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Abstract: The proton exchange membrane fuel cells (PEMFCs) have been considered as promising
future energy conversion devices, and have attracted immense scientific attention due to their
high efficiency and environmental friendliness. Nevertheless, the practical application of PEMFCs
has been seriously restricted by high cost, low earth abundance and the poor poisoning tolerance
of the precious Pt-based oxygen reduction reaction (ORR) catalysts. Noble-metal-free transition
metal/nitrogen-doped carbon (M–NxC) catalysts have been proven as one of the most promising
substitutes for precious metal catalysts, due to their low costs and high catalytic performance. In this
review, we summarize the development of M–NxC catalysts, including the previous non-pyrolyzed
and pyrolyzed transition metal macrocyclic compounds, and recent developed M–NxC catalysts,
among which the Fe–NxC and Co–NxC catalysts have gained our special attention. The possible
catalytic active sites of M–NxC catalysts towards the ORR are also analyzed here. This review aims
to provide some guidelines towards the design and structural regulation of non-precious M–NxC
catalysts via identifying real active sites, and thus, enhancing their ORR electrocatalytic performance.

Keywords: proton exchange membrane fuel cells; oxygen reduction reaction; non-precious metal
catalysts; transition metal/nitrogen-doped carbon

1. Introduction

The worldwide demand of energy is rising drastically with the rapid increasing global population
and the progressing development of society [1–3]. However, there is an inevitable reality that the
traditional fossil fuels have been in a danger of drying up with continuous exploitation and utilization,
which has resulted in a universal concern about the energy crisis [4,5]. Besides, the urgent environmental
issues caused by consuming fossil fuels, such as pollutants emission and global warming, have also
severely threatened the future of human society. These problems have spurred intensive researches on
the development of sustainable, eco-friendly and high-efficient new energy systems [6,7]. The fuel
cell can convert chemical energy directly into electricity, and is regarded as one of the most promising
energy technologies, due to its high efficiency and eco-friendliness [8–10]. Among various kinds of
fuel cells, the proton exchange membrane fuel cells (PEMFCs) have attracted the most attention over
the past decades, due to their high energy conversion rate, high reliability, quick startup, low operating
temperature and low pollute emission etc. [11–13].

However, the widespread application of PEMFCs is greatly hampered by the high-cost and
low-performance electrocatalysts towards the oxygen reduction reaction (ORR) at the cathode to
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accelerate the sluggish reaction kinetics [14,15]. Typically, there are three main obstacles limiting the
mass production of ORR catalysts: (i) the high cost. Currently, the most common-used and effective
catalysts in PEMFCs are still Pt-based catalysts, of which the scarcity and high cost have resulted
in an excessive pricing of PEMFCs [16]; (ii) the low performance. The complex mechanisms and
sluggish reaction kinetics of ORRs necessarily lead to high potential demands and low current density
outputs [17]. The main research aim is to fabricate suitable catalysts with abundant active sites and
high reaction selectivity, and therefore greatly decreasing the ORR energy barrier and raising the
conversion efficiency; (iii) the insufficient stability. The high stability of catalysts is the guarantee of
the PEMFCs with excellent durability and lifetime. During the long-term operation of PEMFCs, the
catalyst would go through Ostwald ripening that causes particle agglomeration and growth, surface
oxidation state changes, component migration and loss, etc., which would gradually age and inactivate
the catalyst, thus directly leading to the degradation of PEMFCs’ performance [18–21].

From an economic point of view, some noble metal-based (Au, Ag, and platinum group metals:
Pt, Pd, Ru, Rh, Ir and Os) electrocatalysts would definitely increase the manufacturing cost of fuel
cells as the scarce and high cost of noble metals [22–24]. To solve these problems, numerous efforts
have been devoted to exploring non-precious transition metal catalysts, owing to their abundant
reserves, economic applicability and their potential catalytic activity comparable to noble metals, while
most of the main group metals have shown little potential towards ORR catalysis [25,26]. Particularly,
one of the exceptions is the hybrid of transition metal supported on nitrogen-doped carbon (M–NxC,
M = non-precious transition metals, generally x = 2 or 4, which corresponds to the bonding of MN2

or MN4, respectively) due to two possible reasons below: (i) The introduction of carbon supports
could greatly stabilize and disperse the transition metals, therefore enhancing the ORR catalytic
performance; (ii) the synergetic effects between the nitrogen-doped carbon supports and transition
metals could significantly increase the number of active sites and boost the catalytic behavior [17,27–30].
Nevertheless, the reaction kinetics, and in particular, the modulating mechanism of N atoms on the
surface state and electronic structure of the catalysts still remains ambiguous.

