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Abstract: An effective and practical in situ sulfuration approach has been developed in this work, for
the fabrication of CuS with a 3D hierarchical network structure under mild preparation conditions.
The prepared CuS consists of a primary structure of the multi-structure interchange copper foam
precursor, and a secondary structure of nanoplates. The structural characteristics, morphologies,
and photocatalytic performances of the prepared photocatalyst were investigated systematically. To
evaluate the photocatalytic performance of the prepared CuS samples, we investigated the degradation
of MB (methylene blue), RhB (Rhodamine B), and MB/RhB dye solutions over the samples under the
irradiation of simulated solar light. Specifically, the degradation of RhB rapidly reached ≈100.0%
after simulated solar light irradiation for 25 min, which is higher than those of P25 (83.0%) and bulk
CuS (54.8%). For the mixed systems of MB/RhB, both the degradations of MB and RhB reached up to
≈99.0% after simulated solar light irradiation for 25 min. The superior photocatalytic performances of
the prepared samples are attributed to the synergistic effects of high optical absorption, large specific
surface area, and abundant active sites. The prepared catalysts can retain the photocatalytic activities
during the entire reaction process without significant loss after four catalytic cycles, which reveals
that the CuS with a stable 3D hierarchical network structure has a promising prospect as an ideal
recyclable catalyst.
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1. Introduction

Owing to the energy crisis and environmental pollution issues, photocatalytic treatment, one
of the most efficient, environmentally safe, and promising methods for eliminating organic and
harmful pollutants in water, has attracted considerable research interest. Sunlight is a non-polluting
and easy-to-access energy source, with great potential to drive environmentally friendly organic
transformations [1]. In particular, the irradiation of light is essential for the photocatalysis reaction,
involving the advanced oxidation process (AOP). AOP is based on hydroxyl radicals (OH·) produced
by the combination of catalysts and irradiation, sometimes together with oxidants, to convert organic
and harmful pollutants into small molecules (e.g., CO2, H2O) via Fenton, photo-Fenton reactions,
and photocatalysis [2,3]. In particular, for the photo-Fenton reactions, the H2O2 serves as an efficient
scavenger that can capture the photo-generated electrons to form more OH·; thus, a certain amount of
H2O2 is necessary. As one of the most well-known photocatalysts, TiO2 has been extensively used
for the efficient degradation of organic pollutants [4–7]. However, the wide bandgap of TiO2 enables
the absorption of ultraviolet light only, which considerably inhibits the generation of hydroxyl free
radicals that are critical in the oxidation of organic pollutants, resulting in relatively low efficiency in
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solar energy utilization [8–12]. Therefore, the development of photocatalysts with high hydroxyl free
radical generation rates is desirable for the enhancement of photocatalytic performance.

Various semiconductors with narrow bandgaps have been developed to improve the photocatalytic
efficiency [13–16]. Among them, copper sulfide (CuS), with a bandgap of ≈2.0 eV, has excellent optical
and electrical properties with a wide range of applications in photocatalysis [17–22], which is considered
as an attractive and important photocatalyst for dye degradation due to nontoxicity availability, and
stability under ambient conditions [23,24]. Previous studies have shown that different morphologies
of CuS can significantly impact their properties, as well as their potential applications. Compared
with bulk CuS, microstructure CuS displays improved photo-electric properties and catalytic activities,
enhanced electric conductivity, and capacitance owing to its small particle size and large specific
energy density [25]. Recently, 1D, 2D, and 3D CuS micro/nanostructures with various morphologies,
such as micro/nano-wire, sheet, and hierarchical structures have been fabricated. According to the
report, nanowires [26–28] and nanosheets [29–31] have been used as building blocks for manufacturing
micro/nanostructured materials with 3D hierarchical morphologies. On the basis of the 1D single
nanowire or 2D nanosheet structure, 3D hierarchical structure materials afford more ion transmission
paths and a stable structure, which have received increasing research attention because their 3D
hierarchical structure features a large surface area and abundant surface active sites [32,33]. Therefore,
research on the degradation of dye with 3D hierarchical structure CuS has attracted much attention.
Over decades of research, various protocols have been developed for the fabrication of CuS with
a 3D hierarchical structure, such as the sacrificial templating in the solvothermal process [34,35].
Nevertheless, the synthesis of 3D hierarchical structured materials through a one-step in situ heating
sulfuration method is seldom reported. In the process of heating sulfuration, the copper foam is
more effectively contacted with S to realize a one-step reaction. The heating sulfuration method is
simple, low-cost, and tractable. Consequently, a straightforward and efficient one-step in situ heating
sulfuration treatment is developed for the fabrication of CuS with a 3D hierarchical structure.

