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Abstract: Ni nanoparticles encapsulated within La2O3 porous system (Ni@La2O3), the latter supported
on SiO2 (Ni@La2O3)/SiO2), effectively inhibit carbon deposition for the dry reforming of methane.
In this study, Ni@La2O3/SiO2 catalyst was prepared using a one-pot colloidal solution combustion
method. Catalyst characterization demonstrates that the amorphous La2O3 layer was coated on SiO2,
and small Ni nanoparticles were encapsulated within the layer of amorphous La2O3. During 50 h of
dry reforming of methane at 700 ◦C and using a weight hourly space velocity (WHSV) of 120,000 mL
gcat

−1 h−1, the CH4 conversion obtained was maintained at 80%, which is near the equilibrium value,
while that of impregnated Ni–La2O3/SiO2 catalyst decreased from 63% to 49%. The Ni@La2O3/SiO2

catalyst exhibited very good resistance to carbon deposition, and only 1.6 wt% carbon was formed
on the Ni@La2O3/SiO2 catalyst after 50 h of reaction, far lower than that of 11.5 wt% deposited on
the Ni–La2O3/SiO2 catalyst. This was mainly attributed to the encapsulated Ni nanoparticles in the
amorphous La2O3 layer. In addition, after reaction at 700 ◦C for 80 h with a high WHSV of 600,000
mL gcat

−1 h−1, the Ni@La2O3/SiO2 catalyst exhibited high CH4 conversion rate, ca. 10.10 mmol gNi
−1

s−1. These findings outline a simple synthesis method to prepare supported encapsulated Ni within
a metal oxide porous structure catalyst for the dry reforming of methane reaction.

Keywords: Ni; La2O3; colloidal solution combustion; dry reforming of methane; carbon deposition

1. Introduction

Dry reforming of methane (DRM) is a promising process, as it can simultaneously convert CO2

and CH4 present in CO2-rich natural gas reservoirs to produce syngas. The latter serves as the raw
material to produce liquid fuels through gas-to-liquid technology (via Fischer–Tropsch synthesis) [1].
Due to the strong endothermic nature of the DRM reaction, most of previous studies were conducted at
temperatures higher than 600 ◦C for high conversions of CO2 and CH4. Therefore, developing a robust
catalyst that possesses good stability and excellent resistance to coke plays a crucial role in the DRM
reaction [2–4].

CO2 + CH4 ↔ 2CO + 2H2, ∆H298 K = +247 kJ mol−1 (1)
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Many catalysts have been investigated for the DRM reaction. As a result, precious-metals-based
catalysts, for instance, Ru, Rh, Pd, Ir, Pt, etc., exhibited good catalytic activity and stability. However,
the disadvantage of using noble-metals-based catalysts is their high cost [5–7]. Ni-based catalysts, due to
good catalytic activity and low cost, have been widely investigated for the DRM reaction [8–10]. However,
Ni-based catalysts are prone to carbon deposition and metal sintering during DRM [11,12]. Designing
a DRM catalyst that resists against carbon deposition and metal sintering could be accomplished
by making appropriate choice of support, promoter, structure, and methods of preparation [2–4].
Because oxygen species in the CeO2 lattice can effectively lower carbon accumulation by oxidation
of accumulated carbon, various Ni/CeO2 compositions were extensively studied to prevent carbon
deposition [13–16]. In addition, small metallic Ni nanoparticles more effectively inhibit the nucleation
and growth of coke, thereby restraining coke deposition on the catalyst [17,18]. Ni particles, smaller than
5 nm, can effectively reduce carbon deposition [15,18–21]. Small Ni particles also have poor thermal
stability, especially at high reaction temperatures. Encapsulated Ni-based catalysts [22–27], such as
core-shell Ni@SiO2 [28–30], were used to suppress carbon deposition and enhance the stability of small
Ni particles in the DRM reaction. Sandwiched SiO2@Ni@CeO2 [31] and SiO2@Ni@ZrO2 [32] catalysts
were applied for the DRM, exhibiting high catalytic activity and excellent coke resistance. However,
encapsulated catalysts usually require complex preparation processes. The development of a simple
method for preparing encapsulated Ni-based catalyst is thus required.

