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Abstract: The acyl Sonogashira reaction represents an extension of Sonogashira cross-coupling to acid
chlorides which replace aryl or vinyl halides, while terminal acetylenes are used as coupling partners
in both reactions. The introduction of a carbonyl functional group on the alkyne backbone determines
a radical change in the reactivity of the products. Indeed, α,β-alkynyl ketones can be easily converted
into different heterocyclic compounds depending on the experimental conditions employed. Due to
its potential, the acyl Sonogashira reaction has been deeply studied with particular attention to the
nature of the catalysts and to the structures of both coupling compounds. Considering these two
aspects, in this review, a detailed analysis of the literature data regarding the acyl Sonogashira reaction
and its role in the synthesis of several heterocyclic derivatives is reported.

Keywords: acyl Sonogashira; cross-coupling; palladium catalysts; acid chlorides; alkynes;
heterocycles

1. Introduction

The palladium-catalyzed Sonogashira reaction is probably the best method to create a new sp-sp2

chemical bond starting from aryl or alkenyl halides and terminal alkynes, with or without the presence
of a copper(I) co-catalyst [1–3]. Due to its potentialities this process has been deeply investigated.
In particular, the carbonylative version of this reaction has been developed [4–8], and nowadays
is widely used for the synthesis of conjugated alkynyl ketones, biologically active molecules and
important building blocks for the synthesis of natural products, pharmaceuticals, and organic materials.
With respect to the Sonogashira reaction, its carbonylative version is often performed in the absence
of CuI and under high pressure of carbon monoxide (CO). The severe toxicity of CO has led to
the development of a Sonogashira type cross-coupling between an acid halide and a terminal
alkyne, the so-called acyl Sonogashira reaction. This reaction has quickly become one of the most
common methodology to create ynone derivatives, often used for their potential transformation into
heterocyclic compounds [9–13]. Therefore the content of this mini-review will be divided into two main
chapters: the first is dedicated to give a detailed overview on the acyl Sonogashira reactions (general
methods, catalysts, substrates) and the second is centered on the synthesis of heterocycles compounds
via multi-steps one-pot sequences which imply a fundamental Sonogashira step of synthesis of
alkynyl ketones.
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2. The Acyl Sonogashira Reaction

The story of the acyl Sonogashira reaction begun in 1977 when Sonogashira, Tohda and Hagihara
reported the first examples of the synthesis of alkynyl ketones by means of a cross-coupling reaction
between 1-alkynes and acyl halides promoted by a catalytic amount of PdCl2(PPh3)2 (0.1 mol%) and
copper(I) iodide (0.5 mol %) [14]. The reactions were carried out under nitrogen at room temperature,
although heating was required in certain cases. Triethylamine was used both as base and solvent.
Phenylacetylene and 1-hexyne reacted readily with aromatic and aliphatic acid chlorides affording
the expected ketones in good yields (61%–96%) (Scheme 1). On the contrary acetyl, propanoyl and
butanoyl chloride underwent side reactions with triethylamine.
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Scheme 1. First examples of the acyl Sonogashira reaction.

Despite the potential of the method, the reaction remained almost forgotten until the early 2000s,
but since then a large number of publications concerning the acyl Sonogashira reactions appeared in the
literature. The use of different catalytic species, various experimental conditions and the application of
the reaction to several 1-alkynes and acid chlorides, were deeply investigated.

2.1. PdCl2(PPh3)2 Catalyzed acyl Sonogashira Reactions

2.1.1. General Experimental Conditions for PdCl2(PPh3)2 Catalyzed acyl Sonogashira Reactions

Starting from Sonogashira’s data, Cox and co-workers reevaluated the experimental conditions of
the reaction [15]. First, in order to limit the possible reactions of acid chlorides with Et3N, they reduced
the base concentration and used 1.25 equivalent of amine in THF. Moreover, they increased the catalysts
amount to 0.9 mol % for palladium and 3 mol % for copper species (Scheme 2). With the optimized
conditions in hand, they tested the reactivity of benzoyl chloride with several acetylenes containing a
wide range of functional groups such as alkyl, ester, silyl, silyloxy and protected amino groups (BOC and
Ac). Reactions proceeded smoothly and the alkynyl ketones were obtained in high yields (70%–96%).
The same experimental conditions were employed for the reactions between phenylacetylene and
different acid chlorides. Both electron-withdrawing (NO2, Br) and electron-donating (OMe) groups
were well tolerated.
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Scheme 2. Cox’s acyl Sonogashira reactions.

In the case of p-iodobenzoyl chloride, both the acyl chloride and the iodo group reacted with the
acetylene generating 3-phenyl-1-(4-(phenylethynyl)phenyl)prop-2-yn-1-one selectively (Scheme 3).
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Scheme 3. Acyl Sonogashira reaction between p-iodobenzoyl chloride and phenylacetylene.

As far as alkyl acid chlorides are concerned, pivaloyl-, 2-methylpropionyl- and
cyclohexanecarbonyl- chlorides afforded the coupling products in high yield (86%–97%), while a linear
substrate such as n-butanoyl chloride generated a mixture of the expected product together with the
corresponding enol derivatives. Taking into account the mechanism generally accepted for Sonogashira
reactions [1], Cox and co-workers proposed a sequence based on an initial oxidative addition of acid
chlorides to Pd(0) (Scheme 4, I), a subsequent reaction of the obtained Pd complex with the alkyne
activated by the CuI co-catalyst (Scheme 4, II), isomerization and reductive elimination (Scheme 4, III,
IV) with the formation of alkynone and Pd(0)L2 which restarts the catalytic cycle.
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Scheme 4. Cox’s proposed mechanism for the acyl Sonogashira reaction.

Cox’s experimental conditions were then employed by Prasad and colleagues [16] in the acyl
Sonogashira reactions of benzoyl chloride with both aromatic and aliphatic 1-alkynes, yielding the
alkynones selectively (72%–79%, Scheme 5).
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Scheme 5. Cox’s conditions applied to the acyl Sonogashira reactions of phenylacetylene.

In 2018, Müller’s group [17] modified Cox’s conditions by reducing the amount of both catalysts
to 0.25 mol % for PdCl2(PPh3)2 and 0.5 mol % for CuI, operating in 1,4-dioxane as solvent; nevertheless,
the acyl Sonogashira coupling between aromatic (Ar = Ph, 4-tBuC6H4, 4-MeOC6H4, 4-MeC6H4,
4-FC6H4, 4-NCC6H4), or heteroaromatic (2-furyl, 2-thienyl) acid chlorides and aromatic acetylenes
proceeded successfully (Scheme 6).
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Very recently, Aronica et al. instead proposed a copper-free acyl Sonogashira protocol for the
synthesis of tris- and bis-[1-(thiophenyl)propynones], using 2 mol % of PdCl2(PPh3)2 and Et3N as both
base and solvent [18,19]. Under these experimental conditions, new luminophores having different
aryl nuclei and propynones moieties have been obtained via acyl Sonogashira reactions.

Thiophene-2-carbonyl chlorides possessing electron-withdrawing and electron-donating
functional groups were successfully coupled with several diethynyl or triethinyl functionalized
aromatic or heteroaromatic compounds.

In order to improve the greenness of the process, Li and co-workers investigated the possibility
of carrying out the reaction in water [20]. Considering that acid chlorides can be easily hydrolyzed,
the authors tested the reactivity of phenylacetylene and benzoyl chloride in the presence of
PdCl2(PPh3)2/CuI as co-catalysts, K2CO3 as the base and a catalytic amount of sodium lauryl sulfate
as the surfactant which should reduce the rate of hydrolysis. As a matter of fact, they obtained the
desired product in a 98% isolated yield. The optimized experimental conditions were then extended to
various acid chlorides and terminal acetylenes as depicted in Scheme 7.

Catalysts 2019, 9, x FOR PEER REVIEW 4 of 35 

 

 

Scheme 6. Acyl Sonogashira reactions according to Muller’s conditions.  

Very recently, Aronica et al. instead proposed a copper-free acyl Sonogashira protocol for the 

synthesis of tris- and bis-[1-(thiophenyl)propynones], using 2 mol % of PdCl2(PPh3)2 and Et3N as both 

base and solvent [18,19]. Under these experimental conditions, new luminophores having different aryl 

nuclei and propynones moieties have been obtained via acyl Sonogashira reactions.  

Thiophene-2-carbonyl chlorides possessing electron-withdrawing and electron-donating 

functional groups were successfully coupled with several diethynyl or triethinyl functionalized 

aromatic or heteroaromatic compounds. 

In order to improve the greenness of the process, Li and co-workers investigated the possibility of 

carrying out the reaction in water [20]. Considering that acid chlorides can be easily hydrolyzed, the 

authors tested the reactivity of phenylacetylene and benzoyl chloride in the presence of PdCl2(PPh3)2/CuI 

as co-catalysts, K2CO3 as the base and a catalytic amount of sodium lauryl sulfate as the surfactant 

which should reduce the rate of hydrolysis. As a matter of fact, they obtained the desired product in a 98% 

isolated yield. The optimized experimental conditions were then extended to various acid chlorides 

and terminal acetylenes as depicted in Scheme 7. 

 

Scheme 7. Acyl Sonogashira coupling of acid chlorides with 1-alkynes in water developed by Li and co-

workers. 

The same effort was made by Zhang et al. [21], who tested different ionic liquids (IL) as reaction 

media. Indeed, IL are considered to be a potent alternative to volatile organic solvents, and can be easily 

separated from the products. In particular, the authors tested different IL in the cross-coupling between 

2-thiophenecarbonyl chloride and 1-hexyne, and found that 1-butyl-3-methylimidazolium 

hexafluorophosphate ([BMIm]-PF6) was the most suitable ionic liquid. These experimental conditions were 

then applied to the Sonogashira reactions of (hetero)arenecarbonyl chloride with terminal acetylenes. 

Moreover, the catalyst obtained by solving PdCl2(PPh3)2/CuI in [BMIm]-PF6 could be easily separated from 

the products and reused five times with a small loss of activity (57% to 45%). 

A copper-free acyl Sonogashira reaction catalyzed by PdCl2(PPh3)2 was investigated by Sonoda et al., 

where on the basis of previous studies, they examined the synthesis of alkynones using rigid trans-

spinning ligands (Figure 1) [22]. 

 

Scheme 7. Acyl Sonogashira coupling of acid chlorides with 1-alkynes in water developed by Li
and co-workers.

The same effort was made by Zhang et al. [21], who tested different ionic liquids (IL) as reaction
media. Indeed, IL are considered to be a potent alternative to volatile organic solvents, and can be
easily separated from the products. In particular, the authors tested different IL in the cross-coupling
between 2-thiophenecarbonyl chloride and 1-hexyne, and found that 1-butyl-3-methylimidazolium
hexafluorophosphate ([BMIm]-PF6) was the most suitable ionic liquid. These experimental conditions
were then applied to the Sonogashira reactions of (hetero)arenecarbonyl chloride with terminal
acetylenes. Moreover, the catalyst obtained by solving PdCl2(PPh3)2/CuI in [BMIm]-PF6 could be
easily separated from the products and reused five times with a small loss of activity (57% to 45%).