Herein, we prepared CuS with a 3D hierarchical network structure using a one-step in situ heating
sulfuration approach. To evaluate the photocatalytic performance of the prepared CuS, we investigated
the degradation of MB (methylene blue), RhB (Rhodamine B), and MB/RhB dye solutions under the
irradiation of simulated solar light.

2. Results

2.1. Characterizations

Figure 1a shows the XRD pattern of the prepared CuS, which demonstrates that all diffraction
peaks are in good agreement with the hexagonal CuS phase (JCPDS No. 06-0464) [20,36]. Characteristic
peaks of other phases were not detected, suggesting that the copper foam completely converted into
the highly pure CuS sample after the sulfuration reaction. The UV-vis spectrum of the prepared
CuS was provided. As can be seen from Figure 1b, CuS displays a prominent photoabsorption
ability, suggesting that it has the potential to be an efficient photocatalyst under simulated solar
light irradiation. The bandgap energy of CuS was found to be 1.58 eV by using the Tauc plot
approach [37,38]. The nitrogen adsorption-desorption isotherms of the prepared CuS are provided
in Figure S1 (Supplementary Material). The BET surface area of the prepared CuS (12.06 cm2 g−1)
was larger than those of other reported CuS microflowers (7.93 cm2 g−1), spheres (3.16 cm2 g−1),
and multiplates (6.94 cm2 g−1) [25], indicating that it can provide more active sites for reaction.
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Figure 1. (a) XRD pattern and (b) UV-vis spectra of the prepared CuS. 

The morphologies of the prepared samples were also analyzed by SEM and TEM. As can be seen 
from Figure 2a, after one-step in situ heating sulfuration, CuS samples grew on the copper foam and 
maintained the characteristic structure of the copper foam (the SEM image of the original copper 
foam is shown in Figure S2 in Supplementary material). Compared with Figure 2a, Figure 2b clearly 
shows that CuS nanoplates are formed on the copper foam to afford the 3D hierarchical CuS network 
structure, indicating that it can provide sufficient reaction active sites. As shown in the EDS spectrum 
of Figure 2c, the prepared samples only consisted of Cu and S elements. The atomic ratio of Cu to S 
in the copper sulfide was close to one. The HRTEM image in Figure 2d reveals that the lattice fringes 
of 0.30 nm can be attributed to the (102) lattice plane of CuS. To further confirm the chemical 
composition and the valence state on the surface of the sample, we conducted the XPS analysis.  

 
Figure 2. Characterization of CuS morphology: (a,b) SEM images in low and high magnification, (c) 
EDS results, (d) HRTEM image. 

As shown in Figure 3a, the binding energies of Cu 2p3/2 and Cu 2p1/2 peaks are at 932.1 and 952.1 
eV, respectively, which belong to Cu2+ in CuS [39–43]. In addition, two shakeup lines at 943.2 and 
963.6 eV were observed, corresponding to the satellite peaks of Cu2+ [42,43]. Furthermore, the 
symmetrical shapes of two Cu 2p XPS peaks also confirm the presence of pure CuS. The peaks at 
162.2 and 163.3 eV (Figure 3b) are characteristic of the S2−, which corresponds to S 2p3/2 and 2p1/2, 

Figure 1. (a) XRD pattern and (b) UV-vis spectra of the prepared CuS.