As La2O3 can promote CO2 adsorption and activation [33]; Ni/La2O3 [34,35] and La2O3 promoted
Ni-based catalysts [36–39] have shown excellent activity in the DRM reaction. However, due to the
low specific surface area of La2O3, the main problem with Ni/La2O3 catalysts is the poor dispersion
of Ni [40,41], leading to carbon deposition on Ni/La2O3 catalysts [40,41]. Li et al. [42] reported
ordered mesoporous Ni/La2O3 catalysts with large specific surface area for DRM, and the experimental
result indicated that the increased interface between Ni and La2O3 is beneficial for suppressing
carbon deposition.

A colloidal solution combustion method has been reported to prepared mesoporous CeO2 [43].
In this study, a novel Ni@La2O3/SiO2 catalyst was prepared via one-pot synthesis using the colloidal
solution combustion method. For the Ni@La2O3/SiO2 catalyst, small Ni particles were encapsulated
within an amorphous La2O3 layer and supported on SiO2. The prepared Ni@La2O3/SiO2 catalyst has
an abundant interface between Ni and La2O3, which was more active and stable compared to the
Ni–La2O3/SiO2 catalyst prepared using the standard impregnation method.

2. Results and Discussion

2.1. Characterization of Fresh and Reduced Catalysts

The N2 adsorption results of the Ni@La2O3/SiO2 and Ni–La2O3/SiO2 catalysts are listed in Table 1.
The specific surface area (SBET) of the Ni@La2O3/SiO2 is 19.0 m2 g−1, which is smaller than that of
the Ni–La2O3/SiO2 catalyst. The pore volume and average pore size of Ni@La2O3/SiO2 catalyst are
0.21 cm3 g−1 and 43.9 nm, respectively, which are larger than those of Ni–La2O3/SiO2 catalyst.

It is noted that the Ni@La2O3/SiO2 catalyst has a significantly lower specific surface area compared
with the recently reported mesoporous Ni–La2O3 (172 m2.g−1) [42] and Ni–La2O3/SiO2 (190 m2

g−1) [38] catalysts for DRM. In our previous report [43], mesoporous Ni–La2O3 (70.4 m2 g−1) had
been synthesized by the same colloidal solution combustion method with colloidal SiO2 as a template,
and the silica was then removed by NaOH etching to form mesopores. Compared with our previously
reported mesoporous Ni–La2O3 catalysts, the Ni@La2O3/SiO2 catalyst may be more suitable for
high-temperature reactions due to the use of silica as support of La2O3 and Ni.
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Table 1. Physical properties of Ni@La2O3/SiO2 and Ni–La2O3/SiO2.

Samples SBET
(m2 g−1)

Pore Volume
(cm3 g−1)

Average Pore
Size (nm)

dNiO
a (nm) dNi

b (nm)

By XRD c By TEM d By XRD c By TEM d

Ni@La2O3/SiO2 19.0 0.21 43.9 N. D. e N. D. e N. D. e 3.5 (5)

Ni–La2O3/SiO2 24.1 0.17 28.6 8.6 7.8 16.4 (44.6) (26.7)
a NiO size in the fresh catalyst. b Ni size in the reduced and used catalysts. Data in brackets correspond to the
Ni size of used catalyst. c Crystallite size determined by XRD using the Scherrer equation. d Mean particle size
determined by TEM images analysis. e The particle in TEM image was too small to be observed, or the peak in XRD
pattern was too weak to be used for calculations.

Figure 1 shows the powder XRD patterns of the fresh and reduced catalysts. For the fresh
Ni–La2O3/SiO2, the peaks at 2θ = 37.2◦, 43.3◦, and 62.9◦ are attributed to NiO [44,45]. The reduced
Ni–La2O3/SiO2 showed weak Ni peaks at 44.5◦ and 51.7◦ [44,45]. As shown in Table 1, the crystallite
size of Ni in reduced Ni–La2O3/SiO2 is 16.4 nm, which is about twice that of NiO in fresh Ni–La2O3/SiO2.
This indicates that NiO in the fresh Ni–La2O3/SiO2 catalyst is unstable during the reduction process
and sintering. In contrast, there are no obviously NiO peaks found in fresh Ni@La2O3/SiO2 catalyst,
and a broad Ni peak at 44.5◦ is found in reduced Ni@La2O3/SiO2 catalyst. This indicates that Ni
particle size in the reduced Ni@La2O3/SiO2 catalyst is smaller than that in the reduced Ni–La2O3/SiO2

