dimer (I2Cl6) (Scheme 26). The 

Type of Supported Catalyst
Substrates

Yield (%) Reusability
Ar-R1, R2 Nucleophile

MWCNTs-Met/CuCl
R1 = I, Br, Cl

R2 = H, 4-CN, 4-CH3,
4-OCH3, 2-OCH3

Phenol 55–96 Up to 8 times

In 2019, Kolanowska reported the synthesis method of MWCNTs with iodine monochloride.
Kolanowska’s team modified the current method (ultrasonication step) to magnetically stirred method
to maintain the integrity of the MWCNTs carpet. They applied ‘wet chemistry’ method during
chlorination of carbon nanotubes. This method can hypothetically enable preferential bis-1,4-addition
over bis-1,2-addition from ICl3 existing in solution as a dimer (I2Cl6) (Scheme 26). The characteristic
of in-house synthesis nanotube and purchasing nanotube is shown in Table 5. The synthesized
MWCNTs-Cl with copper was applied in Ullmann O-arylation to determine its catalytic activity.
Nevertheless, the chlorinated-CNTs needed new extensive studies due to the fact that CNT-Cl was
inactive to promote the reaction when aryl-Cl as the subtract. Therefore, the aryl substrate must
be replaced by aryl-Br/aryl-I with presence of the electron-withdrawing group (e.g., carboxylic,
nitro groups) [86].
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Table 5. Characteristics of different type of CNTs.

Characteristics Nanocyl™ NC7000 In-House MWCNTs TUBALL™ SWCNTs

Average outer diameter, nm 9.5 60–70 1.6
Average length, µm 1.5 200 >5

Aspect ratio 150 3000 3000
Carbon purity, wt.% 90 98 85

Fe-base catalyst residue, wt. % <1 5.4 <1.5

In 2018, Mu Hong Chun et al. utilized carbon nanofiber to synthesis of Cu/CNFs catalysis.
The composite catalyst (Cu/CNFs) was prepared using a homogeneous polymeric solution through
electrospinning and high-temperature in-situ carbonization process (Scheme 27). Hong Chun chosen
carbon nanofiber due to its one-dimensional structure comparing with carbon nanotube, carbon films,
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and carbon sphere [87]. With this characteristics, nanofiber has perfect reducibility, high specific
strength, specific modulus, low density, light and excellent thermal stability, making it easy to be
reused [88,89]. In this study, the Cu(0) was impregnated through in-situ carbothermic reduction during
the carbonization process for the first time. The Cu/CNFs showed extraordinary performance in the
Ullmann etherification and can be reused up to five times without loss of activity (Scheme 28) [87].
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Zeolite Supported

Zeolite is classified as an open-structure aluminosilicate material consisting of neatly scattered
micropores in a molecular arrangement. The structure of zeolites could be present into rings of various
sizes, which comprise the pore opening windows of zeolites [90]. The negative charges of zeolite
frameworks are usually compensated by extra-framework mono or divalent cations. These specific
characters allow zeolite exchanged by other cations [91]. In addition, the spatial confinement of
zeolite pores joined with catalytically active sites in their structure endows zeolites with extraordinary
shape-selective catalysis toward the formation of certain products. Eventually, zeolites can serve
as host matrices to encapsulate and stabilize metal clusters or nanoparticles, forming multipurpose
composite materials with superior properties. Zeolites have been widely utilized as high-performance
catalysts, detergents, adsorbents, and ion-exchangers in various chemical processes due to their specific
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characteristics, as well as their high hydrothermal stability and low production costs [92]. In 2015,
researcher Valentin Magnee’s team described the utilization of zeolite as a catalyst in the Ullmann
coupling reaction. They used a number of zeolite (ultrastable Y (USY), mordenite (MOR), beta (β),
and zeolite socony mobil–5 (ZSM-5)) as a solid support in the synthesis of a heterogeneous copper
catalyst. Among these four zeolites, USY is the best heterogeneous catalyst in term of doping of
copper species (Scheme 29). The USY-supported copper catalyst showed excellent catalytic activity
under a ligand-free condition in toluene at 120 ◦C (Table 6) [93]. In 2018, Tony Garnier also used
USY type zeolite for versatile, efficient, and recyclable Copper(I) catalyst for Ullmann etherification
reactions (Table 6). In this study, the electron-poor 4-cyano- and 4-nitrophenol show relatively low
yield of product in the Ullmann reaction, even when conducting the experiment in higher temperature,
which resulted in only 0–5% yield of product [93]. They utilized this catalyst for the total synthesis of
3-methylobovatol (Scheme 30) [94]. 3-methylobovatol is a naturally occurring biphenyl ether that has
biphenolic anti-inflammatory, anxiolytic, and nootropic properties [95].
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Yield (%) Reusability Ref.
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Scheme 30. Total synthesis of 3-methylobovatol via the zeolite-based organic synthesis (ZeoBOS)
strategy in the presence of copper (I)-USY.
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Metal-Organic Framework (MOF) Supported

