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Abstract: The epoxidation of propylene to produce propylene oxide (PO) has a vital role in the
industrial production of several commercial compounds and the synthesis of numerous intermediates,
fine chemicals, and pharmaceuticals. However, the current PO production processes pose significant
problems regarding the environment and economy. The direct photo-epoxidation of propylene
using molecular oxygen (an ideal oxidant with active oxygen of 100 wt %) under light irradiation
is a promising technology to produce PO. This process offers numerous advantages, including the
use of simple technologies, low-cost methods, and environmental friendliness. Many efforts have
focused on the design of new photocatalyst systems, optimizing the conditions for a photocatalytic
reaction, and elucidating the mechanisms of photo-epoxidation. This review is expected to serve
as a comprehensive background, providing researchers with insight into the recent developments
regarding the direct photo-epoxidation of propylene.
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1. Introduction

Among epoxides, propylene oxide (PO) is known to be an extremely reactive substance and an
important chemical intermediate [1]. It is sometimes called 1,2-epoxypropane or 2-methyloxirane.
This compound is widely used as the starting material to synthesize numerous commercial materials;
these include polymers (polyurethanes and polyesters), oxygenated solvents (propylene glycol ethers),
and industrial fluids (monopropylene glycol and polyglycols) [1]. Based on a market overview from
Mordor Intelligence, PO is forecasted to gain at a compounded annual growth rate of approximately
5.9% during the forecast period of 2019–2024 [2].

Currently, the existing PO production processes are technologically divided into chlorohydrin, a
coproduct (indirect oxidation or organic hydroperoxide), hydrogen peroxide, direct oxidation, and
hydro oxidation processes [3]. A significant amount of PO is traditionally made using the chlorohydrin
process, including chlor-alkali PO, lime PO, and PO (Lummus) routes, which suffer from environmental
liabilities and have high capital costs. Alternative processes through indirect oxidation, including
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Tert-butyl Alcohol (PO/TBA), styrene monomer propylene oxide (SMPO), and cumene hydroperoxide
(CHP), have been commercialized. Since there is a long-term level of demand for their coproducts,
it is expected that the organic hydroperoxide processes will maintain an essential role in propylene
epoxidation. New PO technologies, namely hydrogen peroxide propylene oxide (HPPO) [4] and hydro
oxidation [5], have recently been gaining in popularity. However, the low efficiency of hydrogen and
safety considerations require hydrogen peroxide production facilities to apply such processes as only a
temporary solution.

Among all alternative processes available, the direct photocatalytic propylene epoxidation process,
using molecular oxygen as an oxidant. is the most feasible, because (1) molecular oxygen, which has
active oxygen of 100 wt %, is an ideal oxidant; (2) solar light is a reliable, abundant, and green energy
source; and (3) solar-driven photo-epoxidation can be easily performed at room temperature without
a heat requirement. Although there are numerous advantages to photo-epoxidation, the practical
applications for this approach are still challenges with many limitations, such as an inefficiency to
exploit visible light, an unsatisfactory PO yield (low PO selectivity and inefficient propylene conversion),
or the possible deactivation of a photocatalyst [6]. Therefore, although serious efforts have been made
regarding the design of novel photocatalytic materials, the optimization of the reaction conditions
required to meet these technical remains a challenge.

Of particular interest, this article highlights the important achievements in the designing of a
photocatalyst [7–14] and the optimization of photo-epoxidation conditions, including the reaction
temperature [15,16], light irradiation [17–19], and oxygen/propylene ratio [13,20]. In addition, the
detailed mechanisms involved in the solar-driven epoxidation of propylene are systematically proposed.
Finally, a perspective in this photo-epoxidation field is presented.