catalyst. It should be noted here that no La2O3 peak was found in any catalyst. This might be due to the
very small La2O3 crystals formed not able to detect by XRD, or that the La2O3 was in the amorphous
phase [37]. The results indicate that La2O3 was highly dispersed or amorphous in these catalytic
systems. Similar results were reported in the literature [38]. The morphology of La2O3 (small particle
or amorphous phase) needs to be further confirmed by TEM analysis.
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Figure 1. XRD patterns of Ni@La2O3/SiO2 and Ni–La2O3/SiO2 solid catalysts. Reduced catalysts were 

treated with 20% H2/Ar at 700 °C for 1.5 h before XRD analysis. 

The TEM images of the fresh and reduced catalysts are shown in Figure 2. For the fresh Ni–

La2O3/SiO2 catalyst, dark aggregated NiO particles and SiO2 particles ~ 20 nm with a smooth surface 

are shown in Figure 2a, indicating that most of NiO was not loaded onto SiO2 supported but 

aggregated instead. The particle size distribution of NiO is displayed in the inset of Figure 2a. The 

representative high-resolution TEM images in Figure 2b show lattice fringes corresponding to La2O3 

and NiO, thus illustrating the formation of NiO and La2O3 in the fresh Ni–La2O3/SiO2 catalyst. 

Figure 1. XRD patterns of Ni@La2O3/SiO2 and Ni–La2O3/SiO2 solid catalysts. Reduced catalysts were
treated with 20% H2/Ar at 700 ◦C for 1.5 h before XRD analysis.

The TEM images of the fresh and reduced catalysts are shown in Figure 2. For the fresh
Ni–La2O3/SiO2 catalyst, dark aggregated NiO particles and SiO2 particles~20 nm with a smooth
surface are shown in Figure 2a, indicating that most of NiO was not loaded onto SiO2 supported
but aggregated instead. The particle size distribution of NiO is displayed in the inset of Figure 2a.
The representative high-resolution TEM images in Figure 2b show lattice fringes corresponding to
La2O3 and NiO, thus illustrating the formation of NiO and La2O3 in the fresh Ni–La2O3/SiO2 catalyst.
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Figure 2. TEM images of Ni@La2O3/SiO2 and Ni–La2O3/SiO2 catalysts: (a,b) fresh Ni–La2O3/SiO2,
(c,d) fresh Ni@La2O3/SiO2, and (e,f) reduced Ni@La2O3/SiO2.

Figure 2c,d show TEM images of the fresh Ni@La2O3/SiO2 catalyst. SiO2 nanospheres are coated
with a layer of amorphous La2O3, and there are no NiO particles observed, indicating that small NiO
particles are highly dispersed on the La2O3 coating. A TEM image of the reduced Ni@La2O3/SiO2

catalyst is shown in Figure 2e. As observed, SiO2 is coated with an amorphous La2O3 layer, on which
metallic Ni particles are encapsulated within the amorphous La2O3 layer. An average Ni particle size
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about 3.5 nm was obtained by counting more than 100 Ni particles as shown in Figure 2f. This result
is consistent with our previous report of mesoporous Ni–La2O3 prepared via colloidal solution
combustion method [44].

Combined with TEM and SBET results, it can be concluded that the lower SBET of Ni@La2O3/SiO2

may be due to the fact that the surface of SiO2 nanoparticles was covered with La2O3 and NiO. On the
contrary, the SiO2 nanoparticles in the Ni@La2O3/SiO2 catalyst structure may not be completely covered
by La2O3 and NiO, and the exposed SiO2 surface resulted in a slightly larger SBET.

The BF-STEM images and the element distribution profiles of Si, La, and Ni are shown in Figure 3.
SiO2 is surrounded by La2O3 and Ni nanoparticles. The signal of Ni is accompanied by the existence of
La, but the signal of La is not necessarily accompanied by Ni, indicating that the nickel is encapsulated
by La2O3. The signal of La2O3 is distributed around the signal of silica, indicating that SiO2 is
encapsulated by La2O3. The Ni particles are encapsulated by amorphous La2O3 and wrapped on silica.
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The H2-TPR profiles of the catalysts are shown in Figure 4. The Ni–La2O3/SiO2 catalyst exhibits
two reduction peaks. The first peak at 340 ◦C corresponds to the reduction of free NiO [21,39,46].
The second peak at 385 ◦C corresponds to the reduction of NiO with weak interaction with La2O3 or
SiO2 [40,42,47,48]. These results indicate that NiO is weakly interacting or not interacting at all with
La2O3 or SiO2 in the Ni–La2O3/SiO2 catalyst.