The morphologies of the prepared samples were also analyzed by SEM and TEM. As can be seen
from Figure 2a, after one-step in situ heating sulfuration, CuS samples grew on the copper foam and
maintained the characteristic structure of the copper foam (the SEM image of the original copper
foam is shown in Figure S2 in Supplementary Material). Compared with Figure 2a, Figure 2b clearly
shows that CuS nanoplates are formed on the copper foam to afford the 3D hierarchical CuS network
structure, indicating that it can provide sufficient reaction active sites. As shown in the EDS spectrum
of Figure 2c, the prepared samples only consisted of Cu and S elements. The atomic ratio of Cu to S in
the copper sulfide was close to one. The HRTEM image in Figure 2d reveals that the lattice fringes of
0.30 nm can be attributed to the (102) lattice plane of CuS. To further confirm the chemical composition
and the valence state on the surface of the sample, we conducted the XPS analysis.
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Figure 2. Characterization of CuS morphology: (a,b) SEM images in low and high magnification,
(c) EDS results, (d) HRTEM image.

As shown in Figure 3a, the binding energies of Cu 2p3/2 and Cu 2p1/2 peaks are at 932.1 and
952.1 eV, respectively, which belong to Cu2+ in CuS [39–43]. In addition, two shakeup lines at 943.2
and 963.6 eV were observed, corresponding to the satellite peaks of Cu2+ [42,43]. Furthermore,
the symmetrical shapes of two Cu 2p XPS peaks also confirm the presence of pure CuS. The peaks
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at 162.2 and 163.3 eV (Figure 3b) are characteristic of the S2−, which corresponds to S 2p3/2 and 2p1/2,
respectively [43]. In summary, these results demonstrate that the prepared sample is of pure CuS,
which is consistent with its XRD pattern.
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2.2. Photocatalytic Performance

To evaluate the photocatalytic performance of the prepared sample, we have investigated the
degradation of MB, RhB, and MB/RhB dye solutions over the samples under simulated solar light
irradiation. As shown in Figure 4a,b, it can be seen that the degradation of dye is negligible without
light or H2O2. When a small amount of H2O2 was added (without catalyst), the degradation efficiency
was slightly improved, possibly due to the photolysis of H2O2 triggered by incident light. Notably,
CuS was highly active when adding H2O2 (as shown in Figure S3a). As a result, the degradation of
RhB rapidly increased to ≈100.0% after simulated solar light irradiation for 25 min, which is higher
than those of P25 (83.0%) and bulk CuS (54.8%) under identical experimental conditions. In addition,
the degradation of MB rapidly increased to ≈100.0% after simulated solar light irradiation for 25 min,
which is also more effective than that of bulk CuS (as shown in Figure S3b). To further reveal the
photocatalytic efficiencies of samples, the kinetic rate constants were measured. As shown in Figure 4c,
the kinetic rate constants for degradation of RhB follow the order of: CuS + H2O2 (0.11 min−1) >

P25 + H2O2 (0.065 min−1) > bulk CuS + H2O2 (0.036 min−1) > No catalyst + H2O2 (0.0045 min−1) >