2. Designing Photocatalysts and the Role of Silica Supports

Many developed photocatalysts that function efficiently under UV and visible light have
been successfully proposed for photo-epoxidation, and have remained a subject of significant
interest [7–14,16,18,20–27]. Pichat et al. were the first to screen a series of oxides, such as TiO2,
ZrO2, V2O5, ZnO, SnO2, Sb2O4, CeO2, WO3, and an Sn–O–Sb mixed oxide, for the photo-epoxidation
of propylene at 320 K under UV-light [21]. Their results indicate that total oxidation predominates over
CeO2, TiO2, ZrO2, and ZnO. In contrast, SnO2, WO3, and an Sn–O–Sb mixed oxide photo-catalyze only
partial oxidation, whereas Sb2O4 yields a small percentage of CO2 in addition to mild oxidation
compounds. However, TiO2 and ZrO2 can produce PO with a selectivity of 10.5% and 5%,
respectively. In addition, it was found that V2O5 is photo-inactive under experimental conditions.
Surprisingly, V2O5 supported on SiO2 efficiently promotes the partial photo-epoxidation of propylene
into aldehydes [26,28]. Yoshida et al. systematically screened 50 types of silica-supported metal oxides
for the photo-epoxidation of propylene (as shown in Figure 1) [10]. They found that silica modified
with some candidate elements, such as Li, Na, Mg, Ca, Sr, Ba, Y, and La, could achieve a high selectivity
to PO; however, their C3H6 conversions were quite low, and similar to those of the bulk silica. Silica
loaded with some candidates, including Ti, Zn, Pb, and Bi can achieve high PO yields. Among the
metal oxide supports, Ti and Zn are the most effective systems for the photo-epoxidation of propylene.
Afterward, photocatalysts based on silica support have received considerable attention, owing to their
photo-epoxidation. Some metal oxides supported by silica include Nb2O5 [25], MgO [20], ZnOx [10],
PbOx [10], CrOx [10,29,30], BiOx [10], ZrOx [10], V2O5 [14,29], and TiO2 [9,10,12,29]. Silica-based
photocatalysts have several advantages [31], including the following:

1. Extensive, highly dispersed, tetrahedrally coordinated metal oxides: some candidates, such as
TiO2, V2O5, Mo2O3, and Cr2O3 moieties, could be successfully dispersed and isolated when
implanting on the silica matrix. It has been noted that these dispersed and isolated Ti, V, Mo, and
Cr transition metal oxides can be easily excited under light irradiation to construct corresponding
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charge-transfer excited states that engage an electron dispatch from O2− to Mn+, as shown in
Equation (1).

(Mn+ = O2−) + hv→ (M(n−1)+
− O−)* M: Ti, V, Mo, Cr, . . . (1)

This particular property concerns a single-site photocatalyst, which differs from a
conventional photocatalyst [29,32]. The highly reactive and selective catalytic epoxidation
of propylene under these charge-transfer excited states constructed, in which the states of
electron–hole pairs are localized nearby on single-site heterogeneous catalysts, leads to such a
significant photo-epoxidation.

2. Localization of the photoexcitation at the moiety because of the electric non-conductance of silica.
Silica is a well-known electrical insulator, in theory. Thus, its photoexcitation (electron–hole pairs)
is localized at the moiety of metal–oxygen and has a long lifetime, which favors photoexcitation.

3. Transparency support material: silica allows UV-visible light to pass through the material, and
does not hamper significantly when the light reaches the photoactive sites.

4. Depression of side reaction: silica support is mostly inactive for a photocatalytic reaction.
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Figure 1. (a) Propylene conversion, (b) propylene oxide (PO) yield, and (c) PO selectivity over various
silica-supported catalysts in the photo-epoxidation of propylene through molecular oxygen. The data
is collected after 2 h in reaction. Reproduced with permission from [10].