The Ni@La2O3/SiO2 catalyst displays a broad reduction peak at 615 ◦C, suggesting that Ni-based
species have a strong interaction with the support [42,49]. Li et al. [42] found that the small NiO
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particle confined into mesoporous La2O3 strongly interacts with La2O3 support, resulting in a high
reduction temperature for NiO. Also, the Ni@La2O3/SiO2 catalyst, which possesses the encapsulated
structure of metal Ni by La2O3 layer on SiO2 (in Figure 3a), exhibits high reduction temperatures.
Thus, the high reduction temperature at 615 ◦C is due to the reduction of NiO, which presents strong
interactions with the encapsulated La2O3 layer.
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Figure 4. H2-TPR traces of Ni@La2O3/SiO2 and Ni–La2O3/SiO2 catalysts.

2.2. Catalytic Performance Studies

Figure 5 shows results of the catalytic performance tests conducted over the Ni@La2O3/SiO2

and Ni–La2O3/SiO2 catalysts in the DRM at 700 ◦C with a weight hourly space velocity (WHSV) of
120,000 mL g−1 h−1 and after 50 h of reaction. At 700 ◦C, the thermodynamic equilibrium conversion
of CO2 and CH4 were 90.2% and 84.4%, respectively. It should be noted that this thermodynamic
equilibrium consists of the DRM reaction and reverse water-gas shift reaction (RWGS: CO2 + H2

↔ CO + H2O). As shown in Figure 5a, the CO2 conversion on the Ni@La2O3/SiO2 catalyst is 90%
and reached the equilibrium conversion. The CO2 conversion in the two catalysts are higher than
the CH4 conversion, a result which is mainly due to the RWGS reaction [31]. The Ni@La2O3/SiO2

catalyst exhibits stable CO2 and CH4 conversions during the DRM reaction period of 50 h. In contrast,
the CO2 and CH4 conversions of the Ni–La2O3/SiO2 catalyst decrease from 75% to 62% and from 63%
to 49%, within 50 h, respectively. Therefore, the Ni@La2O3/SiO2 catalyst has better activity and stability
behavior than the Ni–La2O3/SiO2 catalyst during DRM.

As shown in Figure 5b, the H2/CO ratio is lower than one for both catalysts. This result is mainly
due to the RWGS reaction and to a less degree to other side reactions [31], such as the reverse Boudouard
reaction (C + CO2↔ 2 CO) [49]. The CO and H2 yields are shown in Figure 5c,d, respectively. For each
catalyst, the CO yield is higher than the H2 yield. Comparing the two catalysts, the Ni@La2O3/SiO2

catalyst exhibits higher H2 and CO yields than the Ni–La2O3/SiO2 catalyst.
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Figure 6. Effect of space velocity on the catalytic performance of Ni@La2O3/SiO2 catalyst. Reaction 
conditions: P = 1 atm, CH4/CO2/Ar = 15/15/70 (vol%), T = 700 °C. 

As shown in Figure 6a, in the 120,000–300,000 mL g−1 h−1 range, the CO2 and CH4 conversions 
obviously remain constant. When the WHSV increased to 600,000 mL g−1 h−1, the conversions start to 
decrease slightly, but the CH4 conversion is still higher than 70%, suggesting the very good activity 
of the catalyst. In particular, when the WHSV is increased to 1,200,000 mL g−1 h−1, the conversions of 
CH4 and CO2 are decreased to 51.7% and 65.7%. Accordingly, the CO and H2 yields show the same 

Figure 5. Stability tests performed over the Ni@La2O3/SiO2 and Ni–La2O3/SiO2 catalysts in the dry
reforming of methane (DRM). (a) CO2 and CH4 conversions, (b) H2/CO ratio, (c) CO yield, and (d) H2

yield. Reaction conditions: Total P = 1 atm, CH4/CO2/Ar = 15/15/70 (vol%), T = 700 ◦C, weight hourly
space velocity (WHSV) = 120,000 mL g−1 h−1.