A copper-free acyl Sonogashira reaction catalyzed by PdCl2(PPh3)2 was investigated by
Sonoda et al., where on the basis of previous studies, they examined the synthesis of alkynones
using rigid trans-spinning ligands (Figure 1) [22].
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Figure 1. Rigid trans-spanning ligands used in Cu-free acyl Sonogashira protocol optimized by
Sonoda et al.

Benzoyl chloride and 1-octyne were chosen as standard substrates and tested in the presence
of different solvents, bases and ligands. PdCl2(PPh3)2 (2 mol %), triethylamine (3.5 equiv.), 40 ◦C,
toluene and 2-((2-(thiophen-2-ylethynyl)phenyl)ethynyl)pyridine (I) (2 mol %) resulted to be the
best experimental conditions which were then used in the acyl Sonogashira coupling of various
acid chlorides and terminal acetylenes. Aromatic derivatives were coupled effectively, affording the
alkynones in high yields (73%–99%). Cyclohexanecarbonyl and pivaloyl chlorides were reacted with
1-octyne to give the desired product (76%–77%), while acetyl chloride was found unsuitable for this
reaction. Alkynes with nitrile, cyclohenyl, hydroxyl and triisopropylsilyl moieties were used too and
yielded the expected coupling products (71%–99%).

2.1.2. PdCl2(PPh3)2 Catalyzed Acyl Sonogashira Reactions of Silylated Alkynes

The use of a silylated acetylene is particularly interesting, since the silyl group can be easily removed
and the acetylene moiety can be submitted to several transformations. Indeed, Müller and co-workers
reported the acyl Sonogashira reactions of trimethylsilylacetylene with (het)aroyl chlorides performed
in the presence of PdCl2(PPh3)2 (2 mol %) and CuI (4 mol %) (Scheme 8) [23,24]. Both electron-donating
and electron-withdrawing groups on the benzene ring were well tolerated, and the reaction between
thiophene-2-carbonyl chloride and (TMS)-acetylene afforded the corresponding ynone in high yield.
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Almost the same results were described by Boons et al. [25] in the acyl Sonogashira coupling
between equimolar amount of ethynyltrimethylsilane and ArCOCl (Ar = Ph, 4-MeOC6H4, 4-O2NC6H4,
4-FC6H4, 2-MeC6H4) promoted by Pd(PPh3)2Cl2 (5 mol %), copper(I) iodide (10 mol %) and
triethylamine (1.0 equiv.) in THF. The obtained TMS-C≡C-CO-Ar compounds could be easily
desilylated and contemporarily submitted to a cyclization process in the presence of a suitable azide
yielding functionalized triazole derivatives.

Considering that triisopropylsilyl (TIPS)-protected ynones should be more stable than the
corresponding TMS-derivatives because of the better protection effect of bulky TIPS on the C≡C
moiety, Kim and co-workers compared the reactivity of (TIPS)-acetylene with that of TMS-acetylene in
the cross-coupling reactions with different aroyl chlorides [26]. Indeed, when they employed TIPS
derivatives under the same reaction conditions described by Müller et al. [23], they observed an
increase of ynone yields up to 98% (Scheme 9).
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On the base of these results, Müller’s group [27] investigated the synthesis of pentadiynones
via the Pd(PPh3)2Cl2-promoted Sonogashira reaction of TIPS-butadiyne with (hetero)aroyl chlorides
(Scheme 10). The coupling products were obtained in good to excellent yields with both electron rich
and electron poor acid chlorides.Catalysts 2019, 9, x FOR PEER REVIEW 6 of 35 
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Scheme 10. Acyl Sonogashira coupling of acid chlorides with TIPS-butadiyne.

2.1.3. Synthesis of Polyfunctionalized Ynones via PdCl2(PPh3)2-Catalyzed Acyl Sonogashira Reactions

Very recently [28], Pd(PPh3)2Cl2 (1 mol %)/CuI (2 mol %) catalysts were used in the acyl Sonogashira
reaction of 5′-ethynyllappaconitine with benzoyl chlorides possessing p-F, p-Br and p-OMe functional
groups. The structural transformation of lappaconitine, a diterpenic aconitane alkaloid with interesting
antiarrhythmic properties, was effected with the aim to reduce its side effects. Lappaconitine derivatives
were effectively prepared using 5′-ethynyllappaconitine as the starting material. The reactions required
benzene as the solvent, excess Et3N (4 equiv.) as the base, and were carried out at 65 ◦C for 8 h,
affording alkynone derivatives in excellent yields (Scheme 11).

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 35 

 

 

Scheme 10. Acyl Sonogashira coupling of acid chlorides with TIPS-butadiyne. 

2.1.3. Synthesis of Polyfunctionalized Ynones via PdCl2(PPh3)2-Catalyzed Acyl Sonogashira 

Reactions 

Very recently [28], Pd(PPh3)2Cl2 (1 mol %)/CuI (2 mol %) catalysts were used in the acyl 

Sonogashira reaction of 5′-ethynyllappaconitine with benzoyl chlorides possessing p-F, p-Br and p-OMe 

functional groups. The structural transformation of lappaconitine, a diterpenic aconitane alkaloid 

with interesting antiarrhythmic properties, was effected with the aim to reduce its side effects. 

Lappaconitine derivatives were effectively prepared using 5′-ethynyllappaconitine as the starting 

material. The reactions required benzene as the solvent, excess Et3N (4 equiv.) as the base, and were 

carried out at 65 °C for 8 h, affording alkynone derivatives in excellent yields (Scheme 11). 

 

Scheme 11. Acyl Sonogashira reaction of 5′-ethynyllappaconitine. 

Other polyfunctionalized ynones were prepared by Osipov and co-workers [29] by means of an 

acyl Sonogashira reaction of allenynes with different aromatic and aliphatic acyl chlorides. The 

reactions were performed in THF at room temperature in the presence of 5 mol % of PdCl2(PPh3)2/CuI 

and a 1.5 equivalents of Et3N to furnish the corresponding allenynones in good isolated yields 

(Scheme 12). 

 

Scheme 12. The acyl Sonogashira reaction of allenynes. 

It is well known that molecules possessing extensive conjugated π-electron systems may exhibit 

large, nonlinear, optical properties. In particular, compounds like ferrocenylethene and 

ferrocenylethyne derivatives, may offer a variety of potential applications, such as photoactive 

semiconductors and liquid crystals. In this field, Chen et al. [30] described the synthesis of some new 

ethynyl ketones containing the ferrocenyl functional group via cross-coupling reactions of 

ferrocenylethyne with acyl chlorides catalyzed by PdCl2(PPh3)2 (10 mol %) and CuI (10 mol %) (Scheme 

13). The reactions proceeded smoothly in Et3N at room temperature, although acyl chloride containing 

electron-withdrawing groups resulted in being faster than electron-donating functionalized substrates. 

Scheme 11. Acyl Sonogashira reaction of 5′-ethynyllappaconitine.

Other polyfunctionalized ynones were prepared by Osipov and co-workers [29] by means of an
acyl Sonogashira reaction of allenynes with different aromatic and aliphatic acyl chlorides. The reactions
were performed in THF at room temperature in the presence of 5 mol % of PdCl2(PPh3)2/CuI and a 1.5
equivalents of Et3N to furnish the corresponding allenynones in good isolated yields (Scheme 12).
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It is well known that molecules possessing extensive conjugated π-electron systems may
exhibit large, nonlinear, optical properties. In particular, compounds like ferrocenylethene and
ferrocenylethyne derivatives, may offer a variety of potential applications, such as photoactive
semiconductors and liquid crystals. In this field, Chen et al. [30] described the synthesis of some
new ethynyl ketones containing the ferrocenyl functional group via cross-coupling reactions of
ferrocenylethyne with acyl chlorides catalyzed by PdCl2(PPh3)2 (10 mol %) and CuI (10 mol %)
(Scheme 13). The reactions proceeded smoothly in Et3N at room temperature, although acyl
chloride containing electron-withdrawing groups resulted in being faster than electron-donating
functionalized substrates.Catalysts 2019, 9, x FOR PEER REVIEW 7 of 35 
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Scheme 13. Synthesis of ferrocenyl ethynyl ketones via the acyl Sonogashira reaction.

The synthesis of indolyl alkynones, potential pro-apoptotic antitumor agents, was described by
Westwell’s group [31], who applied the acyl Sonogashira reaction to functionalized (4-MeO, 3-MeO,
3-F) phenylacetylene and indole-2-carbonyl chlorides, under standard conditions [15], i.e., 0.9 mol %
PdCl2(PPh3)2, 3 mol % CuI, room temperature, 1 h.

2.1.4. Synthesis of Ynones via PdCl2(PPh3)2 Catalyzed Acyl Sonogashira Reactions Starting from
Different Substrates

Recently Müller and Götzinger [32] developed a PdCl2(PPh3)2 (5 mol %) catalytic system
for a two steps, one-pot sequence for the synthesis of alkynylketones starting from aryl iodides.
The corresponding terminal acetylenes were generated in situ by a palladium-catalyzed Kumada-type
reaction of Ar-I with ethynyl magnesium bromide and subsequently coupled with different aroyl
chlorides as depicted in Scheme 14.
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Scheme 14. Synthesis of alkynones by Kumada/acyl Sonogashira reactions sequence.

Another one-pot, two steps synthesis of ynones was performed by Wu and co-workers [33],
starting from functionalized benzoic acids which were converted in situ into the corresponding acid
chlorides by means of oxalyl chloride and subsequently reacted with arylacetylenes. The reactions
were performed under N2/H2 atmosphere in order to reduce acetylenes dimers resulting from a Glaser
side reaction. Contemporary Müller et al. [34] developed an acylation–Sonogashira alkynylation
sequence starting from heterocyclic carboxylic acids which were transformed into acid chlorides and
then submitted to Sonogashira cross-coupling with terminal acetylenes (Scheme 15). The reactions
were carried out in the presence of 2 mol % PdCl2(PPh3)2 and 4 mol % CuI as the catalytic system and
furnished a broad variety of heteroaryl ynones in moderate to excellent yields. While the acylation
step required 4 h at 50 ◦C, the Sonogashira coupling was finished after 1 h at room temperature.
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Scheme 15. Synthesis of alkynones by the acylation/Sonogashira coupling sequence reported by
Müller’s group.

Very recently Zeng and co-workers [35] described the first example of acyl Sonogashira reactions
between a terminal acetylene and an amide as a coupling partner instead of classic acid chloride.
The reactions required 1 mol % PdCl2(PPh3)2 and were performed under copper free conditions.

The authors tested electronically and sterically different amides, but only N-benzoylsaccarine was
found to be suitable (Figure 2), affording alkynones in good to excellent yields (51%–98%).
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Figure 2. Pd(PPh3)2Cl2-catalyzed Sonogashira coupling of amides.