Zeolites and mesoporous silica materials, such as titanium silicalite 1 (TS-1), mobile composition
of matter (MCM) [33], Santa Barbara amorphous (SBA-15) [34], FSM-16 [35,36], and Technische
Universiteit Delft (TUD-1) [37], are perfect hosts for the preparation of single-site photocatalysts,
owing to their highly ordered and open structure. Among the above MCM materials, the structures
of which are shown in Figure 2a–c, MCM-41 has received considerable attention [38]. Regarding the
synthesis process of these composite materials, two approaches have used different structure-directing
agents, including a true liquid–crystal and a cooperative liquid–crystal [38]. For the true liquid–crystal
approach, the presence of precursor inorganic framework materials (normally tetraethyl (TEOS) or
tetraethylorthosilicate (TMOS) is not required, since a lyotropic liquid–crystalline phase could be



Catalysts 2020, 10, 87 4 of 18

formed at high concentration of the surfactant. On the other hand, it is also possible for this phase to
form even at lower concentrations of surfactant molecules for the cooperative liquid–crystal approach.
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(MCM)-41, (b) MCM-48, (c) MCM-50, and (d) the formation mechanism of mesoporous materials using
structure-directing agents. Reproduced with permission from [38].

The most exciting feature properties of MCM-41 mesoporous material is its regular hexagonal
array and hexagonally shaped pore (2–10 nm) structure, a high surface area (up to 1500 m2

·g−1),
and excellent thermal stability [39]. Nguyen et al. developed TS-1 and MCM-41 as matrixes to
achieve single-site structure photocatalysts [7]. Interestingly, a notable synergetic photocatalytic
performance over MCM-41 supporting binary V-/Ti-oxides was achieved during the photo-epoxidation
of propylene [6]. Figure 3 clearly shows that two physically mixed photocatalysts (PxV0.05Ti0.2 and
PxV0.05Ti0.6) achieved the catalytic performance within the range of the predicted activity. Hence, it is
reasonable to conclude that a synergetic enhancement contributes to the significant difference between
the predicted and observed performances. Among the candidates, V0.05Ti0.3/MCM-41 photocatalyst
performed optimal synergetic photocatalytic activity on both PO formation and C3H6 consumption.
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Figure 3. Contribution activity analysis for (a) C3H6 consumption and (b) PO formation rates.
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A bismuth-based material, Bi2WO6-TiO2, was recently developed, and has shown an excellent
potential performance in photo-epoxidation [16]. Figure 4 clearly shows that two supporting materials
with Bi2WO6 (BiWO-Ti50i and BiWO-Ti50i/GS) achieve better PO rates than a simple photocatalyst
(Bi2WO6, BW/GS, BW/Sil, and TiO2-P25). However, PO selectivity is low, which becomes the greatest
disadvantage of this catalyst system.
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3. Optimization of Experimental Conditions for Photo-Epoxidation

3.1. Effect of the Light Source

For the photo-epoxidation of propylene, the features of the light source (wavelength spectrum,
types of light, light intensity, etc.) are crucial factors for efficient photocatalysis. Yamashita et al. used
a high-pressure Hg lamp equipped with various UV cut-filters (λ > 250 nm, λ > 340 nm, λ > 450 nm)
to conduct the photo-epoxidation experiment over mesoporous molecular sieve photocatalysts at
295 K [40]. The authors found that the reaction only proceeds on the V/Ti–HMS (hexagonal mesoporous
silica) and Cr–HMS photocatalysts when using UV with λ > 340 nm, whereas no reaction occurs
over the Ti–HMS photocatalyst. As the reason for this, V ions effectively shift the absorption band
of Ti containing a mesoporous molecular sieve (Ti-HMS) toward longer wavelengths, whereas the
chromium oxide moieties (Cr6+) dispersed in mesoporous silica are responsible for absorbing the
long wavelength of visible light irradiation. In another approach, Nguyen et al. have successfully
used artificial sunlight for the first time (a 300 W Xe lamp equipped with an AM1.5G filter) and
UV light (a Hg Arc lamp equipped with various filters (365, 320–500, and 250–400 nm)) to drive the
photo-epoxidation of propylene [19]. Since there is a limit on the light delivered to the photocatalyst
that can be successfully absorbed, the authors proposed normalized light utilization (NLU) to indicate
that the possible absorbed light could be consumed to activate the photoreaction.