No sign of deactivation was observed for the Ni@La2O3/SiO2 catalyst with a WHSV of 120,000 mL
g−1 h−1, as shown in Figure 5, and Figure 6 illustrates the effect of WHSV on the catalytic performance
of the Ni@La2O3/SiO2 catalyst in the range of 120,000 to 1,200,000 mL g−1 h−1.
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Figure 6. Effect of space velocity on the catalytic performance of Ni@La2O3/SiO2 catalyst. Reaction
conditions: P = 1 atm, CH4/CO2/Ar = 15/15/70 (vol%), T = 700 ◦C.

As shown in Figure 6a, in the 120,000–300,000 mL g−1 h−1 range, the CO2 and CH4 conversions
obviously remain constant. When the WHSV increased to 600,000 mL g−1 h−1, the conversions start to
decrease slightly, but the CH4 conversion is still higher than 70%, suggesting the very good activity of
the catalyst. In particular, when the WHSV is increased to 1,200,000 mL g−1 h−1, the conversions of
CH4 and CO2 are decreased to 51.7% and 65.7%. Accordingly, the CO and H2 yields show the same
trend, which are decreased significantly when the WHSV becomes larger than 600,000 mL g−1 h−1.
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This behavior with WHSV is largely related to external mass transport effects established within the
catalytic bed.

Figure 7 shows results of the stability test of Ni@La2O3/SiO2 catalyst conducted at a high WHSV
of 600,000 mL g−1 h−1. Although the CH4 and CO2 conversions are slightly decreased over 80 h of
reaction, the CH4 conversion is still as high as 65% after reaction, indicating the very good activity and
stability of the Ni@La2O3/SiO2 catalyst.
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Figure 7. Stability test conducted over the Ni@La2O3/SiO2 catalyst for 80 h at high space velocity.
Reaction conditions: P = 1 atm, CH4/CO2/Ar = 15/15/70 (vol%), T = 700 ◦C, WHSV = 600,000 mL g−1 h−1.

Table 2 lists the methane conversion rates obtained over Ni@La2O3/SiO2 and some representative
Ni-based catalysts reported in the literature. As listed in Table 2, the CH4 conversion rate of
Ni@La2O3/SiO2 catalyst is five times higher than that of Ni–La2O3/SiO2 catalyst. Although the
literature in Table 2 is limited, it appears that the Ni@La2O3/SiO2 catalyst has a significantly better
methane conversion rate and coke resistance in the DRM reaction at the conditions applied.

Table 2. Methane conversion and carbon deposition rates of Ni@La2O3/SiO2, Ni–La2O3/SiO2,
and recently reported catalysts for the DRM reaction at 700 ◦C.

Ni (wt %) WHSV
(mL gcat−1 h−1) XCH4 (%) CH4 Conversion Rate

mmol CH4 gNi−1 s−1
Carbon Deposition Rates

mg C gNi−1 h−1 Ref.

Ni@La2O3/SiO2 6.3 1,200,000 35 12.40 a / This Work
Ni@La2O3/SiO2 6.3 600,000 61 10.10 b 0.33 d This Work
Ni–La2O3/SiO2 6.3 120,000 49 1.74 c 2.60 This Work
Ni/La2O3-LOC 5.7 300,000 23.6 2.31 2.30 [40]
SiO2@Ni@ZrO2 8.9 180,000 43.1 3.60 Not detected [32]
Ni/CeO2-SiO2 5 48,000 78.5 2.34 / [14]

Ni@SiO2 3.6 18,000 75 2.33 / [28]
Ni/LaZrxOy 12.7 60,000 55 0.64 0.56 [51]

a The rate was calculated after reaction for 30 h. b The rate was calculated after reaction for 80 h. c The rate was
calculated after reaction for 50 h. d WHSV = 120,000 mL gcat

−1 h−1.