In this review, we aim to provide an overview of the development of M–NxC ORR catalysts and
the summarization of recent advances in this area. Herein, we offer a brief introduction to the reaction
of oxygen reduction and its thermodynamic mechanism. We specially pay attention to the research
progress in M–NxC ORR catalysts with emphasis on the choice of carbon sources and nitrogen sources,
the state-of-the-art Fe–NxC and Co–NxC catalysts, and the analysis of their catalytic sites.

2. Brief Introduction of the ORR Mechanism

As shown in Figure 1, there are three sections in the PEMFC, including an anode where H2

would be oxidized (hydrogen oxidation reaction, HOR), a cathode where O2 would be reduced (ORR),
and a proton exchange membrane through which H+ could be transferred from the anode to the
cathode [31–33]. The reaction on the cathode, the ORR, is a complex process which involves various
basic and irreversible intermediate reactions [34,35]. It can be seen from Figure 2 that the process could
proceed through two pathways: A direct four-electron way or an indirect two-electron way, varying
with the electrode material and pH of the electrolyte. When it comes to the two-electron pathway, the
O2 molecules would accept two electrons first to be reduced to H2O2 (in acid and neutral solution)
or HO−2 (in alkaline solution), and then adsorb another two electrons to be transferred into H2O or
OH− eventually [36,37]. The generation of H2O2 in electrolyte surely cause damages to catalysts
and the proton exchange membrane, thus reducing the lifetime of PEMFCs [38]. Hence, the most
ideal mechanism of fuel cells is the four-electron pathway, where oxygen molecules could accept four
electrons in succession to be reduced into H2O (in acid solution) or OH- (in alkaline solution), with no
detectable intermediates (H2O2) in the final electrolyte [39,40].
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However, in most instances, the ORR proceeds via the two-electron pathway, or the parallelism of
the two-electron and four-electron way on the electrode surface, as the dissociation energy of the O–O
bond in O2 is 498 kJ/mol, which is much higher than that in H2O2 (143 kJ/mol), suggesting a decreasing
activation energy of the ORR. The best solution is to develop effective catalysts to selectively reduce
the bond energy of O2, therefore boosting the four-electron process [41].

3. Previous M–NxC Catalysts

To explore optimal approaches to produce highly stable and active catalysts with the M–NxC
structure, lots of efforts have been devoted to exploring the synthesis strategies and the nature of the
catalytic active sites [42–49]. This section reviews the research progress in transition metal catalysts
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supported on nitrogen-doped carbon with its emphasis on the choice of carbon sources and nitrogen
sources, the control of experimental conditions, and the analysis of catalytic sites. Non-pyrolyzed and
pyrolyzed transition metal macrocyclic compounds will be firstly discussed, as they are the pioneers of
M–NxC catalysts to provide the fundamental research conditions on which the design of the follow-up
discussed recent developed M–NxC catalysts are based.

3.1. Non-Pyrolyzed Transition Metal Macrocyclic Compounds

The earliest discovery of M–NxC catalysts should date back to 1964 when cobalt phthalocyanine
(CoPc), a kind of transition metal macrocyclic compound, was investigated as a fuel cell cathode
catalyst in alkaline electrolyte by R. Jasinski [50]. Since then, macrocyclic compounds composed
of various central transition metal atoms (e.g., Fe, Co, Ni, Mn, Cr, etc.) and ligands, such
as tetraphenylporphyrin (TPP), tetraazaannulenes (TAA), tetramethoxyphenylporphyrin (TMPP),
phthalocyanine (Pc), tetradithiacyelohexeno-tetraazaporphyrin (TDAP) etc., have entered the
researcher’s vision and study fields [51–53]. Also, their catalytic behaviors were sequentially
demonstrated in acidic electrolytes [54–56].