2.2. Pd(OAc)2 Catalysed Acyl Sonogashira Reactions

Even if PdCl2(PPh3)2/CuI are the most employed catalysts for acyl Sonogashira reactions,
some other palladium species have been tested in this coupling. In particular, Srinivasan’s group [36,37]
developed a cross-coupling between acid chlorides and terminal acetylenes promoted by 0.2 mol
% of Pd(OAc)2 and performed under solvent-free conditions at room temperature. After 10 min,
quantitative conversion into the expected alkynones was observed in almost all cases. Only 1-hexyne
required 3 h reaction time, and the corresponding product was isolated in a 40% yield. All other
substrates generated the coupling products in good to excellent yields (68%–98%, Scheme 16).
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Analogously, Hoshi and coll. [38] employed 1 mol % Pd(OAc)2 and 2 mol % PPh3 in the coupling of
alkenynes with aryl and heteroaryl acid chlorides. The corresponding alkynones were obtained in high
yields (76%–90%) after 2 h at room temperature. The same catalyst was used by Ley et al. [39] in the
acylation of terminal alkynes by means of a modular flow reactor. A mixture of Pd(OAc)2, (i-Pr)2NEt in
CH2Cl2 was mixed with a solution of the acid chloride and terminal acetylene. The obtained mixture
was heated to 100 ◦C through a convection flow coil for 30 min, then the flow stream was directed to a
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series of scavenger columns aimed to remove amine, ammonium salts and palladium contaminants.
After removal of the solvent, the coupling products were isolated in excellent purity and moderate to
high yields (41%–89%).

Najera and co-workers [40] compared the reactivity of Pd(OAc)2 with that of a palladacycle
complex derived from 4,4′-dichlorobenzophenone (Figure 3) in the acyl Sonogashira reaction of several
acid chlorides and terminal acetylenes.Catalysts 2019, 9, x FOR PEER REVIEW 9 of 35 
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Figure 3. Palladacycle catalysts for acylation of terminal alkynes.

The reactions were carried out in toluene as solvent, with three equivalents of Et3N, at 110 ◦C.
A very low amount of both catalyst was employed (0.2 mol %), but the palladacycle species was slightly
more active than Pd(OAc)2. Aromatic and heteroaromatic acyl chlorides were smoothly reacted with
phenylacetylene affording the alkynones derivatives in good yields (50%–99%), while the coupling
of benzoyl chloride and 1-octyne had to be performed in the presence of higher catalyst loading, i.e.,
0.5 mol %.

2.3. Palladium(II) Complexes as Catalysts for Acyl Sonogashira Reactions

A few organometallic complexes containing a Palladium(II) core have been tested as catalysts
in acyl Sonogashira reactions. For instance, Chauvib and Canac [41] prepared two different species
starting from diphosphanes possessing imidazolyl and imidazolium substituents. They compared
the reactivity of the two complexes in cross-coupling between benzoyl chloride and phenylacetylene
(Scheme 17). Both catalysts were found to promote the reaction in the presence of CuI and Et3N,
but with marked different reaction rate probably due to side reactions of imidazole nitrogen and
benzoyl chloride.

Catalysts 2019, 9, x FOR PEER REVIEW 9 of 35 

 

 

Figure 3. Palladacycle catalysts for acylation of terminal alkynes. 

The reactions were carried out in toluene as solvent, with three equivalents of Et3N, at 110 °C. A very 

low amount of both catalyst was employed (0.2 mol %), but the palladacycle species was slightly more 

active than Pd(OAc)2. Aromatic and heteroaromatic acyl chlorides were smoothly reacted with 

phenylacetylene affording the alkynones derivatives in good yields (50%–99%), while the coupling of 

benzoyl chloride and 1-octyne had to be performed in the presence of higher catalyst loading, i.e., 0.5 

mol %. 

2.3. Palladium(II) Complexes as Catalysts for Acyl Sonogashira Reactions 

A few organometallic complexes containing a Palladium(II) core have been tested as catalysts in 

acyl Sonogashira reactions. For instance, Chauvib and Canac [41] prepared two different species 

starting from diphosphanes possessing imidazolyl and imidazolium substituents. They compared the 

reactivity of the two complexes in cross-coupling between benzoyl chloride and phenylacetylene 

(Scheme 17). Both catalysts were found to promote the reaction in the presence of CuI and Et3N, but 

with marked different reaction rate probably due to side reactions of imidazole nitrogen and benzoyl 

chloride. 

 

Scheme 17. Diphosphane ligand Palladium(II) complex used by Chauvib and Canac in the acyl 

Sonogashira coupling of phenylacetylene. 

Later on, Bakherad and co-workers [42] reported that an air stable Pd-salen complex efficiently 

catalyzed the copper- and solvent-free cross-coupling of several acid chlorides with terminal alkynes 

under aerobic conditions. The reactions proceeded smoothly with benzoyl chlorides featured by 

electron-donating and electron-withdrawing groups affording the corresponding ynones in high yields 

(69%–98%), even in the presence of aliphatic acetylenes (Scheme 18). 

Scheme 17. Diphosphane ligand Palladium(II) complex used by Chauvib and Canac in the acyl
Sonogashira coupling of phenylacetylene.

Later on, Bakherad and co-workers [42] reported that an air stable Pd-salen complex efficiently
catalyzed the copper- and solvent-free cross-coupling of several acid chlorides with terminal alkynes
under aerobic conditions. The reactions proceeded smoothly with benzoyl chlorides featured by
electron-donating and electron-withdrawing groups affording the corresponding ynones in high yields
(69%–98%), even in the presence of aliphatic acetylenes (Scheme 18).
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Scheme 18. Palladium-salen complex as a catalyst for acyl Sonogashira reactions.

Vasilyev et al. [43] investigated the catalytic activity of four different palladium acyclic
diaminocarbene complexes in the cross-coupling reactions of phenylacetylenes with aroyl chlorides.
Even if the amount of palladium catalysts used was very low (0.04 mol % of Pd(II)), the reactions
had to be performed in the presence of PPh3 (1 mol %) and CuI (2 mol %), in order to enhance the
chemoselectivity towards the target 1,3-diarylpropinones.

Very recently, Cardenas [44] proposed an air stable phosphinito palladium(II) complex (Figure 4)
as efficient catalyst for ynone synthesis via acyl Sonogashira reactions. Optimized reaction conditions
required 5 mol % of the catalyst, 80 ◦C and Et3N for 18 h. When the reactions were carried out with
microwave heating, similar high yields (81%–93%) were obtained in 1 h.
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2.4. Palladium Supported Catalysts for Acyl Sonogashira Reactions

Interestingly, few examples of acyl Sonogashira reactions promoted by Pd-supported catalysts
have been reported in the literature. Undoubtedly the most used palladium-supported specie is Pd/C
for its availability, low cost and easy handling. Likhar and co-workers [45] investigated the activity of
Pd/C with 10% loading in a copper-free Sonogashira coupling of acid chlorides with terminal acetylenes.
Initially, they studied the reaction between benzoyl chloride and ethynylbenzene under different
experimental conditions. The highest amount of the alkynyl ketone was obtained working with 1 mol
% of Pd/C at 110 ◦C, in dry toluene as solvent and with triethylamine as base. These optimized
conditions were extended to the reactions of different acid chlorides and acetylenes, obtaining the
expected products in good to excellent yields (60%–95%). Unfortunately, when the Likhar group tested
the reusability of their catalyst, they observed a marked reduction of the reagents’ conversion after six
reaction cycles (i.e., from 96% to 67%), together with 15% leaching of the palladium into the solution.
Later on, Kundu’s [46] and Rocha’s [47] groups compared the activity of Pd/C with that of classical
catalysts PdCl2(PPh3)2/CuI. In all cases, homogeneous species resulted in being much more efficient
than Pd/C in promoting the acyl cross-coupling reactions.

A different supported catalyst was developed by Bakherad et al. [48] They used a high surface
area diatomite as their matrix for the deposition of a palladium(II) salophen complex which was
then tested in copper- and solvent-free acyl Sonogashira reactions. The reactions were performed
at room temperature, with diisopropylethylamine (DIEA) as base and in the presence of 1 mol %
of catalyst. Acid chloride featured by electron-withdrawing and electron-donating groups reacted
quantitatively with both aryl and alkyl alkynes (91%–99% yields). The investigation on recyclability of
the diatomite-supported Pd(II) salophen complex showed only a slight decrease of activity (85%) after
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four reaction cycles. The same group [49] prepared the polystyrene-supported Pd(0) complex depicted
in Figure 5.
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Figure 5. [PS-dpp-Pd(0)] as efficient catalyst for acyl Sonogashira reaction developed by Bakherad et al.

This supported species resulted to be active in the acyl Sonogashira reaction of p-chlorobenzoyl
chloride with Ph-C≡CH used as a reference substrate. The optimized conditions (i.e., 0.5 mol % of
catalyst, Et3N as base, r.t. for 15 min) were then extended to several aroyl chlorides and RC≡CH with
excellent results (72%–92% yields). The stability of [PS-dpp-Pd(0)] was studied in recycling reactions
which indicated that the catalyst could be reused ten times without loss of activity.

Another anchored catalyst (Figure 6) was prepared by Tsai’s group [50] and used in the formation
of ynones via Sonogashira reaction of aroyl, heteroaroyl and alkyl acyl chlorides and terminal alkynes.
A bipyridyl palladium complex was linked to a mesoporous silica material MCM-41 and employed in
very low amount, 0.02 mol %; nevertheless, optimized reaction conditions required Et3N as the base
and the solvent, CuI and triphenylphosphine. The catalyst could be reused for four cycles but with a
progressive low reduction of activity (98% to 90%).

Catalysts 2019, 9, x FOR PEER REVIEW 11 of 35 

 

four reaction cycles. The same group [49] prepared the polystyrene-supported Pd(0) complex depicted in 

Figure 5.  

 

Figure 5. [PS-dpp-Pd(0)] as efficient catalyst for acyl Sonogashira reaction developed by Bakherad et al. 

This supported species resulted to be active in the acyl Sonogashira reaction of p-chlorobenzoyl 

chloride with Ph-C≡CH used as a reference substrate. The optimized conditions (i.e., 0.5 mol % of 

catalyst, Et3N as base, r.t. for 15 min) were then extended to several aroyl chlorides and RC≡CH with 

excellent results (72%–92% yields). The stability of [PS-dpp-Pd(0)] was studied in recycling reactions 

which indicated that the catalyst could be reused ten times without loss of activity.  

Another anchored catalyst (Figure 6) was prepared by Tsai’s group [50] and used in the 

formation of ynones via Sonogashira reaction of aroyl, heteroaroyl and alkyl acyl chlorides and 

terminal alkynes. A bipyridyl palladium complex was linked to a mesoporous silica material MCM-41 

and employed in very low amount, 0.02 mol %; nevertheless, optimized reaction conditions required 

Et3N as the base and the solvent, CuI and triphenylphosphine. The catalyst could be reused for four 

cycles but with a progressive low reduction of activity (98% to 90%). 

 

Figure 6. Nanosized MCM-41-Pd as catalyst for acyl Sonogashira reactions. 