NLU = Intensity of light emitted × Normalized absorption capability of photocatalyst (2)

As expected, the rate of PO formation and C3H6 consumption correlate with NLU in the log–log
scale (as shown in Figure 5). This might conclude that photo-epoxidation over V-Ti/MCM-41 has a
similar reaction mechanism under either UV light or UV–visible light/artificial sunlight.
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3.2. Effect of Reaction Temperature

In general, gas–solid heterogeneous reactions are significantly influenced by the reaction
temperature; however, there is no obvious impact on a heterogeneous photocatalysis [41]. Very
early on, Pichat et al. found that a rise in reaction temperature would harm the activity of photocatalytic
epoxidation [21]. The results suggest that the temperature significantly influences the distribution in
partial oxidation products. In a previous study, Nguyen et al. also found that the reaction temperature
obviously alters the distribution of products in the photo-epoxidation of propylene [15]. Figure 6a
shows that epoxidation selectivity firstly increases with the rise in temperature within the range of
298–323 K. Subsequently, a drop of selectivity toward PO is observed when the reaction temperature is
maintained over 323 K. It should be noted that a rising reaction temperature favors the forming of
PA (propionaldehyde), one of the most reactive aldehydes. This result is consistent with the finding
by Yoshida et al., who reported that the reaction temperature influences the selectivity to the product
and is favorable toward the formation of an aldehyde [28]. In another study, Li et al. also found that
increasing the reaction temperature does not favor epoxidation selectivity [42]. The competition of
multiple reactions toward different products might be attributed to this phenomenon. Therefore, the
distribution of the products will be rearranged (as shown in Figure 6b).
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Figure 6. The selectivity to products for different temperature conditions: (a) V-Ti/MCM-41, reproduced
with permission from [15]; and (b) Au-Ag/TS-1 photocatalysts, reproduced with permission from [42].
Abbreviations: propylene oxide (PO), propionaldehyde (PA), acetone (AC), acetaldehyde (AA), acrolein
(AL), and ethanol (ROH).

In contrast, the reaction temperature also influences the conversion of propylene, by altering the
adsorption of reactants and the desorption of products on the surface of photocatalyst. Generally, high
temperatures tend to inhibit adsorption, because it is an exothermic process. Contrarily, increased
temperature is beneficial to the desorption (endothermic process) and accelerates the surface reaction.
As shown in Figure 7a, the reaction temperature has a dual action in terms of the reaction rate:
(1) enhancing the desorption of products, which provides more active sites for the photocatalytic
reaction; and (2) reducing the adsorption of reactants, which decreases the photocatalytic efficiency [15].
In another approach, Li et al. also observed the dual relationship between the reaction temperature
(323–473 K) and the photocatalytic performance for the C3H6 conversion rate over an Au-Ag/TS-1
photocatalysts, as shown in Figure 7b [42].

In conclusion, the effect of reaction temperature on the photo-epoxidation of propylene is relatively
complicated, with competing contributions. On the one hand, increasing the reaction temperature
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can accelerate the surface reaction and favors the desorption of products (endothermic process) to
release more active sites for a reaction, resulting in the promotion of a photocatalytic reaction. On the
other hand, raising the reaction temperature might suppress the adsorption of reactants (exothermic
process), which might inhibit the efficiency of the reaction.
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3.3. Effects of Oxygen/Propylene Ratio

Previous studies have also tested the effects of the different oxygen/propylene ratios on the
photo-epoxidation system [13,20]. Figure 8 clearly illustrates the dependence on the different ratios of
oxygen/propylene [13,20]. Obviously, a high oxygen/propylene ratio is favorable for the performance
of photo-epoxidation. This result is highly consistent with an observation of direct epoxidation over
silver catalysts [43,44]. Without the presence of oxygen, only a slight oxidation pathway towards
acetaldehyde (AA) takes place over Mg-loaded silica. The photo-epoxidation of propylene towards PO
in the presence of oxygen has been found. The optimal condition for achieving the best PO selectivity
among the experiments studied was oxygen/propylene = 2. However, an excess amount of oxygen
would push for the formation of other partial oxidation products.
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3.4. Effects of Co-Feeds