Figure 3 shows the typical structure of these compounds where there is usually a chelating group
of four nitrogen atoms coordinating with a central metal atom. It has been proven that the catalytic
activity of these macrocyclic materials is directly related to the central metal ion and the surrounding
ligand structure [57,58]. For a given metal center, the ORR catalytic activity is strongly affected by the
nature and electron density of the ligand in macrocyclic compounds [51,59]. Alt et al. [60] experimented
with the ORR catalytic behaviors of several Co-ligand compounds in acidic electrolyte, including Pc,
TPP, TAA, TMPP, TDAP and TPAP (tetrapyridino-tetraazaporphyrin), with an activity order of TAA >

TDAP > MPP > Pc > TPAP > TPP. Similar conclusion was drawn by Song and his partners in 1998 [61].
Besides, K. Wiesener [62] and his colleagues proved that the catalytic performance depends greatly
on central metal atoms (Fe, Co, Ni, Mn, Cu etc.) which mainly affect the ORR process, whether for a
four-electron or a two-electron process for a given macrocyclic ligand. The ORR activities of various
central transition metals coordinating with the Pc ligand followed the order of Fe > Co > Ni > Cu ≈
Mn. With many far previous explorations, transition metal macrocyclic compounds are regarded as a
promising kind of cathode catalyst to substitute Pt for ORR. However, these macrocyclic materials
are rarely used directly in PEMFCs, due to their poor performance in activity and durability. It was
indicated that FePc could facilitate the ORR with a four-electron process, but with a poor stability, while
CoPc with a good electrochemical stability were favorable to the two-electron pathway to produce
H2O2 [63,64]. They were all limited by theses inherent drawbacks to be used as cathode catalysts in
PEMFCs. Therefore, it is of great significance to design a method to raise the stability and activity of
transition metal macrocyclic compounds synchronously.
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3.2. Pyrolyzed Metal Macrocyclic Compounds

In 1973, Alt et al. [65] found that Co- and Fe-TMPP complexes were more stable in 3 N H2SO4

after a high-temperature treatment. In 1976, Jahnke et al. [66] pointed out in their article that the
catalytic activity and stability of various N4-chelates in acidic media could be considerably improved
through thermal pretreatment in an inert gas atmosphere (e.g., argon gas). Since then, heat treatment
has aroused great research interests, and also been viewed as an effective way to improve the catalytic
performance of transition metal macrocyclic compounds [52,67–69]. Studies [70–72] have revealed
that N4-chelates could obtain the highest catalytic activity via a pyrolysis at 500–700 ◦C, while a
temperature of 800 ◦C is required to achieve a stable catalytic performance in PEMFCs. Moreover, a
higher temperature above 1000 ◦C would lead to an obvious decrease of stability and activity due
to (i) the formation and growth of metal particles [73,74] and (ii) a decline in the nitrogen content of
catalysts surface [75].

As for the accounts to why thermal treating could improve the macrocyclic compounds’ behavior,
there are three main statements [76–78]: (i) Heat treatment could improve the dispersity of coordination
compounds, therefore boosting the catalytic activity; (ii) heat treatment could lead to the polymerization
of macrocyclic compounds, which results in a highest activity at lower temperature; (iii) heat treatment
could facilitate the formation of compounds containing M–N4 groups, which are acknowledged to
account for the rising activity and long-term stability in low temperature range (500–700 ◦C). Although
these effects would improve the catalysts’ electrocatalytic performance, and could provide reference
guidelines to materials design, the material structure and active components of pyrolyzed metal
macrocyclic compounds after thermal treating still remain controversial.

4. Recent Developed M–NxC Catalysts

Although the aforementioned non-pyrolyzed and pyrolyzed transition metal macrocyclic
compounds have presented impressive ORR electrocatalytic activities, some immanent problems
restricting their further development should not be overlooked, including their high cost, complex
fabrication process, low activity and stability in acidic electrolyte [79]. Hence, lots of efforts have been
devoted to developing a kind of effective catalysts based on cheap and easily available precursors,
while the metal macrocyclic compound itself serves as both a nitrogen source and metal donor on the
carbon matrix. For the past few decades, researchers attempted to prepare M–NxC catalysts through
processing the total mixture of individual metal salt, nitrogen source and carbon support under the
high temperature with a certain gas atmosphere [80]. For example, Bouwkamp-Wijnoltz et al. [81]
prepared the catalysts from heat-processing the mixture of cobalt acetate, carbon black and various
nitrogen donors, among which the best catalytic results comparable to that of heat-treated cobalt
porphyrin were obtained with 2,5-dimethylpyrrole. The results of Extended X-ray Absorption Fine
Structure (EXAFS) revealed similar active sites (CoN4) in both types of catalyst. This approach provides
more possibilities of fabricating a variety of catalysts via the flexible permutation and combination of
different metals, N donors and carbon sources. Indeed, it has been acknowledged as one of the most
cost-effective and preparation-effortless methods to prepare M–NxC catalysts.