Metal-organic frameworks (MOFs) are hybridized crystalline porous materials of organic and
inorganic components that consist of an ordinary order of positively charged metal ions surrounded by
organic ‘linker’ molecules (Figure 10) [96]. The metal ions from nodes that bind the arms of the organic
linkers together to form a repeating one-, two-, or three-dimensional extended coordination networks,
cage-like structure [97,98]. The chemical mutability, turnable pore structures are large, readily accessible
internal surface areas of metal-organic frameworks facilitate possible applications in heterogeneous
catalysis [98,99]. The MOF-supported catalytic function depends on the active metal sites, the organic
ligands covalently linked to the MOFs during the synthesis process, or a dopant introduced via a
post-synthetic modification [98]. In 2017, Samira Sadeghi et.al. introduced UiO-66-NH2 MOFs as
the initial modification with melamine via a post-synthesis approach. The copper oxide was doped
on the surface of MOF by available amine group and π-electron interaction of melamine and ligand;
UiO-66-NH2-Mlm/CuO NPs composite (Scheme 31). The UiO-66-NH2-Mlm/CuO NPs was well
characterized by SEM and it was utilized as a heterogeneous catalyst in the Ullmann etherification
reaction. The UiO-66-NH2-Mlm/CuO NPs efficiently (5 mol%) promoted C-O bond formation reaction
(Scheme 32), and only 1.2 wt% of copper was leached out after several runs of the experiment [100].
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Later on, Hiep Q. Ha’s team synthesized MOF-supported copper catalyst Cu2(BDC)2

(DABCO)using benzene-1,4-dicarboxylate (BDC) and 1,4-diazabicyclo (2.2.2) (DABCO) in
dimethylformamide (Scheme 33) [101]. The solvent-mediated method strongly affected the morphology
of nano-MOF. Hwang Jong Kook observed that dimethylformamide (DMF) preferably forms a hexagonal
rod MOF (ZBDh) and methanol preferably forms a tetragonal plate MOF (ZBDt) (Figure 11) [102].
This Cu-MOF utilized as a heterogeneous photocatalyst for the arylation of phenol in the presence of
t-BuOLi as a base and acetylacetone as a ligand under 365 nm light at rt (Table 7) [101].
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Figure 11. Solvent mediated synthesis of (Zn2(BDC)2(DABCO))n (ZBD) with controlled size,
morphology, and polymorphism. (a) ZBD with a hexagonal framework (ZBDh), (b) ZBD with a
tetragonal framework (ZBDt), and their transformation into nanoporous carbon. Reproduced by
permission of Royal Society of Chemistry.
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Table 7. MOF-based Cu2(BDC)2(DABCO) catalyzed synthesis of diphenyl ethers.
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Type of Supported Catalyst
Substrates