More recently, Sharma and coll. [51] developed a new Pd(II) catalyst anchored to functionalized 

iron oxide nanoparticles (Pd-Sc@ASMNPs, Figure 7): its synthesis required a complex sequence 

starting from magnetic nanoparticles (MNPs) which were treated with silica affording silica-coated 

MNPs (SMNPs). Their surface was functionalized with (3-aminopropyl)triethoxysilane and then with 

salicylaldehyde generating an imine group which acted as ligand for PdCl2. 

 

Figure 7. Pd-Sc@ASMNPs catalyst for acyl Sonogashira reactions developed by Sharma and coll. 

Pd-Sc@ASMNPs was used in the synthesis of ynones via acyl Sonogashira reactions performed 

at room temperature with Et3N as the base and a mixture of H2O/CH3CN as a solvent. The reaction 

proceeded quantitatively, and recycling and hot-filtration tests seemed to indicate a truly 

heterogeneous nature of the magnetic nanocatalyst. 

A different behavior was observed in cross-coupling reactions of RCOCl and RC≡CH promoted 

by 1.8 mol % of Pd(II) catalyst anchored to silica gel functionalized with 3-

mercaptopropyltrimethoxysilane (Pd-SH-SILICA), proposed by Jin’s group [52]. In this case, thiol moiety 

can recapture palladium at the end of the reaction according to a “release and catch” mechanism [53]. The 

Figure 6. Nanosized MCM-41-Pd as catalyst for acyl Sonogashira reactions.

More recently, Sharma and coll. [51] developed a new Pd(II) catalyst anchored to functionalized
iron oxide nanoparticles (Pd-Sc@ASMNPs, Figure 7): its synthesis required a complex sequence
starting from magnetic nanoparticles (MNPs) which were treated with silica affording silica-coated
MNPs (SMNPs). Their surface was functionalized with (3-aminopropyl)triethoxysilane and then with
salicylaldehyde generating an imine group which acted as ligand for PdCl2.

Catalysts 2019, 9, x FOR PEER REVIEW 11 of 35 

 

four reaction cycles. The same group [49] prepared the polystyrene-supported Pd(0) complex depicted in 

Figure 5.  

 

Figure 5. [PS-dpp-Pd(0)] as efficient catalyst for acyl Sonogashira reaction developed by Bakherad et al. 

This supported species resulted to be active in the acyl Sonogashira reaction of p-chlorobenzoyl 

chloride with Ph-C≡CH used as a reference substrate. The optimized conditions (i.e., 0.5 mol % of 

catalyst, Et3N as base, r.t. for 15 min) were then extended to several aroyl chlorides and RC≡CH with 

excellent results (72%–92% yields). The stability of [PS-dpp-Pd(0)] was studied in recycling reactions 

which indicated that the catalyst could be reused ten times without loss of activity.  

Another anchored catalyst (Figure 6) was prepared by Tsai’s group [50] and used in the 

formation of ynones via Sonogashira reaction of aroyl, heteroaroyl and alkyl acyl chlorides and 

terminal alkynes. A bipyridyl palladium complex was linked to a mesoporous silica material MCM-41 

and employed in very low amount, 0.02 mol %; nevertheless, optimized reaction conditions required 

Et3N as the base and the solvent, CuI and triphenylphosphine. The catalyst could be reused for four 

cycles but with a progressive low reduction of activity (98% to 90%). 

 

Figure 6. Nanosized MCM-41-Pd as catalyst for acyl Sonogashira reactions. 

More recently, Sharma and coll. [51] developed a new Pd(II) catalyst anchored to functionalized 

iron oxide nanoparticles (Pd-Sc@ASMNPs, Figure 7): its synthesis required a complex sequence 

starting from magnetic nanoparticles (MNPs) which were treated with silica affording silica-coated 

MNPs (SMNPs). Their surface was functionalized with (3-aminopropyl)triethoxysilane and then with 

salicylaldehyde generating an imine group which acted as ligand for PdCl2. 

 

Figure 7. Pd-Sc@ASMNPs catalyst for acyl Sonogashira reactions developed by Sharma and coll. 

Pd-Sc@ASMNPs was used in the synthesis of ynones via acyl Sonogashira reactions performed 

at room temperature with Et3N as the base and a mixture of H2O/CH3CN as a solvent. The reaction 

proceeded quantitatively, and recycling and hot-filtration tests seemed to indicate a truly 

heterogeneous nature of the magnetic nanocatalyst. 

A different behavior was observed in cross-coupling reactions of RCOCl and RC≡CH promoted 

by 1.8 mol % of Pd(II) catalyst anchored to silica gel functionalized with 3-

mercaptopropyltrimethoxysilane (Pd-SH-SILICA), proposed by Jin’s group [52]. In this case, thiol moiety 

can recapture palladium at the end of the reaction according to a “release and catch” mechanism [53]. The 

Figure 7. Pd-Sc@ASMNPs catalyst for acyl Sonogashira reactions developed by Sharma and coll.

Pd-Sc@ASMNPs was used in the synthesis of ynones via acyl Sonogashira reactions performed
at room temperature with Et3N as the base and a mixture of H2O/CH3CN as a solvent. The reaction
proceeded quantitatively, and recycling and hot-filtration tests seemed to indicate a truly heterogeneous
nature of the magnetic nanocatalyst.

A different behavior was observed in cross-coupling reactions of RCOCl and RC≡CH promoted by
1.8 mol % of Pd(II) catalyst anchored to silica gel functionalized with 3-mercaptopropyltrimethoxysilane
(Pd-SH-SILICA), proposed by Jin’s group [52]. In this case, thiol moiety can recapture palladium
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at the end of the reaction according to a “release and catch” mechanism [53]. The same behavior
was hypothesized by Aronica et al. [54] in the acyl Sonogashira reactions promoted by palladium(0)
nanoparticles (NP) deposited on metal scavengers. Among the tested catalysts, Pd supported on
polyvinylpyridine (Pd/PVPy) resulted as especially effective in the synthesis of alkynyl ketones with
different stereoelectronic properties (70%–92% yields) under copper-free conditions (Scheme 19).
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Scheme 19. Pd(0)NP supported on PVPy as the catalyst for acyl Sonogashira reactions.

The reactions were performed with a low amount of catalyst (0.2 mol% Pd) with Et3N as the
solvent and the base. Pd/PVPy seemed to act as a reservoir of Pd nanoparticles which are partially
leached during the reaction and then recaptured at the end of the process. Moreover, the same sample
of catalyst could be reused at least four times without loss of catalytic activity and selectivity.

Mandal and co-workers [55] developed the synthesis of Pd(0) nanoparticles embedded into
poly(p-phenylene sulfide) (Pd(0)NPs-PPS) and tested their activity in the cross-coupling reactions of
aryl/aliphatic acid chlorides with different aromatic/aliphatic terminal alkynes. The corresponding
ynones were obtained in good yields (55%–98%), but recycling tests indicated a relevant leaching of the
palladium during the reaction. In order to obtain a recyclable catalyst, the same authors [56] prepared
palladium(0) NPs anchored onto the surface of single-walled carbon nanotubes (SWNT) functionalized
with COOH groups. The strong interaction between PdNPs and the carboxylic acid moieties was
responsible for very low leaching observed in the acyl Sonogashira reactions of various RCOCl and
RC≡CH. The catalyst was reused up to seven times without losing its catalytic property.

Recently Sureshbabu’s group [57] developed a new supported catalyst based on Pd nanoparticles
deposited on montmorillonite K-10 clay. The obtained species was applied to the Sonogashira between
phenyl acetylene and aroyl chlorides, but 2.4 mol % of palladium was necessary to achieve the products
with good yields (87%–96%).

2.5. Copper-Based Catalysts for Acyl Sonogashira Reactions

A few examples of palladium-free acylation of terminal alkynes are described in the literature.
In 1996 Kundu and co-workers [58] reported the first case of a coupling of terminal alkynes with acid
chlorides performed in the presence of CuI without the need for any palladium species. The reactions
were carried out in Et3N for 30 h at room temperature, but 5 mol % of copper iodide was necessary for
the coupling process to take place in good yields (61%–83%) This method was applied [59] to several
substrates, and in particular to the synthesis of a uracil derivative containing an ynone moiety as
depicted in Scheme 20.
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Similar experimental conditions (CuI 5 mol %, Et3N) were employed by Wang and co-workers [60],
who reduced the reaction time to 10 min. by performing the reactions under microwave (MW)
irradiation. Tuning the power and the time of MW irradiation, it was possible to achieve alkynyl
ketones from cross-coupling reactions of phenylacetylene and aroyl chlorides almost quantitatively.

In order to reduce the amount of copper(I) iodide catalyst, He and coll. [61] developed a new
CuI/N,N,N′,N′-tetramethylethylenediamine (TMEDA) catalytic system for the coupling reaction of
acid chlorides with terminal alkynes. Ynones possessing electron donating and electron withdrawing
groups on the aryl ring of both reactives were obtained in high yields (82%–96%) performing the
reaction with 2 mol % of CuI, 5 mol % of TMEDA, at room temperature for 1 h.

Contemporary, a solvent- and palladium-free acylation of terminal alkynes was achieved
by Movassgh’s research group [62] using a Cu(I) complex prepared by reacting CuI with a
commercially-available azacrown ether (1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, C22). The high
air-stability of the obtained species CuI/C22 was probably due to the chelating effect of its N- and
O-containing ligand (Figure 8).
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This homogeneous catalyst was tested in the cross-coupling reaction of RCOCl and RC≡CH which
yielded the corresponding alkynones almost quantitatively when aryl alkyne were used, while a lower
amount of products were detected with 1-hexyne and 1-octyne.

The first example of supported copper nanoparticles as the catalytic system for the synthesis of
ynones by the coupling of acyl chlorides and terminal alkynes was reported by Yao and co-workers
in 2014 [63]. They investigated the effect of two different supports (γ-Al2O3 and silica gel) on the
nanoparticles’ catalytic efficiency: Cu (NPs)/SiO2 gave the best results and 1 mol % of catalyst was
enough to generate high yields (71%–98%) of the desired products. Analogously, Bhanage’s group [64]
described the preparation of Cu/CuO2 nanoparticles via microwave irradiation and their excellent
applicability to acyl Sonogashira reactions of substrates with different functional groups (NH2, OH, Cl,
OCH3, CH3). More recently, a mesoporous polymer-supported Cu NPs catalyst was developed [65] and
applied to palladium- and solvent-free coupling of acid chloride and aryl alkynes. Similar experimental
conditions were used in the acylation of aryl acetylenes with benzoyl chloride promoted by a nanosized
Cu2O/SiO2 egg-shell catalyst [66]. Finally, Moghaddam and coworkers [67] reported the application
of cobalt–copper ferrite nanoparticles (CoCuFe2O4), obtained by the co-precipitation method, to the
synthesis of alkynyl ketones by acyl Sonogashira reactions. The catalyst could be recovered using an
external magnet, and then could be reused in up to nine reaction cycles, even though with a substantial
reduction of its catalytic activity (from 90% to 70%) was observed.