2.3. Characterization of Used Catalysts

To measure the amount of deposited carbon on the used catalysts, TG and DTA tests were
conducted, and the obtained results are shown in Figure 8a,b. For the used Ni–La2O3/SiO2 catalyst,
the weight loss is 11.5 wt% in the range 500–700 ◦C, and the DTA exhibits an obvious exothermic peak
due to the oxidation of deposited carbon. The weight loss of the used Ni@La2O3/SiO2 catalyst was only
1.6 wt% over 50 h in DRM, which is significantly lower than that obtained in the used Ni–La2O3/SiO2

catalyst (11.5 wt% carbon deposition). These results indicate that Ni@La2O3/SiO2 catalyst has a very
good resistance to carbon deposition.
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Figure 8. (a) thermogravimetric (TG) and (b) differential thermal analysis (DTA) curves of the used 
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Figure 8. (a) thermogravimetric (TG) and (b) differential thermal analysis (DTA) curves of the used
Ni@La2O3/SiO2 and Ni–La2O3/SiO2 catalysts after 50 h of DRM at 700 ◦C with a WHSV of 120,000 mL
g−1 h−1.

The reason for the very good resistance to carbon deposition for the aforementioned catalyst might
be partly due to the formed La2O3 layer, within which the Ni metallic active sites are well dispersed
and less prone to carbon accumulation. As recently reported [52], the Ce0.8Pr0.2O2-δ- supported Ni
catalyst prepared by the citrate sol-gel method, due to the presence of mobile active oxygen species
in the Ce0.8Pr0.2O2-δ support, largely participates in the carbon removal via gasification to CO(g).
Moreover, Ni particles smaller in size can reduce carbon accumulation [53]. Therefore, the good carbon
resistance exhibited by Ni@La2O3/SiO2 catalyst seems to be largely related to the smaller nickel particle
size and the presence of La2O3 coating layer on the Ni particles.

Based on the weight loss range of temperatures ca. 480–730 ◦C along the exothermic peak,
the carbon deposited is composed of whisker carbon and encapsulated graphitic carbon. It should
be noted that the encapsulated graphitic carbon is usually responsible for catalyst deactivation [54].
However, the whisker carbon, which possesses hollow structure, has little effect on the active sites of
metallic Ni, and therefore is not the main reason for catalyst deactivation.

Figure 9 shows the XRD patterns of the used catalysts. After a 50 h DRM reaction, the used
Ni–La2O3/SiO2 catalyst shows an obvious graphitic peak (2θ = 26.5◦) [31] and Ni peaks (2θ = 44.5◦ and
51.8◦) as well. As shown in Table 1, the crystallite size of Ni in the used catalyst increased to 44.6 nm,
indicating that Ni particles in the Ni–La2O3/SiO2 catalyst are not stable during the DRM reaction,
and large Ni particles and carbon deposition are formed during reaction. The weak Ni diffraction
peaks found in the used Ni@La2O3/SiO2 catalyst indicate that Ni particles become smaller after DRM
for 50 h. These results indicate that Ni particles in the Ni@La2O3/SiO2 catalyst are more stable than in
Ni@La2O3/SiO2 catalyst. In addition, no obvious diffraction peak of graphitic carbon is observed in the
used Ni@La2O3/SiO2 catalyst. As proved by the TG-DTA analysis, the amount of carbon deposition
(1.6 wt%) is rather small to be detected by powder XRD.
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Figure 9. XRD patterns of the used Ni@La2O3/SiO2 and Ni–La2O3/SiO2 catalysts after 50 h of DRM at
700 ◦C with a WHSV of 120,000 mL g−1 h−1.

TEM images of the used catalysts are shown in Figure 10. No whisker carbon was found in
the used Ni@La2O3/SiO2 (Figure 10a,b). The Ni mean particle size is about 5 nm, which is slightly
larger than that in the reduced Ni@La2O3/SiO2, indicating that the small Ni particles encapsulated
into the amorphous La2O3 layer are thermally stable and largely contribute to the inhibition of
carbon deposition.

As shown in Figure 10, accessible nickel particles (without encapsulation) favor the formation of
carbon. Carbon nanofibers and encapsulated graphitic carbon were formed over the used Ni–La2O3/SiO2

catalyst. Methane decomposes on the nickel surface forming atomic hydrogen and carbon, the latter
diffusing to free surface sites on the nickel particle to form graphitic carbon (the graphitic carbon peak
is precisely seen in Figure 9) [55,56]. As shown in Figure 10c, Ni particles in the used Ni–La2O3/SiO2

catalyst are in the 10–50 nm range, which is much wider than that found in the used Ni@La2O3/SiO2

catalyst. These results are consistent with the TG and XRD results of the used catalysts. It is mentioned
here that deposited carbon can plug the reactor and reduce the lifetime of the catalyst as well. However,
in general, the formation of carbon nanofibers does not decrease the exposed Ni surface area of the
catalyst, thereby maintaining stable catalytic activity. Ni sintering and the formation of encapsulated
carbon can reduce the exposed Ni surface area and thus result in catalyst deactivation.