Yield (%) Reusability
Ar-R2 Nucleophile

Cu2(BDC)2(DABCO) R2 = H, 4-Me, 4-OCH3,
4-COCH3, 4-CN, 4-I, 2-Me, 3-F

R3 = H, 4-Br, 3-NO2,
4-COOMe, 2-OMe, 3-OH 42–81 Up to 7 times

2.1.6. Cooperative Catalyst (Co-Catalyst)

The word cooperative catalysis is applied when “two types of catalysts, as well as two catalytic
cycles, are performed to construct a single new bond”. Alternatively stated, a single organic
transformation is succeeded by stimulating both the nucleophile and electrophile by two different
and distinct catalysts [103]. Besides the term co-catalyst, other authors also use a different word
to express the same principle (1) Synergistic catalyst [103], (2) Cooperative dual catalysis [104],
and (3) Contemporaneous catalyst [105]. The power and the benefit of explicitly applied cooperative
catalyst can (i) create new, earlier inaccessibility chemical transformations, (ii) enhance the efficiency
of previous organic transformation, and (iii) establish with improving catalytic enantioselectivity
where stereocontrol was early omitted or challenging. In 2017, Kannan Vellayan et al. described
the preparation of Cu-doped Ti-pillared montmorillonite as catalyst and utilized it in the O-, N- and
S-arylation reactions. The co-catalysis was prepared through interpenetration of the copper doped
clay supports with a Pd-precursor by the incipient wetness method (Scheme 34). The co-palladium
with copper supported clay catalyst was found to be effective and gave good to extraordinary yield in
the etherification reactions, and it can be reused up to three times without loss of its catalytic activity
(Scheme 35) [106].
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In 2018, Koichi Mitsudo and Leila Ramezani also introduced a co-catalyst for Ullmann O-arylation
cross-coupling reaction. Koichi’s group utilized copper and iron nanoparticles in the presence of
triphenylphosphine oxide (PPh3) for synthesis of aryl 3-benzo[b]thienyl ethers (Scheme 36) [107],
whereas Leila’s group proposed copper and gold nanoparticles onto BTC-MOF (Scheme 37).
The co-catalyst of gold with copper exhibited is unexpected high catalytic activity for aryl-Cl in
coupling of chloroarenes with phenols without presence of ligands (Scheme 38). The AgCuBTC-MOF
shown high TON value (>15,000), which is better than using only Pd as a catalyst [108]. Table 8
was depicted the comparison of a single catalyst and with a combined catalyst in the Ullmann
O-arylation reaction.Catalysts 2020, 10, x FOR PEER REVIEW 30 of 54 
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Table 8. The comparison of a single catalyst and with a combined catalyst in the Ullmann O-arylation reaction.

Entry Catalytic System Centre Catalyst Loading Yield (%) Ref.

1 Fe3O4@SiO2@PPh2@Pd Pd/Fe 1.6 × 10−3 mol% 83 [109]
2 AT-Nano CP-Pd Pd 6 × 10−5 mol% 80 [110]
3
4 Pd(dba)2 Pd 1 mol% 90 [111]
5 GO-Pd17Se15 Pd 1 mol% 73 [112]
6 Fe3O4@mesoporous PANI Fe 4.69 mol% 56 [113]
7 CuI/Oxalamide Cu 1.5 mol% 90 [114]
8 CuBr Cu 10 mol% 81 [115]
9 CuI nanoparticles Cu 1.25 mol% 47 [116]
10 CuI/Raney Ni-Al alloy Cu/Ni 10 mol% 32 [117]
11 Cu2O/graphene Cu 5 mol% 5 [76]
12 Nano CuO Cu 5 mol% 17 [42]
13 CuO NPs into UiO-66-NH2 Cu 5 × 10−3 mol% 30 [43]
14 AgOAc Ag 0.5–2 mol% 81 [118]
15 Maghemite anchored AgCuBTC Ag/Cu 0.03 mol% 88 [108]
16 Cu/Fe/O = PPh3 Cu/Fe 5 mol% 84 [107]

2.2. Homogeneous Catalyst

A homogeneous catalyst is referred to as a catalytic reaction where the catalyst has the same phase
with the reactant. In short, it is a soluble catalyst in a solution [119]. Homogeneous catalyst generally
provides short reaction time and needs a few amounts of catalyst in the catalytic system owing to it
can contact with reactant adequately compare to the heterogeneous catalyst [120].