A further important parameter is the effect of co-feeds. This has been carefully investigated by
Nguyen et al. in the photo-epoxidation of propylene over V-Ti/MCM-41 under UV-light irradiation of
0.3 mW·cm−2 at 323 K [27]. Figure 9 presents the correlation between H2O vapor pressure and catalytic
activity. It clearly shows that the photocatalytic activity is extremely influenced by the presence/absence
of co-feeds; these include H2O and H2. For H2O, the photo-activity is quite complicated. And depends
on the partial pressure of the co-feed. In the range of 0.0–0.6 kPa H2O, the photocatalytic activity is
increased with the increase of co-feed. On the other hand, the photocatalytic performance is not further
promoted when the H2O pressure is over 0.6 kPa. For H2 (5.6 kPa), the presence of H2 could promote
both of photocatalytic activity and stability of photocatalyst. It should be noted that the mechanism of
photo-epoxidation in the presence/absence of co-feeds might not be similar; therefore, an increase in
both the AA selectivity and AA formation rate has been observed in the presence of co-feeds.
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4. Elucidating Mechanisms of Photo-Epoxidation

Since the intrinsic photocatalytic epoxidation mechanism is still not entirely clear, there is a
strong effort to elucidate the reaction pathways of photo-epoxidation. In a previous study, Carter and
Goddard suggested the reaction pathway to produce PO via an oxypropenyl intermediate through
H-atom abstraction [45]. The critical role of the forming products is controlled by two factors: the
reaction conditions and the angle of H-atom abstraction between attacking of the propylene and O*

(ads).
Based on H-atom abstraction, Nguyen et al. proposed possible reaction pathways to create PO and
other intermediate species over an MCM-41-based photocatalyst (as seen in Scheme 1) [7]. They came
up with the conclusion that the distribution of the products is affected by H-atom abstraction in a
limited space, e.g., inside the pore. Under a restricted space, it would favor the selectivity to PO via the
formation of the oxypropenyl intermediate.

Advances made in the mechanism were presented by Yoshida and co-workers [9], who successfully
proposed that molecular oxygen is activated on the charge-transferred (Ti3+–OL

−)* radical pair, which
is constructed under light irradiation (as illustrated in Scheme 2). First, the Ti3+ moiety will react with
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O2 to form O2
−. However, O2

− cannot activate propylene by itself. Then, the O L
− moiety, which

is known to be the center of the hole in lattice oxygen, will react with O2 to form an O3
− oxygen

radical species, resulting in a reaction with propylene to yield PO. The authors proposed that O3
− is an

electrophilic oxygen species capable of the PO forming. When the OL
− moiety reacts with propylene,

there is a possible reaction pathway to produce acrolein (AL) and ethanal through H abstraction and
C−C bond fission, respectively.

Catalysts 2020, 10, x FOR PEER REVIEW 11 of 22 

 

  
Figure 9. The influence of H2O vapor pressures on (a) the C3H6 consumption rate and PO formation 
rate and (b) PO selectivity. Reproduced with permission from [27]. 

4. Elucidating Mechanisms of Photo-Epoxidation 

Since the intrinsic photocatalytic epoxidation mechanism is still not entirely clear, there is a 
strong effort to elucidate the reaction pathways of photo-epoxidation. In a previous study, Carter and 
Goddard suggested the reaction pathway to produce PO via an oxypropenyl intermediate through 
H-atom abstraction [45]. The critical role of the forming products is controlled by two factors: the 
reaction conditions and the angle of H-atom abstraction between attacking of the propylene and 
O*(ads). Based on H-atom abstraction, Nguyen et al. proposed possible reaction pathways to create PO 
and other intermediate species over an MCM-41-based photocatalyst (as seen in Scheme 1) [7]. They 
came up with the conclusion that the distribution of the products is affected by H-atom abstraction 
in a limited space, e.g., inside the pore. Under a restricted space, it would favor the selectivity to PO 
via the formation of the oxypropenyl intermediate. 