3. Application of Acyl Sonogashira Reaction to the Synthesis of Heterocyclic Compounds

Alkynones, easily obtained via acyl Sonogashira reactions between terminal alkynes and acyl
chlorides, represent powerful and versatile bifunctional building blocks in organic synthesis. However,
the typically mild experimental conditions of the acyl Sonogashira reaction may also allow synthetic
routes to heterocycles by sequential one-pot transformations, where alkynylketones are synthesized by
a coupling of 1-alkynes with acid chlorides and then used without isolation in a following cyclization
step (in particular, [3+2] cycloaddition with 1,3-dipoles or Michael addition-cyclocondensation with
bifunctional nucleophiles). Although a couple of reviews on this topic have been previously reported
by Müller and co-workers [9,12], mainly covering two different time frames, the recent advances in
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acyl Sonogashira coupling-based strategies requires a more complete and updated overview on these
transformations. Therefore, in the second part of this mini-review, we shall give a comprehensive
and detailed overview on the synthesis of heterocyclic compounds via one-pot acyl Sonogashira
reaction–cyclization sequences: in particular, we shall follow a systematic approach, organizing
literature on the heteroatoms (N-heterocycles, N,O-heterocycles, N,S-heterocycles, O-heterocycles and
S-heterocycles), ring size (five-membered, six- membered and seven-membered) and number of cycles
(monocyclic, bicyclic and polycyclic compounds).

3.1. Synthesis of N-Heterocycles by Acyl Sonogashira Reactions

Nitrogen-containing heterocycles are the largest class of compounds which can be synthesized
by the one-pot acyl Sonogashira reaction–cyclization sequence. In particular, we shall consider
five-membered monocyclic (pyrroles, pyrazoles, triazoles), six-membered monocyclic (pyridines,
pyridones, pyrimidines), bicyclic (indoles, quinolines, quinoxalines, benzodiazepines, indolizines) and
polycyclic (α-carbolines, tetrahydro-β-carbolines, pyrrolo(iso)quinolines, pyrimidinoindoles) systems.

3.1.1. Synthesis of Five-Membered N-Containing Monocyclic Compounds

In 2009, Müller and coll. reported a fascinating three-component synthesis of N-Boc-4-iodopyrroles,
where acid chlorides are coupled with N-Boc propargylamide by an acyl Sonogashira reaction to give
the corresponding alkynones, which are then converted into Boc-protected 2-substituted 4-iodopyrroles
via one-pot Michael addition-cyclocondensation in the presence of sodium iodide [68]. The reaction,
performed with PdCl2(PPh3)2 (2 mol %) as catalyst, and CuI (4 mol %) as co-catalyst under mild
conditions, gave good yields with aromatic acid chlorides bearing electroneutral, electron-withdrawing
or electron-donating substituents, as well as with heteroaryl, alkenyl and selected alkyl (i.e., cyclopropyl
and adamantyl) acyl chlorides (Scheme 21). Interestingly, by the addition of another alkyne to the
reaction mixture, iodopyrroles can give one-pot a further Sonogashira coupling, obtaining the
corresponding N-Boc-2-substituted-4- alkynylpyrroles in good yields.
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Scheme 21. Three-component synthesis of N-Boc-4-iodopyrroles.

In a following paper, a protocol for the synthesis of 2-substituted 3-acylpyrroles was described by
Müller and co-workers: 2-chlorobenzoyl chloride and phenylacetylene were treated under copper-free
acyl Sonogashira conditions (1 mol % of PdCl2 and 2 mol % of di(1-adamantyl)-benzyl-phosphonium
bromide as the catalyst, 1.1 equiv. of Et3N as base and CH2Cl2 as solvent) at room temperature, giving
the alkynone within 2 h; aminoacetaldehyde diethylacetal was then added to the reaction mixture,
obtaining the corresponding β-enaminone by Michael addition, followed by a methanesulfonic
acid-promoted cyclocondensation to final pyrrole (Scheme 22) [69]. This one-pot sequence was
successfully extended to several aryl acid chlorides using both aromatic and aliphatic alkynes.
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Scheme 22. Model reaction for the optimization of one-pot synthesis of 2-substituted 3-acylpyrroles.

The preparation of pyrazoles through one-pot protocols involving acyl Sonogashira reactions has
been more intensively investigated. The first example was reported in 2008 by Jiang et al., wherein
(hetero)aryl or cyclohexyl acid chlorides were coupled with some terminal alkynes under standard
acyl Sonogashira conditions (1 mol % of PdCl2(PPh3)2, 3 mol % of CuI, 2 equiv. of Et3N and THF) to
give α,β-unsaturated ynones, which were then converted into final 3,5-disubstituted-1H-pyrazoles by
the addition of hydrazine to the reaction mixture (Scheme 23) [70].
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Scheme 23. First example of 1,3,5-trisubstituted-1H-pyrazoles synthesis via acyl Sonogashira–Michael
addition–cyclocondensation sequence.

However, a more extensive investigation was performed by the Müller’s group. First of all,
they explored [71] a possible extension of the Jiang protocol to substituted hydrazines (in particular
methylhydrazine or arylhydrazines), in order to obtain 1,3,5-trisubstituted-1H-pyrazoles; interestingly,
despite the possible formation of two different regioisomers in the Michael addition–cyclocondensation
step, in each case only one of them was obtained, depending on the nature of the hydrazine substituent
(Scheme 24). Final pyrazoles were obtained in good to excellent yields (53%–95%), also thanks to the
microwave heating adopted for the cyclization step.
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Scheme 24. One pot acyl Sonogashira–Michael addition–cyclocondensation sequence for the synthesis
of 1,3,5-trisubstituted-1H-pyrazoles.

As a further development of the above described synthetic method, more recently they reported
a one-pot, four-step sequence for the preparation of 1,3,4,5-tetrasubstituted-1H-pyrazoles. Upon
the reaction of acid chlorides with terminal alkynes under the same acyl Sonogashira conditions,
(with PdCl2(PPh3)2 as the catalyst and CuI as the co-catalyst, Et3N as the base and THF as the
solvent), and being followed by microwaves-assisted Michael addition–cyclocondensation with methyl
hydrazine and bromination with N-bromosuccinimide, with the final Suzuki- Miyaura step with alkyl
or aryl boronic acids in the presence of K2CO3 and water, catalytic amounts of PPh3 and microwave
heating gave tetrasubstituted pyrazoles in excellent regioselectivity (about 95:5) and in moderate to
good yields (22–61%) as light yellow solids (Scheme 25) [72].
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Scheme 25. Application of the acyl Sonogashira reaction in a one-pot four-step sequence for the
synthesis of 1,3,4,5-tetrasubstituted-1H-pyrazoles.

Along the lines of the last two mentioned works, in 2015 a four-component preparation of 1-, 3- or
5-biaryl-substituted-1H-pyrazoles was reported by Müller et al., following a sequential acyl Sonogashira
coupling/Michael addition–cyclocondensation/Suzuki-Miyaura coupling [73]. However, very recently
they also developed a more interesting one-pot synthesis of 5-triazolyl-substituted-1H-pyrazoles; in
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this case, the acyl Sonogashira step was performed between acyl chlorides and triisopropylsilyl
(TIPS)-protected butadiyne, giving the corresponding TIPS-protected pentadiynones; upon
cyclocondensation with methyl or benzyl hydrazine, 5-TIPS-ethynyl-1H-pyrazoles were generated,
which gave final compounds after tetra-n-butylammonium fluoride (TBAF) promoted desilylation,
followed by copper(I)-catalyzed alkyne− azide cycloaddition (CuAAC) with benzyl, homobenzyl or
(hetero)aryl azides (Scheme 26) [27].
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Scheme 26. Müller’s one-pot synthesis of 5-triazolyl-substituted-1H-pyrazoles: sequential acyl
Sonogashira coupling/Michael addition–cyclocondensation/desilylation/CuAAC.

In all the above described synthetic routes to pyrazoles, the acyl Sonogashira step has been
performed by using PdCl2(PPh3)2 as catalyst and CuI as the co-catalyst. However, several other catalytic
systems were successfully tested for the same transformation. In 2016, Cai and co-workers developed
an interesting protocol based on 3-(2-aminoethylamino)propyl-functionalized MCM-41-immobilized
palladium(II) acetate complex [MCM-41-2N-Pd(OAc)2], wherein the acyl Sonogashira coupling of
(hetero)aryl or cyclohexyl acid chlorides and aryl or alkyl terminal alkynes, performed in Et3N with
MCM-41-2N-Pd(OAc)2 (0.5 mol %) and CuI (1.0 mol %), gave the corresponding alkynones, which were
then converted in situ into final 1H-pyrazoles (yield 25%–88%) via Michael addition–cyclocondensation
of hydrazines, performed at room temperature with acetonitrile as co-solvent (Scheme 27) [74].
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catalyzed acyl Sonogashira coupling.

Jin et al. instead proposed a copper free method, where a thiol groups-functionalized silica
gel-supported palladium catalyst (Pd-SH-SILICA) was used in the acyl Sonogashira alkynylation
step [52]. Very recently, a further one-pot regioselective synthesis of 3,5-disubstituted and
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3,4,5-trisubstituted pyrazoles via a Cu-free protocol was developed, exploiting in situ generated
Pd-nanoparticles as the catalyst in an environmentally benign PEG-400/H2O medium [75].

Keivanloo [76] reported a palladium- and copper-free procedure for the synthesis of
3,5-disubstituted- 1H-pyrazoles from various acid chlorides, alkynes and hydrazine, based on an acyl
Sonogashira-type alkynylation performed in the presence of silica-supported-zinc bromide as catalyst.

Some one-pot procedures for the synthesis of 1,2,3-triazoles starting with an acyl Sonogashira
coupling have also been described in the literature. In 2009, Chen and coll. [77] developed an interesting
protocol for the preparation of 4,5-disubstituted-2H-1,2,3-triazoles; acyl chlorides and alkynes were
treated under common acyl Sonogashira conditions (1 mol % of PdCl2(PPh3)2, 2 mol % of CuI, 3 equiv.
of Et3N) at room temperature in an ultrasonic bath, followed by one-pot 1,3-dipolar cycloaddition of
the resulting ynones with NaN3 (Scheme 28). The substrate scope of the protocol was quite general,
and final 2H- 1,2,3-triazoles were always obtained in excellent yields.
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Boons et al. instead described a one-pot three-steps sequence for the synthesis of 4-acyl-1H-1,2,3-
triazoles: First, an acyl Sonogashira coupling of aroyl chlorides with trimethylsilylacetylene, giving
trimethylsilyl (TMS)-protected propynones; second, TBAF-promoted desilylation of the TMS protecting
group; third, CuAAC of desilylated propynones with benzyl azides, affording final 4-aroyl-1H-1,2,3-
triazoles [25]. However, a more extended investigation on a similar synthetic strategy was then
performed by Kim and co-workers, in which (hetero)aryl acid chlorides were treated with TIPS-acetylene
under standard acyl Sonogashira alkynylation conditions (2 mol % of PdCl2(PPh3)2, 5 mol % of CuI, 3
equiv. of Et3N and THF), followed by an in situ TIPS group deprotection/CuAAC reaction with several
benzyl, aryl or alkyl azides under two different protocols (method A: 1.5 equiv. of azide, 0.5 equiv.
of CuI and 1.5 equiv. of AgF in THF at 60 ◦C; method B: 1.5 equiv. of azide, 0.1 equiv. of CuI, 1.5
equiv. of AgF and 0.02 equiv. of 1,10-phenanthroline in THF at room temperature), both providing
1H-1,2,3-triazole products in satisfactory yields (Scheme 29) [26].