CuI Nanoparticle with the Present of Ligand Precursor (B)

In 2015, Lorena Navarro reported a new ligand; 1,1-azobis(cyclohexane carbonitrile (ACHN),
to stabilize the Cu(I) salt. A new, useful, and eco-friendly ligand achieved an excellent protocol for the
O-arylation using CuBr as a catalyst under microwave irradiation. This single process provides a clean,
faster, and simple method in the Ullmann cross-coupling reaction. His method offers a competitive
advantage, such as low catalyst and ligand loaded, low temperature, suitable for electron-withdrawing
substituent of aryl halides, and electron-donating substituted phenols (51–100% yield) (Scheme 39) [121].
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ligand (B1).

One year later, Fan Mei Yan’s team focused on utilization of the low activity aryl chloride and
(hetero)aryl chloride to the Ullmann O-arylation in the presence of CuI and N-aryl-N’-alkyl-substituted
oxalamide ligand (B2). Fan Mei Yan found only 44% of aryl ether when bis(N-aryl)-substituted
oxalamides was used. The N-aryl-N-alkyl-substituted oxalamides showed excellent ligands for
CuI catalyzed Ullmann O-arylation of low activity aryl chloride and (hetero)aryl chlorides.
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Interestingly, the ligand 4-methyl-2-phenylaniline-derived oxalamide is tolerated in a broad range
of functional groups, including amines, alcohols, amides, halides, esters, ketones, and nitriles,
as well as several heterocycles (Scheme 40). An exciting part of this research is the combination of
N-aryl-N-alkyl-substituted oxalamides ligand and CuI could be utilized in the synthesis of useful
products, such as insecticide diafenthiuron, DG-051B for the treatment medicine of stroke and
myocardial infarction, and so on (Scheme 41) [114].
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Zhao Ying Ying reported a pleasant, mild condition for Ullmann-type C-O bond formation
using homogeneous Cu(I) ion solution with assisting an efficient pyrazole moiety-containing ligand:
2-pyrazol-1-ylpyridine (Npy,Npz) (B3), Figure 12.

