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Abstract: The constant development in the area of medicinal substances on the market and their
subsequent progress in the field of drug analysis has become one of the reasons for the search for
alternative, cheaper, and faster methods to determine the metabolism pathways of new molecular
entities (NMEs). The simulation of transformation processes using photocatalysis is considered to
be one of the promising methods. Although its effectiveness has been proven, the research has so
far focused especially on titanium dioxide, while a more accurate comparison of the suitability of
different photocatalysts in terms of their use in drug metabolism studies has not been performed.
For this purpose, a set of twelve metal oxides was prepared and their photocatalytic efficiency in
the direction of drug metabolism mimicking was checked on a model mixture of twenty medicinal
substances differing both in chemical structure and pharmacological properties. Incubation with
human liver microsomes (HLMs) was used as the reference method. The metabolic profiles obtained
with the use of LC-MS analysis were compared using multidimensional chemometric techniques;
and the graphic presentation of the results in the form of PCA plot and cluster dendrogram enabled
their detailed interpretation and discussion. All tested photocatalysts confirmed their effectiveness.
However, the exact outcome of the study indicate advantage of the WO3-assisted photocatalysis over
other metal oxides.
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1. Introduction

Heterogeneous photocatalysis is a type of photochemical reaction accelerated by the presence
of the catalyst particle in a different phase from the reactants. The discovery of this phenomenon
has marked the beginning of its versatile use in the various fields of science and the interest in the
subject is reflected in a large number of reports [1]. It is assumed that the water-splitting experiment
with the use of titanium dioxide made by Fujishima and Honda in 1972 was a breakthrough in the
context of this technique development [2,3]. This extraordinary finding made it possible to obtain
hydrogen by eco-friendly and cost-effective method and became also a promising announcement of its
further use. The unique properties of this material became also the basis of its significant application
especially in environmental area [4–6]. Particularly noteworthy is the use of TiO2 nanoparticles for the
air decontamination and water purification where its ability in organic compounds degrading supports
pesticides and other hazardous materials residuals removal [7–11]. Titanium dioxide has also medical
application while being known as an effective microbiological sterilizing agent [12–15]. Moreover,
it has recently become the subject of research on the use in new cancer treatment strategies [16].
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The mechanism of action of photocatalysts includes their properties as a semiconductor.
The absorption of photon energy equal or greater than their band gap results in electron excitation from a
valence to a conduction band, generating an electron-hole pair in the valence band. The photogenerated
holes can react with adsorbed water molecules forming hydroxyl radical (•OH) which is known as
a powerful oxidizing agent. The additional presence of oxygen in a reaction environment results
in superoxide anion radical (O2

•−) formation due to its electron scavenging activity. The following
chain reactions lead to formation of other reactive oxygen species (ROS). The unpaired electron of
radicals with simultaneous strong reductive-oxidizing potential determines further advanced oxidation
processes (AOPs) which can occur in any organic and inorganic compound present in the reaction
environment [17]. Among the ideal attributes of the photocatalyst, both chemical and biological
inertness, photostability and availability with low cost and toxicity are the most often mentioned [18].
Titanium dioxide is characterized by many of these properties, however it has also some limitations
in use. According to the Planck equation, the band gap energy of this semiconductor (~3.2 eV–for
anatase phase) allows for the absorption of radiation only below 400 nm, causing a lack of use of
the remaining spectrum of sunlight [19,20]. The efforts to eliminate the significance of this problem
have resulted in numerous reports of effective attempts to modify structurally titanium dioxide and
attempts to use admixtures of other compounds and substances [21–25]. Despite the fact that TiO2

is a photocatalyst with the best-known properties and the widest application, other compounds are
also gaining importance in the course of photocatalytic methods development. It is worth mentioning
that zinc oxide is found to be the second most used photocatalyst due to its low-toxic, photostability
and high photoreactive nature [26,27]. Zinc oxide has been the subject of many studies in which it
showed even greater efficiency in relation to titanium dioxide [28,29]. It has been also shown that other
photocatalysts, such as iron(II) oxide and tungsten(VI) oxide, are able to produce ROS in conditions of
irradiation with the range of visible light and its photocatalytic efficiency can also be improved by
using admixtures [30–32]. A wide range of photocatalysts and significant differences in their properties
indicate a continuous need to look for the most ideal one with regard to its use.