Catalysts 2019, 9, x FOR PEER REVIEW 18 of 35 

 

Keivanloo [76] reported a palladium- and copper-free procedure for the synthesis of 3,5-

disubstituted- 1H-pyrazoles from various acid chlorides, alkynes and hydrazine, based on an acyl 

Sonogashira-type alkynylation performed in the presence of silica-supported-zinc bromide as catalyst. 

Some one-pot procedures for the synthesis of 1,2,3-triazoles starting with an acyl Sonogashira 

coupling have also been described in the literature. In 2009, Chen and coll. [77] developed an 

interesting protocol for the preparation of 4,5-disubstituted-2H-1,2,3-triazoles; acyl chlorides and 

alkynes were treated under common acyl Sonogashira conditions (1 mol % of PdCl2(PPh3)2, 2 mol % 

of CuI, 3 equiv. of Et3N) at room temperature in an ultrasonic bath, followed by one-pot 1,3-dipolar 

cycloaddition of the resulting ynones with NaN3 (Scheme 28). The substrate scope of the protocol was 

quite general, and final 2H- 1,2,3-triazoles were always obtained in excellent yields. 

 

Scheme 28. Preparation of 4,5-disubstituted-2H-1,2,3-triazoles. 

Boons et al. instead described a one-pot three-steps sequence for the synthesis of 4-acyl-1H-1,2,3- 

triazoles: First, an acyl Sonogashira coupling of aroyl chlorides with trimethylsilylacetylene, giving 

trimethylsilyl (TMS)-protected propynones; second, TBAF-promoted desilylation of the TMS protecting 

group; third, CuAAC of desilylated propynones with benzyl azides, affording final 4-aroyl-1H-1,2,3- 

triazoles [25]. However, a more extended investigation on a similar synthetic strategy was then performed 

by Kim and co-workers, in which (hetero)aryl acid chlorides were treated with TIPS-acetylene under 

standard acyl Sonogashira alkynylation conditions (2 mol % of PdCl2(PPh3)2, 5 mol % of CuI, 3 equiv. of 

Et3N and THF), followed by an in situ TIPS group deprotection/CuAAC reaction with several benzyl, 

aryl or alkyl azides under two different protocols (method A: 1.5 equiv. of azide, 0.5 equiv. of CuI and 

1.5 equiv. of AgF in THF at 60 °C; method B: 1.5 equiv. of azide, 0.1 equiv. of CuI, 1.5 equiv. of AgF and 

0.02 equiv. of 1,10-phenanthroline in THF at room temperature), both providing 1H-1,2,3-triazole 

products in satisfactory yields (Scheme 29) [26].  

 

Scheme 29. One-pot synthesis of 4-acyl-1H-1,2,3-triazoles involving the acyl Sonogashira 

alkynylation step described by Kim and co-workers. 

3.1.2. Synthesis of Six-Membered N-Containing Monocyclic Compounds 

Moving on six-membered monocyclic compounds, in 2016 Müller’s group developed a powerful 

synthesis of tetra-substituted pyridines, where, after an acyl Sonogashira reaction step (2 mol % of 

PdCl2(PPh3)2 as catalyst, 4 mol % of CuI as co-catalyst, 1 equiv. of Et3N as base, THF as solvent, at room 

temperature for 2 h), resulting ynones were treated without isolation with ethyl-3-aminocrotonate via a 

Bagley–Bohlmann–Rahtz coupling (i.e., enamine Michael addition followed by high temperature 

Scheme 29. One-pot synthesis of 4-acyl-1H-1,2,3-triazoles involving the acyl Sonogashira alkynylation
step described by Kim and co-workers.

3.1.2. Synthesis of Six-Membered N-Containing Monocyclic Compounds

Moving on six-membered monocyclic compounds, in 2016 Müller’s group developed a powerful
synthesis of tetra-substituted pyridines, where, after an acyl Sonogashira reaction step (2 mol % of
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PdCl2(PPh3)2 as catalyst, 4 mol % of CuI as co-catalyst, 1 equiv. of Et3N as base, THF as solvent, at room
temperature for 2 h), resulting ynones were treated without isolation with ethyl-3-aminocrotonate via
a Bagley–Bohlmann–Rahtz coupling (i.e., enamine Michael addition followed by high temperature
cyclocondensation) to give after purification 4,6-disubstituted-2-methyl-3-ethoxycarbonyl-pyridines
(yields 19%–52%) (Scheme 30) [78].
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Some acyl Sonogashira-promoted protocols for the synthesis of pyridin-2(1H)ones have also been
developed. An interesting one-pot, consecutive, four-component synthesis of 5-acyl-3,4-dihydropyridin-
2(1H)ones was described in 2013 by Müller and coll.: in this case, intermediate alkynones were generated
by a copper-free acyl Sonogashira methodology, using only PdCl2 as catalytic precursor in the presence
of Beller’s ligand (i.e., di(1-adamantyl)-benzyl-phosphonium bromide); upon addition of a benzylamine,
corresponding β-enaminones were obtained, which were then directly treated with acryloyl chloride
to give the final lactam through aza-annulation reaction (Scheme 31) [79].
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In a following work, the same protocol (except for small variations in the experimental conditions)
was extended to variously substituted anilines, used instead of benzylamines [80]. Very recently, in a
work mainly focused on the sequential synthesis of α-pyrones (described below on Section 3.4.1),
they also developed an alkynylation–Michael addition–cyclocondensation–ammonolysis protocol for
the preparation of 4,6-diphenylpyridin-2(1H)ones, based on the ammonolysis of α-pyrones in the
presence of 25% aqueous ammonia solution to give the corresponding α-pyridones [17].

Pyrimidines are one of the most investigated N-heterocyclic compounds which can be obtained
by a sequential protocol involving an acyl Sonogashira alkynylation step. In 2003, Müller et al.
reported the first example of 2,4-disubstituted pyrimidines via Sonogashira coupling of p-anisoyl or
2-thiophenecarbonyl chloride with trimethylsilylacetylene, followed by treatment with amidinium or
guanidinium salts and 2.5–3.0 equiv of Na2CO3 ·10 H2O in a one-pot process; although performed
only on a few examples, final compounds were obtained in modest to good yields (30%–81%)
(Scheme 32) [23].
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Scheme 32. First example of 2,4-disubstituted pyrimidines synthesis via one-pot process involving the
acyl Sonogashira reaction.

A more extended investigation was then described by the same authors for the preparation of
2,4,6- trisubstituted pyrimidines: several aryl, heteroaryl and tert-butyl acid chlorides were treated
with terminal alkynes bearing alkyl or aryl groups under typical acyl Sonogashira conditions (2 mol
% of PdCl2(PPh3)2, 4 mol % of CuI, 1 equiv. of Et3N, THF or CH3CN, room temperature, 1 h) to
give the corresponding alkynones, which were then treated with amidinium salts in the presence
of sodium carbonate as base under reflux for 12–14 h, giving pyrimidines with yields of 26%–84%
(Scheme 33) [81].
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The applicability of the present protocol was also tested on the synthesis of a dipyrimidyl pyridine
(DIPYRIMPY) derivative starting from pyridine-2,6-dicarbonyl dichloride [24,81]. A slightly different
protocol, including an in situ generation of acyl chlorides from the corresponding carboxylic acids by
treatment with oxalyl chloride, was developed in 2011 by the same research group (Scheme 34) [34].
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Scheme 34. One-pot three-component synthesis of 4-pyridyl-2-o-tolylaminopyrimidines.

More recently, Mandal and co-workers reported the synthesis of 4-substituted pyrimidin-2-amines
through a copper-free acyl Sonogashira step of (hetero)aryl, tert-butyl and adamantyl acid chlorides
with trimethylsilylacetylene, performed using palladium(0) NPs anchored onto single walled carbon
nanotubes (SWNT-PdNPs) as their catalyst, followed by treatment with guanidine hydrochloride in
the presence of Na2CO3 as the base; in all cases, N-heterocycles were obtained in satisfactory yields
(Scheme 35) [55,56]. In 2018, Shults et al. [28] proposed instead the synthesis of diterpene alkaloid
lappaconitine derivatives with pyrimidine rings by one-pot acyl Sonogashira/guanidinium Michael
addition/cyclocondensation.
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3.1.3. Synthesis of N-Containing Bicyclic Compounds

Synthetic pathways starting with an acyl Sonogashira alkynylation represent a very elegant way
for the preparation of several classes of benzofused N-bicyclic compounds, including quinolines,
quinoxalines and benzodiazepines.

In 2010, Liang and coll. reported the synthesis of 2-aryl-4-aroylquinolines though a domino
reaction, consisting in an acyl Sonogashira coupling of benzimidoyl chlorides—here used instead of
acyl chlorides—with 1,6-enynes performed under standard conditions (PdCl2(PPh3)2, CuI, Et3N, 80 ◦C,
7 h), followed by one-pot cyclization to form quinolines in good yields (62%–90%) [82]. In particular,
authors proposed the following mechanism: After formation of the alkynyl imine intermediate via an
acyl Sonogashira coupling of benzimidoyl chlorides and 1,6-enynes, an allenyl-isomerization takes
place, followed by a 6π-electrocyclization step generating the quinoline ring, which is then converted
into the final product by Pd-promoted removal of an allyl moiety (Scheme 36).

Interestingly, 2,4-disubstituted quinolines were also synthesized by Müller’s research
group through a quite different approach, that is, (hetero)aroyl chlorides, terminal alkynes,
and 2-aminothiophenols could give a fascinating, one-pot microwave-assisted Sonogashira
coupling–Michael addition–cyclocondensation –sulfur extrusion sequence [83]. A very crucial point
of this protocol is obtaining a quantitative terminal sulfur extrusion, or otherwise, mixtures of final
quinolines and preceding benzothiazepines were obtained, very difficult to separate by column
chromatography due to their similar polarity.

A very interesting one-pot glyoxylation–alkynylation–cyclization sequence for the synthesis
of 2-(hetero)aryl-3-ethynylquinoxalines was described in 2014: electron-rich π-nucleophiles
(N-methylindole, N-substituted pyrroles, 2-methoxythiophene and azulene) were first treated with
oxalyl chloride in THF to give the corresponding glyoxylyl chlorides, which were then alkynylated
under palladium-free conditions, by adding 1.0 equiv. of alkyne, 5 mol % of CuI and 3.0 equiv. of
Et3N to the reaction mixture; the resulting alkynediones were finally treated without isolation with
1,2-diaminobenzene, affording final quinoxalines in most cases with satisfactory yields (28%–87%)
(Scheme 37) [84].
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Scheme 37. One-pot glyoxylation–alkynylation–cyclization sequence to 2-substituted
3-ethynylquinoxalines developed by Müller’s research group.