In this study, a non-radical mechanism was proposed in the Ullmann-type C-O bond formation
reaction. Initially, pyrazole ligand makes a coordination complex with copper ion. When the reaction
is started, oxidative addition (OA) will first occur, in which the Cu+ undergoes OA with aryl halide to
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form Cu3+ intermediate A. Then, the phenoxide undergoes nucleophilic substitution (NS) and through
the reductive elimination (RE) biaryl ether is generated and the Cu3+ reduced o Cu+. The proposed
ligand B3, which has Npy and Npz, play a different role in the reaction, where Npy is more likely the
electron-rich copper center and encourages the coordination of aryl halide. Npz play the role to lower
and speed up the NS and RE step. This mechanism corresponds to the steric effect of the substituent
at ortho-position in aryl halide rather than phenol due to an aromatic group of the former binding
straight to the copper atom in the intermediate A (Scheme 42b), and Cu-O bond is formed when phenol
is in the intermediate B (Scheme 42b). The O-arylation reaction was conducted in the presence of
pyrazole ligands, CuI salt, and K3PO4 in DMSO at 100 ◦C (Scheme 42a) [122].
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Besides pyrazole moiety-containing ligands, Zhao Ying Ying also reported a 2,2′-bipyridines as a
ligand in the Ullmann O-arylation reaction. However, 4,4′-dimethoxy-2,2′-bipyridine ligand (B4) and
4,7-Dimethoxy-1,10-phenanthroline (B5) was found to be the best ligand which efficiently forwarded
Ullmann reaction of the electron-donating methoxy substituent. The 4,4′-dimethoxy-2,2′-bipyridine
ligand provided up to 95% yield of corresponding product from aryl and heteroaryl iodides and
bromides with phenols (Scheme 43). The 4,7-Dimethoxy-1,10-phenanthroline ligand is a planar and
rigid structure; therefore, it is less reactive and provided 52–95% yield of the aryl ether (Scheme 44) [123].
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In 2019, Sudeep’s team described a new type of imidazolium-based NHC ligand precursor in the
Ullmann O-arylation. In their studies, 1,3-bis-(2,6-diisopropylphenyl)-imidazolium chloride (IPrHCl)
(B6) salt showed best performance to the Ullmann reaction (Figure 13). The aryl bromide/heteroaryl
bromide coupled with phenol to give corresponding biaryl ethers with excellent yield; however, highly
substituted phenols gave a comparatively low yield of biaryl produces. The electron-withdrawing
substituted aryl bromide gave a better results (Scheme 45) [124].
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In the Sudeep study, the mechanical aspect of the catalyst was studied using high resolution
mass spectrometry (HRMS) techniques systematically. The O-arylation of Ullmann coupling by the
Sudeep study was the non-radical fashion of catalyst mechanism (Scheme 46). The catalysis reaction
was proceeded through NHC-copper carbonate species (d) and followed by a bis-µ-oxo NHC-copper
complex (e) formation. These intermediates play a critical part in the catalysis and produce the
nucleophile incorporated complex (d), which undergoes the addition of aryl halide, followed by a
final reductive elimination step yielding the desired biaryl ether and regenerate the intermediate (c)
(see Figure 14) [124].
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Shortly afterwards, Teng Xiao Qing’s team reported the use of pyridine base ligand in the synthesis
of 9-O-arylated berberines. Berberine is a type of antimicrobial agent that widely applies in the
medical field. Nevertheless, the high dosage of Berberine is required due to its low lipophilicity and
bioavailability. The group of Teng applied the O-arylation Ullmann reaction in the modification of the
structure of berberine with a potentially lipophilic aryl group (Scheme 47) [125].
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In 2019, Vincent Chan et al. described the standard pharmaceutical compound library with
molecular diversity as the new pathway for discovery of new ligand structures that used in biaryl
ethers formation. They used the AbbVie compound library as the source in finding, recognition,
and development of new ligands (Figure 15). By using this new pathway for high throughput screening,
he found that N, N’-bis(thiophene-2-ylmethyl)oxalamide is the potential ligand that efficiently promotes
C-O bond formation reaction. The high throughput of compound screening process for new ligand
and complete testing is shown in Scheme 48. Based on this screening methods, the yield of biaryl
ethers is shown in (Scheme 49) [126].
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3. Recent Application of Synthetic Ethers in Pharmaceutical and Natural Product

The aromatic C-O bonds are widely introduced in natural products and pharmaceutic-like
molecules. Although the Pd-catalyzed cross-coupling reaction is a powerful system in the synthesis of
this type of compounds, a constitutional problem, such as high cost and high toxicity, might restrict its
application in pharmaceutical and medicinal industry. Back to front, the current breakthrough and
growing of copper-mediated Ullmann etherification reactions offer an optional and practical selection.
In this segment, we emphasize some current and representative applications of Ullmann O-arylation
reaction in the medicinal chemistry and natural products.
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3.1. Medicinal Chemistry

The Ullmann etherification is comprehensively worked in the synthesis of pharmaceuticals-like
derivatives. In 2013, di(hetero)aryl ether derivative compound containing a thieno (3,2-b) pyridyl
ring system was prepared by Queiroz et al. through Ullmann O-arylation reaction (Scheme 50).
The efficiency of anticancer inhibitory of these compounds fights a group of human tumor cell
lines, including MCF-7 (breast adenocarcinoma), A375-C5 (melanoma), and NCI-H460 (non-small
cell lung cancer); HCT15 (colon carcinoma), HepG2 (hepatocellular carcinoma), and HeLa (cervical
carcinoma) were biologically evaluated. The biological evaluation demonstrated that the di(hetero)aryl
ether compound with ortho- and meta-methoxy group (MeO-) showed encouraging antitumoral
properties [127].