The ability to decompose organic compounds under the influence of irradiation with appropriate
energy has initiated the use of photocatalysts in the simulation of drug metabolism processes [33–41].
The ability to produce reactive oxygen species entering redox reactions with medicine molecules allows
to mimic the biochemical reactions that the drug undergoes after administration to the patient. It was
confirmed that the transformation products obtained by photocatalytic approach coincide structurally
with metabolites, and the efficiency and speed of this method constitute one of its benefits. The obtained,
promising results became the basis for further developing this simulation method. The understanding
of the routes of drug metabolism is crucial due to possibility of toxic and reactive intermediates
occurrence which may have a strong negative impact on patient health [42–44]. The discovery of
such properties of the drug in the advanced phase of its development means enormous costs for
the pharmaceutical companies [45]. For this reason, the method that engages relatively low human
resources and additionally is simple and fast is highly desirable. The studies carried out so far has
focused on the use of titanium dioxide for this purpose, although recent reports indicate the possible
advantage of the other photocatalysts in the simulation of drug metabolism [46,47].

The obtained results allow for an initial assessment of the suitability of the method, but do
not give a broader view on the selection of the most efficient photocatalyst allowing to register the
metabolic profile as similar as the natural one. In addition, the results of tests conducted on a single
drug substance are also the reason for the small amount of data to be compared. In order to select the
most suitable photocatalyst for the study of drug metabolism, a set of twenty model pharmaceuticals
with a diverse chemical structure were used and the selection substances was limited to compounds
undergoing hepatic metabolic pathway. A set of twelve photocatalysts was chosen, among which
were compounds of confirmed and previously undocumented effectiveness. As a reference method,
the incubation with human liver microsomes (HLM) was used, and then the obtained metabolic profiles
were multivariate compared. Advanced chemometric methods, including PCA (principal component
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analysis) and HCA (hierarchical cluster analysis), were used to differentiate selected photocatalysts in
terms of their use and suitability in further drug metabolism research.

2. Results and Discussion

The process of establishing the metabolic pathway of pharmaceutical substances transformation
is one of the important elements of introducing new molecular entity (NME) for widespread use in
medicine. The development of techniques allowing for a quick and uncomplicated determination
of drug transformation products is based on an intensive increase in the number of designed and
directed to the preliminary clinical trials, medicinal compounds. For this reason, their ability in organic
substances decomposition has become a reason for the considering of metal oxides use in developing
a method that allows for one to obtain intermediate products of the biological drug transformation
process. The concentration a lot of attention in these studies on the use of titanium dioxide and the
search for another compound with a better fit to the profile of conducted studies is also significant.
Despite the fact that the photocatalysis process is successfully used in the simulation of the drug
metabolism, a broader comparison assuming the use of a number of available metal oxides has not yet
been performed on a set containing multiple pharmaceutical substances.

2.1. Preliminary Characterization of Metabolism Pathways

In order to collect preliminary data on the course of the metabolism process and the structures of
metabolites formed by the selected for comparison pharmaceutical substances, a detailed review of the
available literature was performed [36,46,48–63].

Importantly, both HLM incubation and photocatalytic metabolism simulation experiments
allowed the observation of numerous metabolic reactions, such as aliphatic and aromatic hydroxylation,
oxidation, N-oxidation, S-oxidation, dealkylation, and dehydrogenation. Nevertheless, photocatalysis
failed in case of several analyzed substances. For instance, photocatalytic transformation of toloxatone
and orciprenaline did not give any of metabolites detected in HLM incubation. It should be noticed also
that our previous study on photocatalytic metabolism simulation of toloxatone as a single substance
allowed to obtain all metabolites formed in HLM experiment [36]. This inconsistency should be
attributed to the presence of other analyzed substances in the mixture which may be responsible for
inhibiting activity of applied photocatalysts. Noteworthy are cases of chlorprothixene, vardenafil,
dapoxetine, and flunarizine where photocatalytic simulation experiments showed only partial efficiency
in comparison to HLM experiment. Remarkable is also fact that one of trazodone metabolites was
formed only in the photocatalytic metabolic simulation while absent in HLM experiment.

The summary of identified metabolism reactions is presented in Table 1.
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Table 1. Metabolites observed during HLM incubation and photocatalytic experiments.