dark (0.0021 min−1) > CuS (0.0019 min−1), suggesting the high efficiency of the prepared CuS under
simulated solar light irradiation. Figure 4d is the kinetics of MB photocatalytic degradation over
different photocatalysts, based on the data plotted in Figure 4b. It is obvious that the prepared CuS
exhibits superior photocatalytic performance. For CuS + H2O2, as seen in Figure 4c,d, the relationships
between ln(C0/Ct) and irradiation time were not linear, as they were for the reaction systems maintained
at 30 ◦C, and the slopes seemed to increase gradually. The continuous increase in the temperature of
the reaction systems was most likely the cause of the observed phenomena, which are similar to those
reported in previous literature [44]. Furthermore, to better understand the photocatalytic activity of
CuS, a coexisted model system is simulated using MB and RhB under the same conditions, to degrade
the single dye solutions (0.05 g of photocatalyst, 40 mL of 10 mg L−1 MB/RhB, 40 µL of H2O2, pH 4,
30 ◦C.). As displayed in Figure 4e, it can be seen that, for the mixed systems of MB/RhB, both the
degradation of MB and RhB reached up to ≈99.0% after simulated solar light irradiation for 25 min.
This result indicates that the prepared CuS can not only degrade a single dye (e.g., MB, RhB), but
can also degrade the mixed systems including different kinds of dyes. The photocatalytic activities
of 3D hierarchical network structured CuS are also superior to those of other reported CuS catalysts,
as presented in Table 1. All these results further indicate that the 3D hierarchical network structured
CuS, with a high surface area, is an effective catalyst for the degradation of industrial wastewater. To
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confirm the mineralization degree of MB and RhB dyes, the TOC values were measured. In the process
of reaction, most of the MB and RhB can be mineralized (as shown in Table S1 in Supplementary
material), which indicates that the excellent photocatalytic activity of the CuS with a 3D hierarchical
network structure.
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Figure 4. (a) Photocatalytic degradation of RhB and (b) MB under different conditions; (c) kinetics of
RhB and (d) MB photocatalytic degradation over different catalysts; (e) simultaneous photocatalytic
degradation of MB and RhB over CuS under identical experimental conditions (Reaction conditions:
0.05 g of photocatalyst, 40 mL of 10 mg L−1 dye solutions, 40 µL of H2O2, pH 4, 25 min of reaction time,
30 ◦C.).
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Table 1. Photocatalytic activity data of different CuS catalysts for the degradation of different
organic dyes.

Photocatalysts Reaction Solution Time (min) Photodegradation
Degree (%) Reference

CuS spherical
nanoflowers 2.5 mg L−1 RhB + 1.5 mL H2O2 30.0 90.0 [45]

CuS hierarchical
microflowers

12.0 mg L−1 RhB + 1.5 mL H2O2
12.0 mg L−1 MB + 1.5 mL H2O2

55.0
45.0

95.0
94.2 [46]

CuS hierarchical
hollow microcubes 10.0 mg L−1 MB + 1.3 mL H2O2 30.0 95.9 [47]

3D hierarchical
CuS network

10.0 mg L−1 RhB + 40.0 µL H2O2
10.0 mg L−1 MB + 40.0 µL H2O2

25.0
25.0

≈100.0
≈100.0 This work

In addition, the cycling experiments were also conducted to investigate the photostability of
the CuS catalyst. As shown in Figure 5, the catalyst can retain catalytic activities during the entire
reaction process, without significant loss after four cycles. This result reveals that CuS with a stable
3D hierarchical network structure possesses a promising prospect as an ideal recyclable catalyst.
Furthermore, the XRD results indicate that the crystal structure of CuS hardly changes before and after
the catalytic reaction (see Figure 6).

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 10 

 

Table 1. Photocatalytic activity data of different CuS catalysts for the degradation of different organic 
dyes. 

Photocatalysts Reaction Solution Time 
(min) 

Photodegradation 
Degree (%) 

References 

CuS spherical 
nanoflowers 

2.5 mg L−1 RhB + 1.5 mL H2O2 30.0 90.0 [45] 

CuS hierarchical 
microflowers 

12.0 mg L−1 RhB + 1.5 mL H2O2 

12.0 mg L−1 MB + 1.5 mL H2O2 
55.0 
45.0 

95.0 
94.2 

[46] 

CuS hierarchical 
hollow microcubes 

10.0 mg L−1 MB + 1.3 mL H2O2 30.0 95.9 [47] 

3D hierarchical CuS 
network  

10.0 mg L−1 RhB + 40.0 μL H2O2 

10.0 mg L−1 MB + 40.0 μL H2O2 
25.0 
25.0 

≈100.0 
≈100.0 

This work 

In addition, the cycling experiments were also conducted to investigate the photostability of the 
CuS catalyst. As shown in Figure 5, the catalyst can retain catalytic activities during the entire reaction 
process, without significant loss after four cycles. This result reveals that CuS with a stable 3D 
hierarchical network structure possesses a promising prospect as an ideal recyclable catalyst. 
Furthermore, the XRD results indicate that the crystal structure of CuS hardly changes before and 
after the catalytic reaction (see Figure 6).  