Catalysts 2020, 10, x FOR PEER REVIEW 37 of 51 

 

 
Scheme 49. C-O bond formation of heteroaryl bromide/aryl bromide with phenol/heteroaryl phenol. 

3. Recent Application of Synthetic Ethers in Pharmaceutical and Natural Product 

The aromatic C-O bonds are widely introduced in natural products and pharmaceutic-like 
molecules. Although the Pd-catalyzed cross-coupling reaction is a powerful system in the synthesis 
of this type of compounds, a constitutional problem, such as high cost and high toxicity, might 
restrict its application in pharmaceutical and medicinal industry. Back to front, the current 
breakthrough and growing of copper-mediated Ullmann etherification reactions offer an optional 
and practical selection. In this segment, we emphasize some current and representative applications 
of Ullmann O-arylation reaction in the medicinal chemistry and natural products. 

3.1. Medicinal Chemistry 

The Ullmann etherification is comprehensively worked in the synthesis of pharmaceuticals-
like derivatives. In 2013, di(hetero)aryl ether derivative compound containing a thieno (3,2-b) 
pyridyl ring system was prepared by Queiroz et al. through Ullmann O-arylation reaction (Scheme 
50). The efficiency of anticancer inhibitory of these compounds fights a group of human tumor cell 
lines, including MCF-7 (breast adenocarcinoma), A375-C5 (melanoma), and NCI-H460 (non-small 
cell lung cancer); HCT15 (colon carcinoma), HepG2 (hepatocellular carcinoma), and HeLa (cervical 
carcinoma) were biologically evaluated. The biological evaluation demonstrated that the 
di(hetero)aryl ether compound with ortho- and meta-methoxy group (MeO-) showed encouraging 
antitumoral properties [127]. 

 
Scheme 50. New di(hetero)aryl ethers in the thieno [3,2-b]pyridine series. Scheme 50. New di(hetero)aryl ethers in the thieno [3,2-b]pyridine series.

In 2015, Yang Shao Mei’s team reported the structure-based pattern, structure-action connection
study of a series of biaryl ether derivatives as potential antitumor agents. She found that the presence
of Cl- and OH- group at para-position was significantly enhanced antitumor activity. The compound
N-(4-fluorophenyl)-4-phenoxybenzamide can be mediated by improving the expression of P21 and
Cl-caspase 3 and leading to apoptosis of tumor (Scheme 51) [128].
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Bacterial contagion triggered by Mycobacterium tuberculosis (TB) and various problematic bacterial
germ keep posing a vital threat to world public health. Therefore, novel chemotype antibacterial agents
are doubtfully needed to fuel and boost the antibacterial drug discovery and development pipeline.
Hao Lin’s research group reported the structure-activity, route of synthesis, and antibacterial study
of macrocyclic diarylheptanoids compound with the various amine, amide, urea, and sulfonamide
functionalities in the extended pharmaceutical library. The outcome of their study produced macrocyclic
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geranylamine and 4-fluorophenethylamine substituted derivatives, which can be performed reasonable
activity against M. tuberculosis and picked Gram-positive bacterial pathogens (Scheme 52) [129].
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In 2018, Sidhartha S. Kar et al. developed a series of novel druggable biphenyl ethers as
possibility antitubercular agents. The respective compound can be promising in vitro activity against
drug-sensitive, isoniazid-resistant, and various drug-resistant strains of Mycobacterium tuberculosis (TB)
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Scheme 53. Anti-tuberculosis (TB) agent via Ullmann coupling reaction.