4.1. Choices of Nitrogen and Carbon Sources

As for the introduction of nitrogen and carbon sources, there are various options. First, just
for transition metal macrocyclic compounds, such as FePc, the metal, N atoms and carbon support
are provided by an individual precursor, which is usually expensive and hard-won in practical
applications [82]. Second, the N atoms and carbon matrix in M–NxC catalysts could be introduced by
using a kind of precursor containing both nitrogen and carbon, such as polyacrylonitrile (PAN) [83],
polyaniline (PANI) [84,85], polypyrrole (PPy) [86], polythiophene (PT) [87], ethylenediamine (EDA) [88],
cyanamide (CA) [89] and other organic polymers. Most recently, Liu et al. [90] reported a kind of
Co/N-doped cross-linked porous carbon (Co/N-CLPC) catalyst from PAN through a one-step, in-situ
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synthesis method (Figure 4). Co/N-CLPC showed an excellent ORR catalytic activity with an onset
potential of 0.805 V (vs RHE) and a limiting current density of −5.102 mA cm−2, which are comparable
to those of commercial Pt/C catalysts.
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In most cases, to increase the electrical conductivity or form a certain structural morphology of
the catalysts, researchers are pleased to introduce extra carbon supports. For example, Wu et al. [91]
synthesized a kind of PANI-M–C catalysts with the short-chain aniline oligomers polymerizing
together on the surface of carbon spheres, and then the metal aggregating encapsulated in carbon
shells (Figure 5). Liu et al. [92] developed a kind of catalyst with single iron atoms immobilized on the
wall of a carbon nanotube (SAICNT), where the pyrrole polymerizes on an organic template (methyl
orange) to fabricate a nanotube structure which is favorable to electron transport, and increases the
number of active sites (Figure 6). The SAICNT exhibited an ultrahigh ORR activity with a half-wave
potential of 0.93 V and a current density of 59.8 mA cm−2 at 0.8 V, which are far better than that of
commercial Pt/C. Besides, Huang et al. [93] prepared a trifunctional catalyst via electrodepositing Co
ions and PPy onto carbon fibers to form a tube-shaped product with abundant active sites (Figure 7).

The third method to introduce nitrogen and carbon is to use two kinds of materials which
contain N atoms and carbon basis, respectively. Generally speaking, the carbon precursors are the
same as those used to prepare carbon nanomaterials, such as biomass materials, while the existential
forms of carbon supports used for electrocatalysts preparation vary from two-dimension nanosheets
(e.g., graphene and its derivatives [1,94–97]) to three-dimension carbon nanostructures (e.g., carbon
nanotubes [98,99], carbon fibers [100–102], carbon spheres [103] and porous carbon [3,104]). As there
are already some excellent reviews talking about the effects of carbon supports in electrocatalysts,
we will not repeat them in this article. Nitrogen sources is an essential part of the M–NxC catalysts
so as to provide N atoms chelating with metal ions to form the MN4 active sites. Apart from the
aforementioned organic polymers, there are two types of common-used, individual nitrogen sources:
(i) some organic monomers or small organic molecule compounds, such as pyrrole, phenanthroline,
carbamide, melamine etc.; (ii) some inorganic compounds, such as NH3.
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Figure 6. (a) Schematic illustration of synthesis process of the single iron atoms immobilized on
the wall of a carbon nanotube (SAICNT) catalyst; (b) Scanning electron microscopy (SEM) image of
Fe-modified polypyrrole (PPy); (c) Transmission electron microscopy (TEM) and (d) High-resolution
TEM images of SAICNT-900; (e) Energy-dispersive X-ray spectroscopy (EDS) elemental mapping
photos of SAICNT-900 (C, N and Fe); (f) High-angle annular dark-field imaging-scanning transmission
electron microscope (HAADF-STEM) images of the SAICNT-900 catalyst. Reprinted with permission
from Liu et al. (2019) [92]. Copyright 2019, American Chemical Society.
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In 2016, Park et al. [107] reported a novel catalyst of FexNy/NC nanocomposite with an excellent 
ORR activity, a long-term catalytic stability, and a direct four-electron pathway in alkaline electrolyte. 
As show in Figure 9, the mixture of carbon black and Fe salt was heat treated in NH3, thus obtaining 
the FexNy/NC catalyst directly. Besides, some compounds which could release NH3 under heating 
conditions, such as urea, have also drawn researchers’ attention. For example, Liu et al. [108] 
fabricated a sort of Fe/NG/C catalysts with a comparable ORR activity to commercial Pt/C catalysts 
in 0.1 M KOH. The procedure was simply to thermally decompose the hybrid of graphene oxide, 
urea, carbon black and iron species, where the N-doping process was accomplished via the 
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Figure 7. (a) The fabrication processes and schematic structure for Cobalt/Metal Matrix Composites
(Co/MMCs). (b) SEM image of Co/MMCs. High-resolution transmission electron microscopy (HRTEM)
images of the components of Co/MMCs with different morphologies: (c) nanorod, (d) hollow nanowire,
(f) nanowire, and (i) nanoparticle. (e) The partially enlarged image of the surface area of a Co metal
nanoparticle shown in (d), (g) partially enlarged image of (f). (h) Selected area electron diffraction
(SAED) of the metal particle in (e). (j) dark-field high-resolution TEM images of the nanoparticle shown
in (i). The red bar represents to 1 µm, green bar to 100 nm, and blue bar to 50 nm. Reproduced with
permission from Niu Huang, Liu Yang, Mingyi Zhang, et al., ChemElectroChem; published by John
Wiley and Sons, 2019.