In 2007, Srinivasan et al. reported the synthesis of 2,4-disubstituted-3H-benzo[b][1,4]diazepines via
a one-pot, three-component sequence. The methodology involved a first acyl Sonogashira coupling step
between (hetero)aroyl chlorides and aryl alkynes, performed under copper-, ligand- and solvent-free
conditions using Pd(OAc)2 (0.2 mol %) as catalyst and Et3N (1.0 equiv.) as base in only 10 min at room
temperature, followed by Michael addition and cyclocondensation of ortho-phenylenediamines added
to the reaction mixture using water as a solvent (Scheme 38) [85].



Catalysts 2020, 10, 25 23 of 36

Catalysts 2019, 9, x FOR PEER REVIEW 22 of 35 

 

Scheme 36. Liang’s synthesis of 2-aryl-4-aroylquinolines via one-pot acyl Sonogashira-cyclization of 

benzimidoyl chlorides with 1,6-enynes. 

Interestingly, 2,4-disubstituted quinolines were also synthesized by Müller’s research group 

through a quite different approach, that is, (hetero)aroyl chlorides, terminal alkynes, and 2-

aminothiophenols could give a fascinating, one-pot microwave-assisted Sonogashira coupling–

Michael addition–cyclocondensation –sulfur extrusion sequence [83]. A very crucial point of this 

protocol is obtaining a quantitative terminal sulfur extrusion, or otherwise, mixtures of final 

quinolines and preceding benzothiazepines were obtained, very difficult to separate by column 

chromatography due to their similar polarity. 

A very interesting one-pot glyoxylation–alkynylation–cyclization sequence for the synthesis of 2-

(hetero)aryl-3-ethynylquinoxalines was described in 2014: electron-rich π-nucleophiles (N-

methylindole, N-substituted pyrroles, 2-methoxythiophene and azulene) were first treated with 

oxalyl chloride in THF to give the corresponding glyoxylyl chlorides, which were then alkynylated 

under palladium-free conditions, by adding 1.0 equiv. of alkyne, 5 mol % of CuI and 3.0 equiv. of Et3N 

to the reaction mixture; the resulting alkynediones were finally treated without isolation with 1,2-

diaminobenzene, affording final quinoxalines in most cases with satisfactory yields (28%–87%) 

(Scheme 37) [84]. 

 

Scheme 37. One-pot glyoxylation–alkynylation–cyclization sequence to 2-substituted 3-

ethynylquinoxalines developed by Müller’s research group. 

In 2007, Srinivasan et al. reported the synthesis of 2,4-disubstituted-3H-benzo[b][1,4]diazepines 

via a one-pot, three-component sequence. The methodology involved a first acyl Sonogashira coupling 

step between (hetero)aroyl chlorides and aryl alkynes, performed under copper-, ligand- and solvent-

free conditions using Pd(OAc)2 (0.2 mol %) as catalyst and Et3N (1.0 equiv.) as base in only 10 min at 

room temperature, followed by Michael addition and cyclocondensation of ortho-phenylenediamines 

added to the reaction mixture using water as a solvent (Scheme 38) [85].  

 

Scheme 38. Synthesis of 2,4-disubstituted-3H-benzo[b][1,4]diazepines via one-pot acyl Sonogashira–

Michael addition–cyclocondensation sequence developed by Srinivasan et al. 

Different experimental conditions were adopted by Müller and coll. for the preparation of the 

same systems: the acyl Sonogashira step of acid chlorides and alkynes was easily carried out in THF at 

room temperature with PdCl2(PPh3)2 as their catalyst, CuI as the co-catalyst and Et3N as the base; in 

the following Michael addition–cyclocondensation step, alkynones were treated one-pot with o-

Scheme 38. Synthesis of 2,4-disubstituted-3H-benzo[b][1,4]diazepines via one-pot acyl
Sonogashira–Michael addition–cyclocondensation sequence developed by Srinivasan et al.

Different experimental conditions were adopted by Müller and coll. for the preparation of the
same systems: the acyl Sonogashira step of acid chlorides and alkynes was easily carried out in
THF at room temperature with PdCl2(PPh3)2 as their catalyst, CuI as the co-catalyst and Et3N as
the base; in the following Michael addition–cyclocondensation step, alkynones were treated one-pot
with o-phenylenediamines and acetic acid under microwaves heating, affording in only 1 h final
benzodiazepines in modest to good yields (40%–88%) [86].

The synthesis of other N-bicyclic compounds via acyl Sonogashira coupling has been described
in the literature. In 2005, Müller and co-workers reported the preparation of highly fluorescent
indolizines and biindolizines in moderate yields by a consecutive acyl Sonogashira/1,3-dipolar
cycloaddition sequence: (hetero)aroyl chlorides and terminal alkynes were treated under standard
coupling conditions (2 mol % of PdCl2(PPh3)2, 4 mol % of CuI, 20 equiv. of Et3N, THF, room
temperature, 2 h) giving the corresponding ynones, which were then treated in a one-pot procedure
with suiTable 1-(2-oxoethyl)pyridin-1-ium or 1,1′- bis(2-oxoethyl)-4,4′-bipyridine-1,1′-diium bromides
in a following 1,3-dipolar cycloaddition step to afford the target heterocyclic products (Scheme 39) [87].
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3.1.4. Synthesis of N-Containing Polycyclic Compounds

Multicomponent, one-pot protocols starting with an acyl Sonogashira coupling were found very
useful for the preparation of several nitrogen-based polycyclic compounds.

Kundu et al. reported an interesting synthesis of α-carboline derivatives involving aryl or
tert-butyl acid chlorides, terminal alkynes and 2-aminoindole hydrochlorides via sequential acyl
Sonogashira/[3+3] cyclocondensation protocol. Interestingly, the authors found that the presence
of water in the reaction medium may facilitate the cyclization step, while non-aqueous conditions
furnished final products only in poor yields (Scheme 40) [88].
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reported by Kundu et al.

Müller’s group developed instead a fascinating route to tetrahydro-β-carbolines via domino
acyl Sonogashira coupling/amine Michael addition/aza-annulation/Pictet-Spengler sequence of acid
chlorides, terminal alkynes, tryptamine derivatives and acryloyl chlorides, creating five new σ-bonds
and four new stereocenters in a one-pot fashion. In the present protocol, (hetero)aryl acid chlorides
having electronically different substituents and both aliphatic and aromatic alkynes were first treated
in THF with PdCl2(PPh3)2 (2 mol %), CuI (4 mol %) and Et3N (1.0 equiv.) at room temperature;
to the reaction mixture were then added tryptamines (70 ◦C, 10 h), giving Michael addition to the in
situ-generated ynones, and acryloyl chlorides (70 ◦C, 3 h), affording aza-annulation and Pictet–Spengler
steps to final tetrahydro-β-carbolines with reasonable yields (Scheme 41) [89,90].
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Scheme 41. One-pot acyl Sonogashira coupling/amine Michael addition/aza-annulation/Pictet-Spengler
sequence for the synthesis of tetrahydro-β-carbolines.

Interestingly, more recently Mandal and co-workers reported a similar sequence to tetrahydro-β-
carbolines, although starting with a copper-free acyl Sonogashira step, performed with palladium(0)
NPs anchored onto single-walled carbon nanotubes as the catalyst [55].

An acyl Sonogashira coupling/1,3-dipolar cycloaddition sequence of (hetero)aryl acid chlorides,
terminal alkynes and suitable quinolinium or isoquinolinium bromides was developed by Zhang et al.
for the synthesis of pyrroloquinolines or pyrroloisoquinolines, respectively; the protocol was carried
out in ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate showed the best performance),
with PdCl2(PPh3)2 as the catalyst, CuI as the co-catalyst and Et3N as the base, affording final heterocycles
in moderate yields (49%–68%) [21].
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Kundu and coll. described instead the synthesis of highly diversified pyrimido[1,2-a]indoles
via one-pot acyl Sonogashira coupling of aroyl chlorides and terminal alkynes followed by [3+3]
cyclocondensation of the resulting alkynones with ethyl 2-amino-1H-indole-3-carboxylates, performed
in the presence of Cs2CO3 as the base in refluxing acetonitrile for 6 h (Scheme 42) [46].
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by [3+3] cyclocondensation with ethyl 2-amino-1H-indole-3-carboxylates.

3.2. Synthesis of N,O-Heterocycles by Acyl Sonogashira Reactions

The oxazole and isoxazole moieties are common heterocyclic motifs identified in many natural
products and biologically active compounds. An efficient three steps synthesis of 2,5-polyfunctionalized
oxazole derivatives was developed by Müller’s group [91,92] starting from acyl chlorides and propargyl
amine. The first reaction consisted in an amidation of the acid chloride promoted by Et3N, followed by
in situ Sonogashira cross-coupling of the generated alkynyl amide with another equivalent of RCOCl.
Subsequent rapid cycloisomerization of the ynone derivative generated the oxazole ring (Scheme 43).
The consecutive amidation–coupling–isomerization (ACCI) reactions proceeded with a large number
of electronically and sterically diverse acid chlorides, under mild experimental conditions, affording
the target compounds with good yields (49%–75%).
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Scheme 43. Synthesis of oxazole via an ACCI sequence involving an acyl Sonogashira coupling
developed by Müller’s group.

The same research group extended [93] this methodology to a one-pot preparation of
indolyl-oxazoles, potentially useful organic chromophores. In this case N-propynylacetamides
were initially coupled with acid chlorides, and the acyl Sonogashira reaction was accelerated by
using MW irradiation, while the amount of the catalytic system remained unchanged (2 mol % of
PdCl2(PPh3)2 and 4 mol % of CuI). Alkynones were then cycloisomerized by an addition of PTSA
and then oxazole intermediates were treated with hydrazine hydrochlorides, affording the desired
products in moderate to good yields (20–58%).

