Supplementary Materials

•

Biomimetic Oxidation of Benzofurans with Hydrogen Peroxide catalysed by Mn(III) Porphyrins

Susana L. H. Rebelo ^{1,*}, Sónia M. G. Pires ², Mário M. Q. Simões ², Baltazar de Castro ¹, M. Graça P. M. S. Neves ^{2,*} and Craig J. Medforth ^{3,*}

- ¹ LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto. E-mail: craig.medforth@fc.up.pt; susana.rebelo@fc.up.pt;
- ² QOPNA & LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810 193 Aveiro, Portugal; e-mail: <u>gneves@ua.pt</u>
- ³ Department of Chemistry, University of California, One Shields Avenue, Davis, California
 95616, USA; e-mail: <u>cjmedforth@ucdavis.edu</u>

Section 1. Comparison of catalytic activity of Mn(III) porphyrins in the oxidation of benzofurans at 0.7% loading

Figure S1. Comparison of substrate conversion (%) and reaction time (min) observed during catalytic oxidation of BF, 2MBF and 3MBF in the presence of the different metalloporphyrins at a ratio S/C 150 (0.7% catalyst loading).

Section 2. Mass spectrometry studies of **BF** and **2MBF** oxidation reactions in the presence of CAT **I**

The products formed during BF and 2MBF oxidation reactions were studied by High Resolution Mass Spectrometry with Electrospray Ionization in the positive mode (HRMS-ESI⁺) with tandem studies (MSⁿ).

2.1 BF oxidation reactions

Figure S2. MSⁿ study of the BF oxidation product 1a (ion *m/z* 122.06).

Figure S3. MSⁿ study of the BF oxidation product 2 (ion *m*/*z* 238.08).

Figure S4. MSⁿ study of the BF oxidation product 3 (ion *m/z* 242.08).

Figure S6. MSⁿ study of the BF oxidation product 5a (ion m/z 256.09).

Figure S7. MSⁿ spectra of BF product 6 (ion *m/z* 258.07).

Figure S8. MSⁿ study of the BF oxidation product 7 (ion *m*/*z* 265.09).

Figure S10. MSⁿ study of the BF oxidation product 9 (ion *m/z* 298.10).

Figure S11. MSⁿ study of the BF oxidation product 10 (ion *m/z* 299.10).

Figure S12. MSⁿ study of the **BF** oxidation product 11 (ion m/z 357.12).

Figure S13. MSⁿ study of the **BF** oxidation product 12 (ion m/z 360.12).

Figure S14. MSⁿ study of the **BF** oxidation product 13 (ion m/z 369.12).

Figure S15. MSⁿ study of the **BF** oxidation product **14** (ion *m/z* 371.13).

Figure S16. MSⁿ study of the BF oxidation product 15 (ion m/z 387.13).

a) Full MS of 2MBF reaction mixture before evaporation

Figure S17. a) Mass spectra of 2MBF oxidation reaction using CAT I, Ox/S of 4 and performing solvent evaporation at 20°C; b) – d) MSⁿ studies of ion m/z 201.10 (17); e) proposed mechanisms for the formation of minor ions in the 2MBF oxidation reaction (a).

Figure S18. a) and b) MS full spectra of fractions isolated by TLC; c) – e) MS^2 studies of ions in the TLC fractions.

Section 3. NMR spectra of products and reactions mixtures

Figure S19. NMR spectra of compound 1 in CDCl₃: a) ¹H NMR; b) ¹³C NMR .

Figure S20. a) ¹H NMR spectrum of compound **5** in DMSO-*d*6; b) expansion in the region of 4-11 ppm.

Figure S21. NMR spectra of compound **16** in $CDCI_3$: a) APT experiment (CH₂ groups and quaternary carbons are shown positive, CH₃ and CH groups are shown negative); b) ¹H NMR.

¹H NMR of total reaction mixture of **3MBF** oxidation

Figure S22 shows the ¹H NMR spectrum of the total reaction mixture of **3MBF** oxidation in the presence of CAT I and confirms the presence of two products. Two intense peaks in the aliphatic region are assigned to the methyl groups of lactone **19** (δ 1.57 ppm as a doublet) and 2'-hydroxyacetophenone **20** (δ 2.64 ppm as a singlet). The singlet at 12.3 ppm is assigned to the resonance of the hydroxyl proton of **20**.

Figure S22. ¹H NMR spectrum in CDCl₃ of the total reaction mixture of **3MBF** oxidation using catalyst CAT I after passing through a small plug of alumina and evaporation at room temperature. The signals of compound **19** are marked in blue and the signals of compound **20** are marked in purple. Compound **20** (2'-hydroxyacetophenone) is observed in higher ratio towards the lactone **19** relatively to GC results in Table 1. This can be explained by higher volatility of the latter leading to it being partially removed during the drying process.

Figure S23. ¹H NMR spectrum of compound 20 in CDCl₃.

Figure S24. ¹H NMR spectrum in CDCl₃ of the total reaction mixture of **3MBF** oxidation using catalyst CAT **III** after passing through a small plug of alumina and evaporation at room temperature. In this condition, the compound **20** (2'-hydroxyacetophenone) is only detected in trace amounts but the lactone **19** is present in equilibrium with its enol form whose signals are marked with an asterisk.

Figure S25. Expansion of ¹H NMR spectrum (1.5 – 4 ppm) of the total reaction mixture of **3MBF** oxidation using catalyst CAT **III** (in previous Figure).