For instance, Liang et al. [105] chose melamine and the ordered porous resin (OPR) as nitrogen
and carbon sources, respectively, to prepare the catalysts of Fe–N–CNT-OPC, which displayed an ORR
electrocatalytic activity similar to that of the 20% Pt/C catalyst. It was indicated that the Fe–N–CNT-OPC
possessed abundant Fe–N active sites, high porosity favorable to the electron and transportation, as well
as ample graphitic CNTs to ensure the conductivity (Figure 8). Kim et al. [106] reported a sort of Fe–N–C
catalyst from pyrolyzing the mixture of phenanthroline and Ketjenblack carbon supports. According
to X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analyses, the
active sites FeNx would prefer to form with pyridinic N stemming from phenanthroline. Compared
with organic nitrogen sources, the researches on inorganic compounds containing N atoms used for
the electrocatalyst preparation are mainly focused on the utilization of NH3.

In 2016, Park et al. [107] reported a novel catalyst of FexNy/NC nanocomposite with an excellent
ORR activity, a long-term catalytic stability, and a direct four-electron pathway in alkaline electrolyte.
As show in Figure 9, the mixture of carbon black and Fe salt was heat treated in NH3, thus obtaining
the FexNy/NC catalyst directly. Besides, some compounds which could release NH3 under heating
conditions, such as urea, have also drawn researchers’ attention. For example, Liu et al. [108] fabricated
a sort of Fe/NG/C catalysts with a comparable ORR activity to commercial Pt/C catalysts in 0.1 M
KOH. The procedure was simply to thermally decompose the hybrid of graphene oxide, urea, carbon
black and iron species, where the N-doping process was accomplished via the decomposition of urea
to release NH3. Usually, some porous structure would be generated on carbon supports during the
process of NH3 blown off by heating the compounds adhering to the carbon precursor, that is to say
the activation function of NH3 [109,110].
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4.2. Types of Metal

Apart from the aforementioned heat treatment, with choice of nitrogen and carbon precursors,
the transition metal types also have extremely significant impacts on the nature and electrocatalytic
performance of the M–NxC catalysts. Generally, there are several non-precious transition metals which
are researched in ORR electrocatalysis, including Fe, Co, Ni, Mn, Cu, Zn and so on, among which the
most frequently-studied and effective are mainly Fe and Co. The major merit of Fe- and Co-based ORR
M–NxC catalysts is not only the low cost but also their excellent behavior in both acidic and alkaline
media [111].

The Fe–NxC and Co–NxC catalysts have been widely studied for a long time, since the cobalt
phthalocyanine was proven to exhibit a good oxygen reduction activity in alkaline solution in 1964 [50].
In the earliest studies, main attention was focused upon the exploration of the macrocycle compounds
of these two metals used in ORR and the related study of performance improvements, active sites,
as well as catalytic mechanism. Then, lots of efforts have been devoted into the exploration of inorganic
and small organic metal donors, the design of new synthesis routes, and the structure and property
optimization of Fe–NxC and Co–NxC.