 

Scheme 1. The formation mechanism of PO and oxygenate products over V-Ti/MCM-41 
photocatalysts. Reproduced with permission from [7]. 

Partial pressure of H2O (kPa)

0 2 4 6 8 10 12 14 16 18 20

PO
 s

el
ec

tiv
ity

 (%
)

0

10

20

30

40

50

60

70

H2O only
H2 only
without co-feeds

(b)

Partial pressure of H2O (kPa)
0 2 4 6 8 10 12 14 16 18 20

PO
 a

nd
 C

3H
6 r

at
e 

(µ
m

ol
 g

ca
t-1

 h
-1

)

0

200

400

600

800

1000

1200
H2O only
H2 only
without co-feeds

(a)

C3H6 consumption rate

PO formation rate
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By contrast, Amano et al. suggested that both (O2
−) and (O3

−) oxygen radical species, which are
created at the photo-formed hole center, can react with C3H6 over a Ti active site to generate PO and its
co-products (as shown in Scheme 3a) [11]. For TiO2/SiO2, the active oxygen species is derived directly
from molecular oxygen to promote the photo-epoxidation. For V2O5/SiO2, the active oxygen species
is formed by incorporating the OL

− lattice oxygen of the surface metal oxide species. As expected,
the active oxygen species (OL

−) in the excited state of a (V4+–OL
−)* radical pair attacks the double

bonds of C3H6 to generate a (V4+–O–C3H6
+) species. Subsequently, the molecular oxygen takes the
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photo-induced electron on the V cation to promote the selection to propylene epoxidation (as shown in
Scheme 3b) [11].Catalysts 2020, 10, x FOR PEER REVIEW 13 of 22 
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In another approach, Amano et al. proposed the impact of dispersed V5+ species on the distribution
of products [46]. They found that V2O5/SiO2, which contains less dispersed V5+ species, would promote
the forming of PA. In detail, Scheme 4 depicts the mechanism of the photo-epoxidation of propylene
with molecular oxygen over V2O5/SiO2 [46]. The photo-excited (V=O)* species of monomeric VO4

tetrahedral dispersed in SiO2 are photocatalytic active sites in the formation of PO, whereas the lowly
dispersed vanadium oxide species in SiO2 promotes the formation of PA via the isomerization of PO.
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Scheme 4. The proposed reaction mechanism in propylene photo-epoxidation with molecular oxygen
over V2O5/SiO2 [46].

As mentioned above, both V and Ti metal oxide play an essential role in the photo-epoxidation
of propylene. However, there has been a notable lack of answers regarding how V and Ti metal
oxide promote the forming of PO. In their previous study, Nguyen et al. proposed a possible reaction
mechanism in the photo-epoxidation of propylene on V- and Ti-oxide-modified MCM-41 photocatalysts
(as shown in Scheme 5) [6]. Clearly, either V- or Ti-oxide could individually photo-epoxidize propylene
under light irradiation. They found that the primary products of Ti-oxides are AC, PO, and PA,
whereas those of V-oxides are AC, EtOH, and PA. It should be noted that Ti-oxide could generate
PO directly from propylene, resulting in a higher achieved PO selectivity compared with V-oxides.
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Based on the possible traveling species, two possible reaction pathways of the synergetic photo-activity
could be proposed in the binary V-/Ti-oxides. First, the direct photo-epoxidation to produce PO,
which is promoted by the Ti-oxides, is still preserved in the binary V-/Ti-oxides. Second, the indirect
photo-epoxidation to produce PO is further enhanced by the possible traveling of PA. The PA traveling,
which is produced on the Ti-sites, might travel to the V-sites and be photo-transformed on the V-sites.
The V-sites, as compared with the Ti-sites, have a higher possibility to produce the PO through an
indirect pathway. Hence, when PA traveling is photo-transformed in the V-sites, the photo-epoxidation
is dramatically promoted.
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5. Comparison of the Photo-Epoxidation Process and Others