Isoxazoles, constitutional isomers of oxazole derivatives, were obtained through a simple synthetic
sequence described by Liu and co-workers [94]. The reactions were carried out in the same reaction
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vessel, and begun with a Sonogashira coupling of (hetero)aroyl chlorides with terminal aryl alkynes,
performed in the presence of PdCl2(PPh3)2 (1 mol %) and CuI (3 mol %). After one hour at ambient
temperature, the reaction mixture was treated with hydroxylamine and NaOAc, affording the expected
isoxazoles (58%–76%) (Scheme 44).
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A similar approach was used by Müller and co-workers [95] who substituted the hydroxylamine
addition step with the treatment of alkynyl ketones with hydroximino chloride. Hence, the optimized
sequence involved an initial acyl Sonogashira reaction of variously substituted acid chlorides and
terminal acetylenes catalyzed by PdCl2(PPh3)2/CuI (2–4 mol %), followed by an addition of N-hydroxy-4-
methoxybenzimidoyl chloride to the obtained ynones in the same reaction vessel. Finally, after heating
for 30 min under microwaves irradiation, the isoxazole was obtained in moderate to excellent yields
(Scheme 34). Moreover, when ferrocenyl moieties were introduced on the acid chloride or on the
acetylenic substrate (i.e., R1 and R2, Scheme 45), functionalized substituted redox active isoxazoles
were generated [96].
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Finally, Müller and Görgen reported the preparation of 3,5-disubstituted isoxazoles [97] through a
coupling-azidation–cyclisation sequence (Scheme 46). The first step of the Sonogashira cross-coupling
reaction between RCOCl and RC≡CH was initially performed with a classic PdCl2(PPh3)2/CuI catalytic
system. Under these experimental conditions the azidation step afforded an enaminone instead of
the expected isoxazole, probably due to the presence of Cu(I) in the reaction vessel. To overcome
this problem, the authors decided to test PdCl2 as catalytic precursor in the presence of Beller’s
ligand (di(1-adamantyl)-benzyl-phosphonium bromide). As a result, aryl–substituted isoxazole was
exclusively obtained (10%–71%).



Catalysts 2020, 10, 25 27 of 36

Catalysts 2019, 9, x FOR PEER REVIEW 26 of 35 

 

A similar approach was used by Müller and co-workers [95] who substituted the hydroxylamine 

addition step with the treatment of alkynyl ketones with hydroximino chloride. Hence, the optimized 

sequence involved an initial acyl Sonogashira reaction of variously substituted acid chlorides and 

terminal acetylenes catalyzed by PdCl2(PPh3)2/CuI (2–4 mol %), followed by an addition of N-hydroxy-4- 

methoxybenzimidoyl chloride to the obtained ynones in the same reaction vessel. Finally, after heating 

for 30 min under microwaves irradiation, the isoxazole was obtained in moderate to excellent yields 

(Scheme 34). Moreover, when ferrocenyl moieties were introduced on the acid chloride or on the 

acetylenic substrate (i.e., R1 and R2, Scheme 45), functionalized substituted redox active isoxazoles 

were generated [96]. 

 

Scheme 45. Synthesis of isoxazole via coupling–addition–cyclocondensation sequence. 

Finally, Müller and Görgen reported the preparation of 3,5-disubstituted isoxazoles [97] through 

a coupling-azidation–cyclisation sequence (Scheme 46). The first step of the Sonogashira cross-

coupling reaction between RCOCl and RC≡CH was initially performed with a classic 

PdCl2(PPh3)2/CuI catalytic system. Under these experimental conditions the azidation step afforded an 

enaminone instead of the expected isoxazole, probably due to the presence of Cu(I) in the reaction vessel. 

To overcome this problem, the authors decided to test PdCl2 as catalytic precursor in the presence of Beller’s 

ligand (di(1-adamantyl)-benzyl-phosphonium bromide). As a result, aryl–substituted isoxazole was 

exclusively obtained (10%–71%). 

 

Scheme 46. Synthesis of isoxazole via coupling–azidation–cyclocondensation one-pot reactions. 

3.3. Synthesis of N,S-Heterocycles by Acyl Sonogashira Reactions 

To our knowledge, only one example of benzothiazepines synthesis via a coupling–addition– 

cyclocondensation sequence has been described in the literature. Müller and Willy optimized [98] a 

one-pot protocol involving an initial acyl Sonogashira reaction performed under typical experimental 

conditions (PdCl2(PPh3)2/CuI, 2–4 mol %, 1 equiv. Et3N) which afforded the expected alkynones 

quantitatively. 

Scheme 46. Synthesis of isoxazole via coupling–azidation–cyclocondensation one-pot reactions.

3.3. Synthesis of N,S-Heterocycles by Acyl Sonogashira Reactions

To our knowledge, only one example of benzothiazepines synthesis via a coupling–addition–
cyclocondensation sequence has been described in the literature. Müller and Willy optimized [98]
a one-pot protocol involving an initial acyl Sonogashira reaction performed under typical
experimental conditions (PdCl2(PPh3)2/CuI, 2–4 mol %, 1 equiv. Et3N) which afforded the expected
alkynones quantitatively.

The second step required a Michael addition of 2-amino-thiophenol which was performed under
microwave heating and followed by a cyclocondensation reaction to give various 2,4-disubstituted
benzo[b][1,5]thiazepines in isolated yields of 45%–77% (Scheme 47).
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Scheme 47. Synthesis of benzothiazepines by a three-steps process starting with an acyl
Sonogashira coupling.

3.4. Synthesis of O-Heterocycles by Acyl Sonogashira Reactions

3.4.1. Synthesis of Five- and Six-Membered O-Containing Monocyclic Compounds

Polyfunctionalized furans were prepared by Müller and coll. by a three-steps, one-pot
synthesis [99]. The sequence begun with an acyl Sonogashira reaction of RCOCl and THP-protected
propynols, performed with a stoichiometric equivalent of Et3N, 2 mol % of PdCl2(PPh3)2 and CuI
(4 mol %) as co-catalyst. The almost neutral experimental conditions allowed the treatment of the
obtained ynones with para-tolylsulfonic acid in order to remove the protecting group, followed by
an acid-assisted cyclocondensation of the 3-hydroxy alkynones with the formation of 3-halofurans
(Scheme 48).
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Since the expected products were obtained with moderate yields, Müller’s group investigated [100]
a three-steps sequence in order to improve the results. THF resulted to be the best solvent for all
the processes which were performed at room temperature when NaI was used, while 50 ◦C for 20 h
were requested when the cyclocondensation step was carried out with NaCl. Moreover, treatment of
alkynol with a mixture of ICl/NaCl afforded 3-chloro-4-iodofurans in moderate to good yields (31–64%)
(Scheme 49).
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Scheme 49. One-pot synthesis of 3-chloro-4-iodofurans starting with an acyl Sonogashira step reported
in 2006 by Müller et al.

Recently Müller and Breuer [17] applied a similar multi-component sequence to the synthesis of
α-pyrones, six-membered unsaturated lactones possessing a wide range of biological properties.
The three steps synthesis started with a Sonogashira coupling of (hetero)aroyl chlorides and
terminal alkynes, performed with a low amount of PdCl2(PPh3)2/CuI catalytic system (0.25%–0.5%),
in 1,4-dioxane at room temperature. The obtained alkynones were treated in situ with two
equivalents of malonates in the presence of Na2CO3·10H2O with the aim to induce a Michael
addition–cyclocondensation sequence (Scheme 50). Electron-withdrawing and electron-donating
groups could be introduced at the 4- and 6-position of the pyrone ring which was obtained in moderate
to very good yields (29%–80%).
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3.5. Synthesis of S-Heterocycles by Acyl Sonogashira Reactions

3.5.1. Synthesis of Five-Membered S-Heterocyclic Compounds

Thiophenes represent important building blocks for the synthesis of pharmaceutically-
active molecules and π-conjugated fluorophores. In this field Müller and co-workers [101] developed a
three-component process involving acid chlorides, terminal alkynes and ethyl mercapto-acetate to give
2,4-disubstituted thiophenes. The first step of the one-pot sequence was based on the acyl Sonogashira
reaction promoted by of PdCl2(PPh3)2 (2 mol %) and CuI (4 mol %) in THF at room temperature.
Subsequently the obtained alkynones were submitted to a Fiesselmann cyclocondensation with excess
ethyl mercapto-acetate and DBU, affording the expected thiophenes in moderate to excellent yields
(Scheme 51).
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Scheme 51. Synthesis of 2,4-disubstituted thiophenes by the Sonogashira–Fiesselmann
cyclocondensation sequence.

This methodology was extended [102] to the preparation of polycyclic π-conjugated oligomers
with benzene or thiophene as the central core. In these cases, terephthaloylchloride or thiophene
2,5-dicarbonyl chloride were reacted with different RC≡CH and the double ynones were treated
in situ with EtO2CCH2SH furnishing the dumbbells structures depicted in Figure 9a; analogously,
1,4-diethynylbenzene and 2,5-diethynylthiophene were acylated and cyclocondensated to give the
p-phenylene and oligothiophene symmetrical molecules represented in Figure 9b. In both cases,
the Sonogashira step required large amount of PdCl2(PPh3)2 (8 mol %) and CuI (16 mol %).
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The synthetic route optimized by Müller et al. was used by Tang’s group [103] to generate linear
polyarylene thiophenylenes by acyl Sonogashira cross-coupling of terephthaloylchloride with diyne
derivatives of 1,1,2,2-tetraphenylethylene. Polyinones were not isolated, but directly reacted with
EtO2CCH2SH, undergoing Fiesselmann cyclocondensation in excellent yields (86%–96%).

A completely different approach to the synthesis of thiophenes was developed by Zhou and
co-workers [104]. Their strategy was based on an initial acyl Sonogashira coupling between acid
chlorides and suitable alkynylallylsulfurs catalyzed by the PdCl2(PPh3)2/CuI system, followed by a
1,3-H shift to form an electron-deficient allene which underwent intramolecular nucleophilic attack by
the sulfur and final sigmatropic rearrangement. Thus several thiophenyl and benzothiophenyl ketones
were obtained in good yields (64%–81%) (Scheme 52).
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Scheme 52. Synthesis of thiophenyl and benzothiophenyl derivatives by an initial acyl Sonogashira
coupling developed by Zhou and co-workers.

3.5.2. Synthesis of Six-Membered S-Heterocyclic Compounds

A multi-steps synthesis of annelated 4H-thiopyranones was achieved by the Müller’s
group [105,106] starting from 2-halobenzoyl chlorides and terminal alkynes under typical acyl
Sonogashira conditions (i.e., PdCl2(PPh3)2 2 mol % and CuI 4 mol %). The alkynones thus formed were
reacted in situ with sodium sulfide nonahydrate and ethanol, at 90 ◦C under MW irradiation. Michael
addition of Na2S to the ynones followed by intramolecular SNAr reactions generated a thiopyranone
core fused to benzene, pyridine, thiophene and benzothiophene rings (Scheme 53). Both aromatic and
aliphatic acetylenes could be successfully employed, and fluorine was found to be a better leaving
group instead of chlorine.
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4. Conclusions

Metal-catalyzed C–C bond formation between an acid chloride and a terminal alkyne is the
basis of the acyl Sonogashira reaction. Different palladium- and/or copper-based catalytic systems
have been developed to enhance the efficiency of this method. This process tolerates the presence
of many functional groups (–OR, –COOR, –NO2, –CN, –NHAc, –F, –Cl, –Br, –SiMe3), and results
in structurally modulated products, depending on the choice of two coupling partners whereas the
obtained α,β-alkynyl ketones can be easily transformed into different heterocyclic compounds.

Considering all these important features, we hope that this review will stimulate further research
in the field of the acyl Sonogashira reactions and its application to the formation of new biologically
relevant heterocycles.
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