Name
Structure

m/z
[M+H]+

Metabolism
Reaction HLM Bi2O3 CeO2 Co3O4 Cu2O SrTiO3 TiO2 TiO2-CNTs TiO2-ZnO WO3 ZnFe2O4 ZnO ZrO2

Chlorprothixene
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Table 1. Cont.
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m/z
[M+H]+

Metabolism
Reaction HLM Bi2O3 CeO2 Co3O4 Cu2O SrTiO3 TiO2 TiO2-CNTs TiO2-ZnO WO3 ZnFe2O4 ZnO ZrO2

Loxapine
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Table 1. Cont.
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m/z
[M+H]+
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Table 1. Cont.

Name
Structure

m/z
[M+H]+

Metabolism
Reaction HLM Bi2O3 CeO2 Co3O4 Cu2O SrTiO3 TiO2 TiO2-CNTs TiO2-ZnO WO3 ZnFe2O4 ZnO ZrO2
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2.2. Chemometric Analysis

The multivariate chemometric data analysis, incorporating principal component analysis (PCA)
and hierarchical cluster analysis (HCA), was performed in order to compare the suitability of chosen
photocatalysts in further drug metabolism research.

2.2.1. PCA

The PCA is a commonly applied method used for data exploration and visualization of the
relationships between samples. Its principle relies on conversion of the original variables to the equal
number of latent variables (principal components, PCs), which are uncorrelated, and explain the largest
percentage of the data variability.

One of the most important arguments for the use of PCA is its ability to reduction of the data
dimensionality. In this research dimensionality of the dataset is 961 (entities corresponding to their
m/z detected by the MS). Because of the correlations existing between the variables, PCA enabled
the significant decrease of the dimensionality. It allowed straightforward presentation of data using
2-dimensional plot.

All obtained profiles (shown in Supplementary Figures S1–S15) recorded in time-of-flight (TOF)
operation mode and treated using Mass Profiler Professional software giving 961 entities. After filtration
and moderated t-Test (p ≤ 0.05, FC ≥ 7), 51 entities were obtained. The 2-D PCA allowed to explain
60.17% of the data variance (Figure 1 - squares of each color stands for one experiment). As can be
seen, Control was placed close to the standard sample (working solution of model mixture before
experiments) which testifies no occurrence of metabolic reactions. HLM samples were placed on
the opposite side of PCA plot. All samples representing photocatalytic experiments were grouped
between HLM and control, which confirms the presence of the analyzed drugs metabolites. First of
all, it should be noticed that WO3 catalyzed samples were located in the nearest distance to HLM
samples. On the contrary to the remaining photocatalytic samples, WO3 group was not shifted along
the y-axis which clearly suggest that majority of transformation products correspond to metabolites
formed during HLM incubation. The remaining photocatalytic experiments can be divided into four
groups. The first of these experiments consisted of TiO2/ZnO and ZnO placed relatively close to HLM
samples in comparison to other photocatalytic samples. The second group containing TiO2 and SrTiO3

was located in the middle of x-axis of the PCA plot, which indicate moderate metabolism mimicking
efficiency. On the other hand, the group consisting of ZnFe2O4 and Cu2O was placed the most closely
to control, which attests to their low suitability in drug metabolism simulation studies. The last cluster
grouping Bi2O3, CeO2, Co3O4, ZrO2 and TiO2-CNT showed rather poor activity in the context of
drugs metabolites formation. It should be also noticed that they were shifted to the greatest extent
along the y-axis which suggest that significant amount of formed transformation products cannot
be considered as the drugs metabolites. In order to present more detailed relationships between
experiments, HCA analysis was additionally performed.
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Figure 1. 2D PCA plot of the standard sample (STD), Control (Cont), HLM after 120 min of incubation
and photocatalytic experiments samples after 60 min of irradiation.

2.2.2. Hierarchical Cluster Analysis and Heatmap

Hierarchical cluster analysis is one more chemometric technique which can be used to determine
the relationships between the studied samples. In general, the clustering methods depend on
identification of similarities between the samples which can be represented by the distance between
them. It should be noticed that the similarity between samples increases in parallel with decreasing
distance between them. The results of clustering could be graphically presented on the dendrogram
(Euclidean distance metrics and Ward’s method clustering algorithm were used in this study).

