Metal-free enhanced photocatalytic activation of dioxygen by g-C₃N₄ doped with abundant oxygen-containing functional groups for selective N-deethylation of rhodamine B

Jia Huang ^{1,*}, Gang Nie¹, Yaobin Ding ^{2,*}

¹ School of Resources and Environmental Sciences, Wuhan University, Wuhan 430079, PR China ² College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, P.R. China

* Correspondence: jiahuang@whu.edu.cn (J. Huang); yaobinding@mail.scuec.edu.cn (Y. Ding).

Fig. S1 EDS and elemental composition of O-g-C₃N₄.

Fig. S2 EDS and elemental composition of g-C₃N₄.

Fig. S3 Photos of g-C₃N₄ and O-g-C₃N₄.

Fig. S4 RhB adsorption on surface of g-C₃N₄ and O-g-C₃N₄.

Fig. S5 Zeta potential of g-C₃N₄ and O-g-C₃N₄.

Fig. S6 Model for adsorption and stepwise N-deethylation process of RhB on O-g-C₃N₄ surface under visible light irradiation.

Catalyst	Preparation method	RhB degradation	Reference
Oxygen doping	g-C ₃ N ₄ +PMS	0.079 min ⁻¹	This work
		enhanced by 24.7 times	
Carbon doped	pyrolysis of melamine	$0.036 {\rm min^{-1}}$	[1]
Fe-doped	$g-C_3N_4+Fe^{3+}$	0.13 min^{-1}	[2]
		enhanced by 7 times	
Nitrogen-deficient	pyrolysis of (melamine+acetic	0.022 min^{-1}	[3]
	acid)	enhanced by 2.3 times	
Fe - Doped	pyrolysis	enhanced by 1.4 times	[4]
	of (melamine+NH ₄ Cl+FeCl ₃)		
Eu(III)-doped	pyrolysis of (Eu ₂ O ₃ + melamine)	6.03 times	[5]
Mn doped	pyrolysis of (MnCl ₂ + melamine)	0.013 min^{-1}	[6]
		enhanced by 30%	
P doped	pyrolysis of (g-C ₃ N ₄ +P)	0.066 min ⁻¹	[7]
		enhanced by 5.9 times	
P-doped	pyrolysis	enhanced by 3 times	[8]
	of (guanidiniumhydrochloride +		
	hexachlorocyclotriphosphazene)		

Table S1 Comparison on the doped g-C₃N₄ for RhB degradation.

References

[1] Dong, G., Zhao, K., Zhang, L. Carbon self-doping induced high electronic conductivity and photoreactivity of $g-C_3N_4$. *Chemical communications* 2012, 48, 6178-6180.

[2] Tonda, S., Kumar, S., Kandula, S., Shanker, V. Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. *Journal of Materials Chemistry A* 2014, 2, 6772-6780.

[3] Xu, C. Q., Li, K., Zhang, W. D. Enhancing visible light photocatalytic activity of nitrogen-deficient g-C₃N₄ via thermal polymerization of acetic acid-treated melamine. *Journal of colloid and interface science* 2017, 495, 27-36.

[4] Gao, J., Wang, Y., Zhou, S., Lin, W., Kong, Y. A facile one - step synthesis of

Fe-doped g-C₃N₄ nanosheets and their improved visible - light photocatalytic

performance. ChemCatChem 2017, 9, 1708-1715.

[5] Wang, M., Guo, P., Zhang, Y., Lv, C., Liu, T., Chai, T., Xie, Y., Zhu, T. Synthesis of hollow lantern-like Eu (III)-doped g-C₃N₄ with enhanced visible light photocatalytic perfomance for organic degradation. *Journal of hazardous materials* 2018, 349, 224-233.

[6] Wang, J. C., Cui, C. X., Li, Y., Liu, L., Zhang, Y. P., Shi, W. Porous Mn doped $g-C_3N_4$ photocatalysts for enhanced synergetic degradation under visible-light illumination. *Journal of hazardous materials* 2017, 339, 43-53.

[7] Feng, J., Zhang, D., Zhou, H., Pi, M., Wang, X., Chen, S. Coupling P nanostructures with P-doped $g-C_3N_4$ as efficient visible light photocatalysts for H2

evolution and RhB degradation. ACS Sustainable Chemistry & Engineering 2018, 6, 6342-6349.

[8] Zhou, Y., Zhang, L., Liu, J., Fan, X., Wang, B., Wang, M., Ren, W., Wang, J., Li, M., Shi, J. Brand new P-doped gC_3N_4 : enhanced photocatalytic activity for H_2 evolution and Rhodamine B degradation under visible light. *Journal of Materials Chemistry A* 2015,3, 3862-3867.