 
Figure 5. Cycling test on CuS for the photocatalytic degradation of (a) MB, (b) RhB, and (c) MB/RhB 
under simulated solar light irradiation. 

. 

Figure 6. XRD patterns of the prepared CuS before and after the catalytic reaction. 

Based on these experimental results, we tentatively propose a plausible mechanism for 
photocatalytic degradation of organic dyes over CuS under simulated solar light irradiation, in Figure 
7. CuS with a 3D hierarchical structure has been demonstrated to be an efficient Fenton-like reagent 
[22]. When CuS is excited, the reaction of photo-generated electrons with H2O2 generates OH· [48], 
enabling the direct oxidation of adsorbed organic dyes by photo-generated holes [49]. Moreover, the 

Figure 5. Cycling test on CuS for the photocatalytic degradation of (a) MB, (b) RhB, and (c) MB/RhB
under simulated solar light irradiation.

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 10 

 

Table 1. Photocatalytic activity data of different CuS catalysts for the degradation of different organic 
dyes. 

Photocatalysts Reaction Solution Time 
(min) 

Photodegradation 
Degree (%) 

References 

CuS spherical 
nanoflowers 

2.5 mg L−1 RhB + 1.5 mL H2O2 30.0 90.0 [45] 

CuS hierarchical 
microflowers 

12.0 mg L−1 RhB + 1.5 mL H2O2 

12.0 mg L−1 MB + 1.5 mL H2O2 
55.0 
45.0 

95.0 
94.2 

[46] 

CuS hierarchical 
hollow microcubes 

10.0 mg L−1 MB + 1.3 mL H2O2 30.0 95.9 [47] 

3D hierarchical CuS 
network  

10.0 mg L−1 RhB + 40.0 μL H2O2 

10.0 mg L−1 MB + 40.0 μL H2O2 
25.0 
25.0 

≈100.0 
≈100.0 

This work 

In addition, the cycling experiments were also conducted to investigate the photostability of the 
CuS catalyst. As shown in Figure 5, the catalyst can retain catalytic activities during the entire reaction 
process, without significant loss after four cycles. This result reveals that CuS with a stable 3D 
hierarchical network structure possesses a promising prospect as an ideal recyclable catalyst. 
Furthermore, the XRD results indicate that the crystal structure of CuS hardly changes before and 
after the catalytic reaction (see Figure 6).  

 
Figure 5. Cycling test on CuS for the photocatalytic degradation of (a) MB, (b) RhB, and (c) MB/RhB 
under simulated solar light irradiation. 

. 

Figure 6. XRD patterns of the prepared CuS before and after the catalytic reaction. 

Based on these experimental results, we tentatively propose a plausible mechanism for 
photocatalytic degradation of organic dyes over CuS under simulated solar light irradiation, in Figure 
7. CuS with a 3D hierarchical structure has been demonstrated to be an efficient Fenton-like reagent 
[22]. When CuS is excited, the reaction of photo-generated electrons with H2O2 generates OH· [48], 
enabling the direct oxidation of adsorbed organic dyes by photo-generated holes [49]. Moreover, the 

Figure 6. XRD patterns of the prepared CuS before and after the catalytic reaction.

Based on these experimental results, we tentatively propose a plausible mechanism for
photocatalytic degradation of organic dyes over CuS under simulated solar light irradiation, in Figure 7.
CuS with a 3D hierarchical structure has been demonstrated to be an efficient Fenton-like reagent [22].
When CuS is excited, the reaction of photo-generated electrons with H2O2 generates OH· [48], enabling
the direct oxidation of adsorbed organic dyes by photo-generated holes [49]. Moreover, the 3D
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hierarchical network structure of CuS favors the transmission of photo-generated electrons, which,
in turn, facilitates the separation of the charge-carrier. Furthermore, the large surface area of a 3D
hierarchical network structure of CuS might generate abundant catalytic sites because of improved
contact and interaction between reactants and active sites. Therefore, the generation of abundant
photo-generated holes and OH· radicals is ascribed to the synergistic effects of the above-mentioned
processes, which considerably improves the degradation efficiency of the CuS catalyst with a 3D
hierarchical network structure.
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3. Materials and Methods

3.1. Materials

All materials and chemicals in this study were used directly without additional purification.
Deionized water was acquired from local sources.