3.2. Natural Product

Biaryl ether compounds are the structure portion generally discovered in an extended natural
product and display miscellaneous biological activities [131]. The most general compound includes
amino acid derivatives, which commonly begin from oxidative phenol coupling of aromatic amino
acid. The typical examples are the glycopeptide antibiotic vancomycin, neolignans, chalcones
bisbibenzyls, cyclic diarylheptanoids, and benzylisoquinoline alkaloids [132]. Undoubtedly intentional
of the carbon-oxygen bond transformation and refinement of instantaneous study are on the skyline.
The significant evolution in this field was started in 1968 by Tomita, Fujitani, and Aoyagi, who discovered
the proficiency of the Ullmann etherification cross-coupling reaction was powerfully enhanced by using
copper oxide as a catalyst [133]. The complete synthesis of racemic bisbenzyltetrahydroisoquinoline
alkaloids cycleanine [133], cephradine [134], phaeanthine [135], and isotetrandrin [135] is highlighted
in Table 9. Various groups of researchers implemented the breakthrough of modified conditions by the
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Tomita, Fujitani, and Aoyagi for the installation of biaryl ether derivative of a range of natural products.
The representative example of a natural product using these modified methods is cyclic isodityrosine
natural products, such as K-13 [136] or OF4949-III [137], perrottetin E [138], the bisbibenzyl natural
product marchantin I [139], ornatipolide [140], retipolide E [140], and other related natural products
(Table 10).

Table 9. The complete synthesis of various natural product compound.

R-X R-OH Condition Diaryl Ether Natural Product
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Table 10. The representative example of a natural product using modified methods in cyclic isodityrosine
natural products.

Compound Condition Structure

K-13 CuO (2.0 equiv.), K2CO3, pyridine, 145 ◦C, 24 h
�91% (from bromide)
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The same advancement can be seen retroactively for the transformations of the procedure used in
intramolecular Ullman reactions. The ideal condition of intramolecular Ullmann coupling reaction
could only be applied for the macrocyclization yielding to simple macrocyclic biphenyl ethers that
are in a majority situation devoid of any functional group. As proved by the representative sample
mentioned in this division, which was initially being plagued by harsh reaction conditions, it has
also undergone a short transformation by Tomita, Fujitani, and Aoyagi. They reported that the most
efficient procedure that progressively led the macrocyclic biaryl ether formation is using the caesium
carbonate and/or chelating ligand in the reaction Table 11.
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There are two choices that can be imperfect when endeavoring to prepare a complex and highly
sensitive compound, such as natural product by an intramolecular Ullmann etherification, with the
intention of then stepping away from several reaction conditions. The first option is involved in the
chelating ligand for copper that enabled the breakthrough of remarkably efficient processes operating
under gentlest conditions. The second option is based on the ortho-effect with presence of copper that
allows the desired product more accessible achieved. These ortho-effects touched upon by Ullman
himself, who reported in 1903 the copper-mediated reaction between aniline and ortho-chloro-benzoic
acid [132]. This is the key success of the Nicolaou group in the total synthesis of vancomycin
(Scheme 54), with the gold of gentlest conditions in copper-mediated Ullmann reaction and ortho effect.
Nicolaou designed the total synthesis of vancomycin based on the ingenious incorporation of a triazene
unit in the starting materials that were place in ortho position to the aromatic bromine compound.
The triazene serves as a potential “electron sink” and coordinate or stabilizer. The intermediate copper
species turned out to be an outstanding achievement of biaryl ether compound in the synthesis of
vancomycin [146–149].
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Recently, Hirsutellone B is one of the members under family of decahydrofluorene class bioactive
natural products [150]. The direct synthesis of strained 13-membered macrocycle is the challenge for
organic chemists. Below is the first reported on the total synthesis of Hirsutellones B by Nicolaou’s
research team in 2009 [151]. In 2011, researcher Uchiro’s team reported the synthesis of Hirsutellone B via
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successful application of Ullmann etherification coupling reaction in the formation of the 13-membered
ring (Scheme 55) [152].
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4. Conclusions