As was shown in Figure 2, HCA gave similar results to PCA-WO3 samples presented the highest
resemblance to HLM experiment. In general, all experiments were split into two main clusters. The first
group consisted of aforementioned WO3 – HLM and TiO2/ZnO–ZnO pairs. The second main cluster
grouped samples corresponding to the remaining experiments. Within this group, Standard – Control
pair was the most outlying. Similarly to PCA, Bi2O3, CeO2, Co3O4, ZrO2 and TiO2-CNT experiments
were grouped together. Additionally, HCA showed that this cluster remained the most distant from
Standard – Control pair. On the contrary to the PCA, ZnFe2O4 and SrTiO3 samples were grouped
together with Bi2O3, CeO2, Co3O4, ZrO2 and TiO2-CNT cluster. Additionally, Cu2O and TiO2 were
classified as a pair.Catalysts 2019, 9, x FOR PEER REVIEW 3 of 18 
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The relationships between abundances of molecular entities used for HCA construction were shown
as a heatmap (Figure 2). Stripes on the map represent molecular entities (blue color: low abundance, red:
high, yellow: average abundance). The heatmap clearly shows the cause of conducted experiments
splitting into two clusters in HCA. The first cluster contained a high concentration of entities
corresponding to metabolites which is reflected by numerous red strips. In this context, WO3 samples
exhibit the highest resemblance to HLM. The second cluster contained a moderate or low concentration
of entities corresponding to metabolites (yellow and blue strips). Unsuspectingly, the highest number
of blue strips were present in standard and control. A low concentration of metabolites was observed
in the case of ZnFe2O4 and Cu2O experiments in particular.

3. Experimental

3.1. Chemicals and Reagents

Chlorprothixene hydrochloride, quetiapine hemifumarate, loxapine succinate, toloxatone,
vardenafil hydrochloride trihydrate, dapoxetine hydrochloride, salbutamol hemisulfate, orciprenaline
hemisulfate, betaxolol hydrochloride, clonidine hydrochloride, perhexiline maleate, and flunarizine
dihydrochloride were purchased from Sigma Aldrich Co. (St. Louis, MO, USA). Imovane 7.5 mg
tablets (Sanof-Aventis, Gentilly, France)—zopiclon, Stilnox 10mg tablets (Sanofi-Aventis,
Tours France)—zolpidem tartrate, Nebilet 5mg tablets (Berlin-Chemie Menarini, Glienicker Weg,
Germany)—nebivolol hydrochloride, Trittico CR 75 mg tablets (Aziende Chimiche Riunite Angelini
Francesco, Rome, Italy)—trazodone hydrochloride, Tranxene 5 mg capsules (Sanofi-Aventis,
Paris, France)—clorazepate dipotassium, Edronax 4 mg tablets (Pfizer Europe, Sandwich Kent,
Great Britain)—reboxetine methanesulfonate, Valdoxan 25 mg tablets (Les Laboratoires Servier,
Suresnes, France)—agomelatine, Poltram 50 solution for injection (Polpharma, Starogard Gdański,
Poland)—tramadol hydrochloride were obtained in the local pharmacy.

Water (LC-MS Ultra grade), β-nicotinamide adenine dinucleotide 2′-phosphate reduced
tetrasodium salt hydrate (NADPH), human liver microsomes (HLM), sodium phosphate monobasic
monohydrate salt, sodium phosphate dibasic anhydrous salt, TiO2 (Aeroxide®25), nanopowder 21 nm
particle size (BET), 50 m2/g specific surface area (SSA), ZnO, nanopowder <100 nm particle size,
10–25 m2/g SSA and WO3, nanopowder <100 nm particle size (TEM), 8.3 m2/g SSA were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Bi2O3, nanopowder 80 nm particle size (TEM), 25 m2/g
SSA, 99.9%, (Figure S16), CeO2, nanopowder 10–30nm particle size (TEM), 30–50 m2/g SSA, 99.97%,
(Figure S17), Co3O4, nanopowder 10–30 nm particle size (TEM), 50–150 m2/g SSA, 99% (Supplementary
Figure S18), Cu2O, nanopowder 18 nm particle size (SEM), 52.46 m2/g SSA, 99.86% (Supplementary
Figure S19), SrTiO3, nanopowder, 100 nm particle size (cubic phase, TEM), 11.02 m2/g SSA, 99.9%,
(Supplementary Figure S20), carbon nanotube-TiO2 consisting of CNTs 20wt%: TiO2-rutile 80wt%
CNTs (outside diameter: >50nm, inside diameter: 5–15nm, length: 5-20um), TiO2 (rutile, 100~300nm,
spherical, SEM), 18.5 m2/g SSA, (Figure S21), UV shielding nanopowder, 50 nm particle size consisting
of ZnO/49wt% + TiO2/49wt% (TEM), 25–50 m2/g SSA, (Figure S22), ZnFe2O4, nanopowder 10–30 nm
particle size (TEM), 98.5%, (Figure S23), ZrO2, nanopowder 40 nm particle size (TEM), 20-40 m2/g
SSA, 99%, (Figure S24) were purchased from US Research Nanomaterials, Inc. (Houston, TX, USA).
Acetonitrile (hypergrade for LC-MS) was purchased from Merck (Darmstadt, Germany) and 98%
formic acid (mass spectroscopy grade) was obtained from Fluka (Taufkirchen, Germany).