3.2. Preparation of 3D Hierarchical CuS Catalysts

The preparation of 3D hierarchical CuS catalysts was carried out via one-step heating sulfuration.
Copper foam (1 cm × 1 cm, 1.5 mmol) and sulfur powder (3.0 mmol) were heated at 400 ◦C under N2

atmosphere for 5 h to yield the 3D hierarchical CuS catalyst.

3.3. Characterization

X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance X-ray powder
diffractometer (Karlsruhe, Germany) using Ni-filtered Cu Kα radiation. The whole solid was used
for the XRD measurement. The optical property of the sample was determined using a UV−vis
spectrophotometer (Perkin Elmer, Fremont, CA, USA). The Brunauer–Emmett–Teller (BET) surface
areas and pore sizes of CuS samples were determined on the basis of nitrogen adsorption-desorption
isotherms (Micromeritics Company, Norcross, GA, USA). X-ray photoelectron spectroscopy (XPS)
measurements (Thermo Fisher Scientific, Waltham, MA, USA) were measured on an ESCALAB 250
photoelectron spectroscope, with a monochromatic Al Kα source. The powder samples were used for
the characterization measurements. The morphologies of the obtained samples were taken on a ZEISS
SIGMA field emission scanning electron microscope (SEM) (Carl Zeiss Ltd., Welwyn Garden City, UK).
Transmission electron microscopy (TEM) images were obtained using a FEI Tecnai G2 F30 electron
microscope (FEI Company, Hillsboro, OR, USA). The total organic carbon (TOC) values were measured
using a TOC-2000 apparatus (Shanghai, China).
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3.4. Evaluation of Photocatalytic Activity

To assess the photocatalytic performance of the catalysts, MB and RhB were used as the model
organic dyes. Typically, the photocatalytic activity studies were conducted at 30 ◦C in a 100 mL quartz
reactor (Beijing, China) containing a prepared CuS sample and a dye solution (10 mg L−1, 40 mL) with
one of the dyes: MB, RhB, or MB/RhB (a mixed solution of MB and RhB). H2SO4 (2 mol/L) was used to
adjust the pH value of the reaction solution to pH = 4. After adding 40 µL of H2O2, the reaction mixture
was slowly stirred in the dark for 1h to achieve the adsorption-desorption equilibrium. The suspension
was then irradiated with a Xe lamp of 300 W (PLS-SXE 300, Beijing Perfect Light Co. Ltd., Beijing,
China). During the reaction, about 3 mL of solution was taken out at an interval, and immediately
used for the determination of the dye solution’s concentration by using a UV-Vis spectrophotometer
(Perkin Elmer, Fremont, CA, USA). When the reaction was complete, the collected sample was washed
with water and ethanol successively several times. After it was thoroughly dried, the prepared sample
was ready for use.

4. Conclusions

In summary, a simple, facile, and one-step in situ heating sulfuration strategy was developed to
prepare the CuS photocatalyst with a 3D hierarchical network structure. The prepared CuS exhibits
excellent photocatalytic and recyclable performance for the degradation of MB, RhB, and MB/RhB dye
solutions under simulated solar light irradiation. According to the results of this study, the excellent
photocatalytic performance of fabricated CuS was attributed to its large surface area and abundant
active sites. This work affords a novel and convenient method for the fabrication of CuS with a 3D
hierarchical structure under mild conditions, as a highly efficient and recyclable photocatalyst.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/1/40/s1,
Figure S1: N2 adsorption-desorption isotherm and pore size (inset) of the as-prepared CuS, Figure S2: SEM image
of the copper foam, Figure S3: (a) Control experiments for the degradation of RhB under different conditions;
(b) Control experiments for the degradation of MB and RhB under different conditions, Table S1: Removal rate of
TOC with the as-prepared CuS.
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