Based on the Ni@La2O3/SiO2 catalyst structure features, it is reasonable to propose that its
excellent activity, stability, and high resistance to carbon deposition are much related to the small Ni
particles encapsulated within the amorphous La2O3 layer deposited on SiO2. Chen et al. [38] has
prepared Ni–La2O3/SiO2 via one-pot sol-gel method with large specific surface area (190 m2 g−1),
which exhibited high activity and excellent stability for DRM at 700 °C. However, the rate of deposited
carbon on Ni–La2O3/SiO2 was 5.9 mg C gcat

−1 h−1, which is much higher than that found in the present
Ni@La2O3/SiO2 catalyst (0.32 mg C gcat

−1 h−1). Although the BET surface area of the Ni@La2O3/SiO2

catalyst is relatively low, the amorphous La2O3 layer can encapsulate and stabilize the small nickel
particles formed, thus resulting in an active and stable Ni@La2O3/SiO2 catalyst. Based on the XRD,
TEM, and TPR results, it can be concluded that the formed Ni@La2O3/SiO2 catalyst structure cannot
only stabilize small nickel particles and reduce carbon accumulation, but also provides more interface
between Ni and La2O3. The latter can promote CO2 activation on oxygen vacant sites and on highly
basic nature oxygen sites (lanthana oxycarbonates), which was found to be beneficial for inhibiting
carbon deposition and enhancing catalytic performance [42,57].
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Figure 10. TEM images of the used (a,b) Ni@La2O3/SiO2 and (c,d) Ni–La2O3/SiO2 catalysts after 50 h
of DRM at 700 ◦C with a WHSV of 120,000 mL g−1 h−1.

Even though the encapsulation of nanometal particles in core-shell or yolk-shell structures for
stabilizing nanometal particles and inhibiting carbon deposition for high-temperature reactions have
been reported in the literature, encapsulated metal catalyst using an inert shell, such as SiO2, can always
result in lower activity due to the blockage of active sites [58]. There is still research demand to develop
a simple method for preparing encapsulated metal catalysts with high activity. In this work, a simple
colloidal solution combustion method was used to prepare a Ni@La2O3/SiO2 catalyst with small Ni
particles encapsulated within amorphous La2O3 layer supported on SiO2. The Ni@La2O3/SiO2 catalyst
obtained exhibited high activity and low carbon deposition rate for the DRM reaction conducted at
700 ◦C and using 15% CH4, CH4/CO2 = 1. This method is a simple approach that can be widely applied
for the preparation of encapsulated metal catalysts.

3. Materials and Methods

3.1. Synthesis of Catalysts

A Ni@La2O3/SiO2 catalyst with Ni encapsulated within amorphous La2O3 layer on SiO2

support was prepared via a one-pot colloidal solution combustion method. La(NO3)3·6H2O (2.39 g),
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Ni(NO3)2·6H2O (0.50 g), and glycine (0.60 g) were added in deionized water (6.30 mL). After 20 min
of ultrasonic stirring, 1.26 mL of aqueous colloidal SiO2 LUDOX TMA (34 wt%, diameter of 22 nm;
Sigma-Aldrich, St. Louis, MO, USA) was added to the solution. After 30 min of ultrasonic stirring,
the solution was heated to 250 ◦C. After a few minutes of heating, glycine and nitrate began to react to
form metal oxides and release a large amount of gas. In the combustion reaction, glycine and nitrate
were used as the fuel and oxidizer, respectively. After the solid was formed, it was calcined at 700 ◦C
for 4 h, and the Ni@La2O3/SiO2 catalyst was obtained. The weight contents of Ni and La2O3 in this
catalyst were 6.7% and 60.0%, respectively. For comparison, a Ni–La2O3/SiO2 catalyst with the same
Ni and La2O3 contents was prepared using the same method without adding glycine.