Although the experimental conditions required for photo-epoxidation of propylene differ, it
is worth comparing their performance in terms of the selectivity and product yield (as shown in
Figure 10). Amano et al. proposed V2O5/SiO2 photocatalyst as an optimal candidate in their group [11].
By modifying the photo-excited lattice oxygen of V2O5/SiO2 through an alkali, Amano et al. observed
a high PO yield of 10.1 g·kgcat

−1
·h−1 [14]. In another approach, BiWO–Ti50i/GS performed an optimal

performance, with a PO yield of 16.9 g·kgcat
−1
·h−1 [16]. In a recent study, Nguyen et al. proposed a

V–Ti/MCM-41 in which its PO yield was boosted more than two-fold compared with BiWO–Ti50i/GS [6].
To further understand the current status of performance over different propylene epoxidation

processes, a broad comparison based on the selectivity and turnover frequency (TOF) was successfully
collected and evaluated (Figure 11). As mentioned earlier, HPPO is a primary green technology
currently used in the production of industrial compounds. For the two HPPOs of the commercial
Halcon styrene monomer and Degussa–Huls–Headwaters hydrogen peroxide process, their TOFs
could reach up to 0.11 s−1 and 2.2 × 10−2 s−1, respectively [47]. It should be noted that the required
TOF for industrial-scale production is approximately 0.1 s−1. Gold deposited catalysts have recently
received considerable attention for propylene epoxidation via hydro oxidation with the presence of O2

and H2 mixtures. Among potential candidates [48–50], a 0.05 Au/TS-1(36) catalyst provided a high
TOF of 0.33 s−1. For homogeneous systems, TOF was found to be within the range of 5.7 × 10−3 to
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2.0 × 10−2 s−1 [47,51]. The aforementioned catalytic processes afford an attractive TOF and selectivity;
however, the requirement of either H2O2 or H2 as the oxidant raises economic and safety concerns.
The biological process performs an excellent TOF (12 s−1) [52]. However, this process also raises some
challenges, including the need for life-support systems, the product toxicity for microorganisms, the
supply of cofactors, and the stability of the enzymes. To solve the above issues, direct photo-epoxidation
with molecular oxygen was successfully proposed. However, the current result still remains far from
the required TOF for large-scale production (TOF = 0.1 s−1). For more details, Table 1 summarizes all
of the above reaction conditions and their performance with regard to propylene epoxidation.
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Table 1. Epoxidation of propylene reactions and their catalysts.

No. Type of Reactions Catalysts
Reaction Conditions Epoxidation Performances

Ref.Dosage
(gcat)

Light Temp.
(◦C) Feeds GHSV

(mL·gcat−1·h−1)
Others Conv.

(%)
Select.

(%)
Yield

(g·kgcat−1·h−1)
TOF
(s−1)

1

Heterogeneous
Photocatalysis

V0.2/MCM-41
0.01 UV-light: 0.3

mW·cm−2 50 C3H6/O2/N2= 1/1/16 360,000 N/A
0.07 22.7 7.6 3.70× 10−3

[6]2 V0.2Ti0.3/MCM-41 0.16 48.1 36.8 4.20× 10−3

3 Ti0.3/MCM-41 0.01 73.3 3.3 0.30× 10−3

4 0.1 mol % V2O5/SiO2 0.3 300 W Xe arc lamp 30 C3H6/O2/He = 2:1:7 20,000 N/A N/A 37.0 5.0 N/A [11]

5 Rb ion-modified 0.5 wt
% V2O5/SiO2

0.3 300 W Xe arc lamp 50 C3H6/O2/He = 2:1:7 5000 N/A 1.56 28.1 10.1 N/A [14]

6 BiWO-Ti50i/GS 20 UV-LEDs: 90
mW·cm−2 80 N/A 1500 N/A N/A 30.7 16.9 N/A [16]

7 Au–Ag/TS-1 (4/1) 0.1
100 W high-pressure

Hg lamp: 90
mW·cm−2

N/A N/A 12,720 N/A N/A 52.3 3.97 N/A [42]

8
Heterogeneous
Halcon styrene

monomer process

Mo naphthenate + K
naphthenate promoter N/A N/A 90 N/A N/A EBHP; 10

bar

92.00
(H2O2
conv.)