3.2. Sample Preparation

Stock solutions of drug standards freely soluble in water (chlorprothixene hydrochloride,
quetiapine hemifumarate, loxapine succinate, dapoxetine hydrochloride, salbutamol hemisulfate,
orciprenaline hemisulfate, betaxolol hydrochloride, clonidine hydrochloride, flunarizine
dihydrochloride) were prepared in water (1 mg mL−1).
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Stock solutions of toloxatone and vardenafil hydrochloride trihydrate were made in water
(2 mg mL−1).

Stock solution of perhexiline maleate was made in the mixture consisting of 10% acetonitrile and
90% water (1 mg mL−1).

Stock solution of tramadol hydrochloride was prepared by diluting pharmaceutical formulation
with water to obtain solution (10 mg mL−1).

The substances obtained from tablets and capsules in the equivalents of 10 mg (zolpidem
tartrate, reboxetine methanesulfonate, trazodone hydrochloride, quetiapine hemifumarate, nebivolol
hydrochloride, clorazepate dipotassium) or 100 mg (agomelatine, zopiclone) of pharmaceuticals were
weighted and swept for 5 min with 10 mL of water or acetonitrile. Semi-stock solution was obtained by
mixing appropriate volumes of stock solutions and diluting with water to obtain 150 µM concentrations
of each substance.

The working solutions were prepared by diluting semi-stock solution with gradient grade
water, to obtain 7.5 µM concentration of each pharmaceutical substance in the case of photocatalytic
experiments and 15 µM in the case of HLM incubation.

3.3. Photocatalytic Simulation of Metabolism

The photocatalytic simulation of metabolism was performed at concentration 7.5 µM of tested
drugs. The applied catalysts loadings were set to 100 mg L−1. For all experiments, suspensions
were transferred into 3.5 mL quartz caped cells (l = 1 cm) and stirred at 500 rpm (microstirrer
Cimarel: Telemodul, Thermo Electron LED GmbH, Germany) in the dark for 30 min to achieve
adsorption-desorption equilibrium. Next, reaction cells were mounted horizontally in Atlas Suntest
CPS+ photostability chamber with D65 filter (Linsengericht, Germany), and irradiated simultaneously
with stirring. The irradiance was set to 750 W m−2 which corresponds to energy dose of 2700 kJ m−2

h−1. The temperature in the chamber was controlled and kept below 35 ◦C. Aliquots (100 µL) were
collected after 60 min of irradiation. After centrifuging at 13,500 rpm for 5 minutes, 50 µL of samples
were subjected to UHPLC-ESI-Q-TOF analysis.

3.4. HLM Metabolism Simulation

The phase I transformation process was conducted using microsomes fraction. Total volume
of reaction suspension was 200 µL including 0.5 mg mL−1 microsomes, 50 mM phosphate buffer
(pH 7.4) and 15 µM substrate. The reaction mixture was pre-incubated at 37 ◦C for 2 min and then the
metabolic reactions were initiated by addition of 10 µL NADPH (50 mM). The reaction was terminated
after 120 min of incubation with 200 µL of ice-cold acetonitrile-methanol mixture (1:1). The final
concentration of each studied pharmaceutical was equal to 7.5 µM. Next, the precipitated samples
were centrifuged at 13,500 rpm for 10 minutes at 4 ◦C and the supernatants (50 µL) were transferred
into autosampler vials for LC-MS analysis. The negative control samples (Control) were prepared as
described above without addition of NADPH solution.