3.2. Characterization of Catalysts

N2 adsorption/desorption curves were obtained using an Autosorb-iQ analyzer (Quantachrome
Instruments, Boynton Beach, FL, USA) at −196 ◦C, to quantify the specific surface area, pore size
distribution/mean pore size, and pore volume of the catalysts. The crystal structure of the catalysts was
determined by powder X-ray diffraction (XRD). The spectra were collected using a Rigaku-Miniflex 6
(Rigaku Corporation, Tokyo, Japan) powder X-ray diffractometer equipped with CuKα (λ= 0.15406 nm),
between 20◦ and 80◦ (2θ) at a scanning speed of 10◦ min−1.

H2-temperature programmed reduction (H2-TPR) was applied on a TP-5080 multifunctional
adsorption apparatus (Xianquan, Tianjin, China) in 5% H2/Ar gas mixture with a heating rate of
10 ◦C min−1. Transmission electron microscopy (TEM) was performed on a Tecnai G2 F20 microscope
(FEI Company, Hillsboro, OR, USA), to directly observe the morphology and size of Ni particles and of
deposited carbon after DRM. To determine the amount of carbon accumulation of the used catalysts,
thermogravimetric (TG) and differential thermal analysis (DTA) were conducted on an HCT-1 TG
thermal analyzer (Henven Scientific Instruments, Beijing, China).

3.3. Catalysts Performance Evaluation for the DRM Reaction

The catalytic performance of the Ni-based solids was evaluated at atmospheric pressure in a fixed-bed
tubular quartz reactor (internal diameter 8 mm, length 300 mm). The total flow rate of reaction gases
was 100 mL min−1 and the amount of catalyst used was in the 5–50 mg range. The corresponding WHSV
was in the 120,000–1,200,000 mL g−1 h−1 range. CH4, CO2, H2, and Ar (99.999% purity) were purchased
from Shanghai Maytor special Gas Co. Ltd. These gases contained less than 1 ppm of water vapor and
were used without further purification. Before reaction, the catalyst was in-situ reduced in 20% H2/Ar
gas mixture at 700 ◦C for 1.5 h. The reaction gases of CO2, CH4, and Ar at a molar ratio of 15/15/70
(vol%), were introduced into the reactor at 700 ◦C, and Ar gas was used as the internal standard. The gas
effluent was analyzed using two on-line gas chromatographs of G5 (Beijing Purkinje General Instrument
Co., Ltd., Beijing, China). One chromatograph used hydrogen as a carrier gas to detect Ar, CO, CH4,
and CO2. Another chromatograph used N2 as a carrier gas to detect H2.

The CO2 conversion (XCO2), CH4 conversion (XCH4) and the H2/CO gas product ratio were
calculated based on the following Equations (1)–(3):

XCO2 =
[CO2]in − [CO2]out

[CO2]in
× 100% (2)

XCH4 =
[CH4]in − [CH4]out

[CH4]in
× 100% (3)

H2/CO =
[H2]out

[CO]out
(4)

where [x]in and [x]out represent the mole fraction of x gaseous species in the inlet feed and outlet from
reactor gas mixture, respectively.
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The H2 and CO product yields were calculated based on the following Equations (4) and (5):

YH2 =
[H2]out

2[CH4]in
× 100% (5)

YCO =
[CO]out

[CH4]in + [CO2]in
× 100% (6)

4. Conclusions

In this study, we prepared a Ni@La2O3/SiO2 catalyst with encapsulated Ni nanoparticles via the
colloidal solution combustion method tested for the DRM reaction at 700 ◦C. In the Ni@La2O3/SiO2

catalyst, small Ni particles were encapsulated within an amorphous La2O3 layer, where this was
coated on SiO2. Due to the encapsulated Ni micro-structure, more interface between Ni and La2O3 was
formed, and the Ni@La2O3/SiO2 catalyst exhibited excellent activity and stability and strong resistance
to carbon deposition during DRM reaction. The catalytic performance results indicated that the CH4

conversion rate of the Ni@La2O3/SiO2 catalyst was five times higher than that of Ni–La2O3/SiO2

catalyst. More importantly, the Ni@La2O3/SiO2 catalyst exhibited excellent catalytic stability and only
a slight deactivation for 80 h on reaction stream. TG-DTA studies revealed that 1.6 wt% carbon was
deposited on the Ni@La2O3/SiO2 catalyst after 50 h of DRM, which was much lower than that of
11.5 wt% obtained on the Ni–La2O3/SiO2 catalyst.
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