Ullmann C-O bond arylation reaction has become dominant and plays a vital role in organic
synthesis, medicinal, agrochemical chemistry, with its being present in a broad range of natural products
and biologically active compounds. Copper-mediated Ullmann reactions were virtuously developed
for some time by utilizing novel ligands and synthetic ancillary tools. In this review, we summarized
some recent advances and applications of the copper-mediated Ullmann coupling reaction in the
synthesis of heterocycles, pharmaceutical molecules, and natural products. A marvelous agreement of
work has been reliable for establishing a more effortless and fast method of Ullmann type C-O bond
formation, mainly capital on catalysts. Among many novels and speedy breakthrough of this reaction,
we understand the eco-synthetic methodologies, such as nanosized metal-, ligand-, additive-free
condition, and the reusable heterogeneous catalyst will develop in a parallel line to significantly give
impact in this Ullmann O-arylation cross-coupling reaction. We notice that the involvment of low
catalyst loading (<1 mol%) in the reaction is invariably limited with aryl chlorides, and tosylates
are substantially expelled as the initial substrate in most of the situation. These challenges obligate
the synthetic organic transformation to study further and explore with develop a novel method and
catalytic system to extend the scope and generality of century-old Ullmann condition. As illustrated,
the use of all kinds of various copper-mediated catalysts in Ullmann O-arylation allows for rapid
transformations under relatively mild and ligand-free conditions, with the benefits of the excellent yield
of products with the ease of catalyst separation and recover. As a summary, the outcome of most of the
reactions highly depended on different diverse variables, and their connection has not been confirmed
yet. The following are the tabulated part affecting the Ullmann O-arylation cross-coupling reaction.

• Ion form of copper: Either metallic copper, Cu(I), Cu(II), or Cu(0) salts and oxides have been
applied, but Cu(I) salts commonly provide the extraordinary performance.

• Amount of copper: Commonly in the scope of 5–15 mol% based on the substrate, yet as a typical
order higher loaded of copper provides a faster rate of reaction with an excellent outcome.
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• Ligand form: Bi-dentate ligands are generally chosen, and the pyridine nucleus, secondary or
tertiary amines, carbonyl groups, and imino-groups are generally suitable working ligand moieties;
phosphine ligands are generally not very active.

• Ligand loaded: Bi-dentate ligands are used on average in a ratio of (copper: ligand); 1:1 or 1:2,
while most of the conditions, a higher ratio leading a better outcome.

• Base: Organic bases ,such as amines, do not work well with C-O Ullmann etherification. On the
other hand, inorganic bases, such as potassium phosphate or carbonate and cesium carbonate,
give better results in the reaction. The most general loading of the base is 3 equivalents relative to
the substrate.

• Solvent: Depending on the reaction and reactant used, polar/non-polar solvents give a better
outcome; DMF, DMSO, toluene, or acetonitrile are among the most used; N-Methyl-2-pyrrolidone
(NMP) is basically utilized in microwave reactions.

• Temperature: The comment temperature in Ullmann etherification is in the range 70–120 ◦C,
but some cases also conduct at room temperature; a better outcome of the product is generally in
higher temperatures.

• Aryl halide: The reactivity of the aryl halide follows the trend: I > Br > Cl; the reactivity
of aryl-chlorides can be activated via the strong electron-withdrawing group as substituents,
ortho position of substituents/adding a source of I- the reaction (ion exchange reactions are
catalyzed by Cu).

• Nucleophile: The better the nucleophile, the better the results, such as amines/thiols> phenol;
amides are more active than imides.

• Steric hindrance: A noticeable sensitivity is usually observed, both on the aryl halide and the
nucleophile. For example, the presence of the methyl group in the ortho position to the nucleophilic
site can significantly reduce the corresponding product.

• Atmosphere: Usually an inert condition; nitrogen/argon atmosphere gives a better organic
transformation in Cu-catalyzed ether bond couplings.
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