3.5. LC-MS Analysis

The LC-MS analysis was performed with the use of Agilent Accurate-Mass Q-TOF LC/MS G6520B
system with dual electrospray (DESI) ionization source and Infinity 1290 ultra-high-pressure liquid
chromatography system consisting of: binary pump G4220A, FC/ALS thermostat G1330B, autosampler
G4226A, DAD detector G4212A, TCC G1316C module (Agilent Technologies, Santa Clara, CA, USA)
and Kinetex C18 (2.1 × 50 mm, dp = 1.7 µm) column with C18 precolumn guard (Phenomenex,
Torrance, CA, USA). A mixture of ultrapure water with addition of 0.1% solution of formic acid (A)
and acetonitrile (B) was used as a mobile phase. The gradient elution was carried out at constant flow
0.3 mL min−1 from 95% A (5% B) to 70% A (30% B) 0–7.50 min and then 55% A (45% B) to 5% A (95%
B) 7.50–12.50 min for all analysis. One-and-a-half-minute equilibrium time was performed to return
to initial conditions. The injection volume was 4 µl and the column temperature was maintained at
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35 ◦C. MassHunter workstation software in version B.08.00 was used for the control of the system,
data acquisition, qualitative and quantitative analysis.

The optimization of the instrument conditions started from the proper tuning of Q-TOF detector
in a positive mode with the use of Agilent ESI-L tuning mix in the extended dynamic range (2 GHz).
The following instrument settings were applied: gas temperature: 325 ◦C, drying gas: 10 L/min,
nebulizer pressure: 40 psig, capillary voltage: 3000 V, fragmentor voltage: 175 V, skimmer voltage:
65 V, octopole 1 RF voltage: 750 V.

Data acquisition was performed in centroids with the use of TOF (MS) and auto MS/MS mode.
The spectral parameters for both modes were: mass range: 80–950 m/z and the acquisition rate:
1.5 spectra/s. To ensure accuracy in masses measurements, a reference mass correction was used and
masses 121.050873 and 922.009798 were used as lock masses.

3.6. Chemometric Analysis

Fourteen metabolism experiments: HLM (after 120 min of incubation), Control sample (HLM
without NADPH), twelve photocatalytic experiments (each after 60 min of exposition) were made
in five replications for each one experiment. Additionally, standard sample (working solution
before experiments) was added in chemometric analysis also. In this manner a set of seventy-five
samples for fifteen different experiments was obtained. For all samples, high resolution liquid
chromatography–mass spectrometry analysis was performed in TOF mode and their profiles were
recorded. Data background ion noise cleaning and extraction of the list of the ions characteristic for
metabolite profiles of analyzed substances were made by molecular feature extraction (MFE) algorithm
provided by Mass Hunter Qualitative Analysis software version B.06.00 (Agilent). The following
settings of MFE parameters were chosen as: isotope model: common organic molecules with peak
spacing tolerance 0.0025 m/z, more than 2000 counts for the compound filter and single charge state of
the analyzed ions. In order to perform PCA and HCA, MPP software in version 12.61 (Agilent and
Strand Life Sciences Pvt. Ltd.) was used.

4. Conclusions

The aim of the study was to compare the performance of a set of twelve metal oxides in the
context of their use in the simulation of drug metabolism. For this purpose, a mixed solution of twenty
model pharmaceutical substances was used. Separate photocatalytic experiments and incubation
with human liver microsomes as a reference method were performed. The samples were subjected to
UHPLC-ESI-Q-TOF MS analysis and the obtained metabolic profiles were compared using advanced
chemometric methods due to the multidimensionality of data. Graphical presentation of the study
results in the form of a PCA plot and cluster dendrogram allowed for their interpretation.

All the used photocatalysts confirmed their effectiveness, while the exact outcome of the study
indicates a clear advantage of WO3-assisted photocatalysis over other metal oxides experiments used
in this comparison. WO3-assisted photocatalytic experiment showed the best fit in terms of quantity
and quality to the metabolic profile obtained from HLM incubation. On this basis, ZnFe2O4 and Cu2O
showed the lowest efficiency in relation to the key test assumptions. However, satisfactory results
have also been achieved with the use of zinc oxide. Moderate metabolism mimicking efficiency in the
case of TiO2 experiment is somewhat surprising. On the other hand, despite the rather poor result of
a single photocatalyst in this case, its coupling with the zinc oxide is also relevant as it significantly
improves the efficiency of both, and this combination clearly gains its usefulness in the context of drug
metabolism studies.

For this reason, it seems promising to study various combinations of metal oxides, e.g., zinc
oxide and tungsten oxide, or other combinations of zinc oxide and titanium dioxide to further the
development of photocatalytic methods of the drug metabolism simulation.
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