90.0 72 0.11 [47]

9

Heterogeneous
Degussa–Huls–

Headwaters
hydrogen

peroxide process

TS-1 + liquid base
promoter (ammonia) N/A N/A 50 H2O2 with H2O solvent,

MeOH, and MTBE N/A 15 bar,
pH = 8.5 19.00 95.0 770 2.20× 10−2 [47]

10

Heterogeneous
Hydrogen process

0.05 Au/TS-1(36) 0.3 N/A 200 C3H6/H2/O2/He = 1/1/1/7 7000 N/A 8.80 81.0 116 0.33 [48]

11 Au–Ba/Ti–TUD N/A N/A 150 C3H6/H2/O2/He = 1/1/1/7 7000 N/A 1.40 99.6 25 2.20× 10−2 [49]

12 Au-TiO2(0.05)@SBA-15 0.1 N/A 80 C3H6/H2/O2/He = 1/1/1/7 15,000 N/A 2.30 (H2
conv.) 62.0 51.8 N/A [50]

0.1 N/A 150 C3H6/H2/O2/He = 1/1/1/7 15,000 N/A 19.00 99.0 17.1 N/A

13 Homogeneous
Busch system

CH3ReO3,
pyridine-N-oxide N/A N/A 30 H2O2 with CH3OH solvent N/A 20 bar

N2, N/A >95.0 N/A 5.70× 10−3 [47]

14
Homogeneous
Mizuno system,
closed system

tetra-n-butylammonium
salt

[γ-SiW10O34(H2O)2] 4–
8 µmol N/A 32

Propylene (6 atm, 5 mmol);
30% aq. H2O2 (1 mmol),

acetonitrile (6 mL)
N/A 8 h

99.00
(H2O2
conv.)

>99.0 Yield of 90% 2.00× 10−2 [47,51]

15 Biological cytochrome P450 BM-3
139-3 N/A N/A 25 N/A N/A

1 atm,
pH 8,

NADPH
N/A 100.0 N/A 12.00 [52]

GHSV: gas hourly space velocity; TOF: turnover frequency; N/A: not available; Temp.: temperature; Conv.: conversion; Select.: selectivity; TUD: Technische Universiteit Delft.
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6. Summary and Future Perspectives

This review is expected to serve as comprehensive background knowledge and to provide
researchers with insight into the recent developments of the direct photo-epoxidation of propylene.
This process using molecular oxygen (ideal oxidant with 100 wt % of active oxygen), which utilizes light
energy in an active reaction, as a promising technology used to produce PO, owing to its potentially
clean, low-cost, and straightforward advantages. Numerous efforts have focused on the design of
new photocatalyst systems for optimizing the photocatalytic reaction conditions and elucidating
the mechanisms of photo-epoxidation. Although significant improvements in photo-efficiency have
been obtained for photocatalytic epoxidation, the results are still far from the required TOF for
industrial-scale production (TOF = 0.1 s−1). Therefore, a goal in the coming years will be the continual
development of new and effective photocatalyst systems. To promote the feasibility of and open up
new opportunities for the photo-epoxidation of propylene, the following criteria should be directly
addressed:

• The mechanisms and kinetics of the photo-epoxidation of propylene should be elucidated and
determined at a fundamental level. Understanding their roles can support the design of effective
photocatalysts in the future.

• Novel photocatalysts should be tailored that can widen visible light absorption, strengthen
the forward reaction, depress the reverse reaction, achieve a recombination of photogenerated
electron–hole pairs, prolong the lifetime of photogenerated electron–hole pairs, and favor the
adsorption of reactants, with a particular focus on the metal oxides supported on zeolites and
mesoporous silica photocatalytic materials.

• Novel photocatalytic systems, including photoreactors and reaction conditions that can upgrade
the mass transfer, photon transfer, distribution, and usage of the light source should be designed
and prepared for a scale-up through a reconstruction of the current systems.
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