Recently, researchers are challenging to raise the catalytic activity of Fe–NxC and Co–NxC catalysts
in a wide pH range as high as possible via tuning and increasing the active sites [48]. Considerable
progresses have been achieved in the synthesis and theoretical analysis of highly active M–NxC
catalysts toward ORR in both acidic and alkaline solutions during the past few years.

Very recently, one of the most attractive research issues about M–NxC catalysts would be the
design of single-atom M–NxC, which is favorable to realize the utmost utilization of metal sites in
catalysts, and the requirements of high catalytic activity. For example, Xia et al. [112] prepared the
carbon nanotubes doped with Fe single atoms (Fe–N/CNT) through direct heat treatment of the
mixture of the Fe precursor and carbon matrix in the NH3 atmosphere (Figure 10). The Fe single
atoms were incorporated with N atoms to form Fe–Nx active sites during the growth process of
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CNT. As Figure 11 indicated, the single-atom Fe–N/CNT catalyst was more active and stable than
the commercial Pt/C catalyst in 0.1 M KOH. In practice, the preparation of Fe or Co single atoms is
relatively difficult, as these non-precious transition metal atoms would migrate together and aggregate
into nanoparticles or compounds at high temperature. To solve this problem, Li et al. [113] developed
a secondary-atom-assisted method to prepare monatomic Fe anchored on porous N-doped carbon
nanowires (Fe–NCNWs). The Fe ions were surrounded by secondary atoms (Al, Mg, or Zn) which
could ensure Fe ions be transformed into Fe single atoms rather than nanoparticles, and produce
porous structure by their pyrolysis under high temperature (Figure 12). Similarly, Yin et al. [114]
obtained the Co SAs/N–C catalysts through the pre-carbonation of bimetallic Zn/Co metal-organic
frameworks, and then the evaporation of Zn above 800 ◦C. The prepared Co SAs/N–C showed an
excellent catalytic performance towards ORR with a half-wave potential of 0.881 V, which is much
higher than that of commercial Pt/C (0.811 V). Overall speaking, this approach makes the preparation of
single-atom M–NxC catalysts more facile and reliable. Apart from the fact that the monatomic catalysts
have exhibited satisfactory activity towards ORR, recently Zeng’s group [115] found that Fe single
atoms together with Fe nanoclusters anchored on nitrogen-doped carbon support (FeAC@FeSA–N–C)
displayed superior ORR catalytic activity (Figure 13). Their work provides a novel insight and pathway
to the catalysts design.
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Figure 10. (a): Schematic illustration of NH3-promoted catalytic growth of Fe–N/CNT-1. (b–d):
SEM, TEM and scanning transmission electron microscope-electron energy loss spectroscopy
(STEM-EELS)elemental mapping of the Fe–N/CNT-1 catalyst, respectively. (e–g): TEM, HRTEM, and
STEM-EELS elemental mapping of the Fe–N/CNT-2 catalyst, respectively. (h–i): Aberration-corrected
HAADF-STEM images of different regions of the Fe–N/CNT-2 catalyst marked in (g). Reproduced with
permission from Feiyu Kang, Lin Gan, Jia Li, et al., Advanced Functional Materials; published by John
Wiley and Sons, 2019.
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To increase the active sites in catalysts, some porous organic materials with high surface areas, 
tunable compositions and various structural topologies, such as metal organic frameworks (MOFs) 
[116], zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs), are used to 
serve as carbon support after being heat treated. For example, Zhang et al. [117] used an MOF 
material named NH2-MIL-101@PDA to synthesize the Fe–N–C catalysts with higher ORR activity and 
stability than those of Pt/C catalyst (Figure 14). According to the XPS results, the Fe–N–C had a high 
content of N (8.07 at.%) and Fe–Nx (1.22 at.%), which is one of the reasons for high activity. Besides, 
the large surface area and porous structure are also favorable to the improvement of catalytic 
behavior. Mao et al. [118] studied the catalytic performance of several Co/N/C catalysts derived from 
Co-doped ZIF precursors by tuning the experimental conditions, such as the ratio of precursors, 
reaction temperature and reaction time. The sample of Co/N/C-1000, for which the heating 
temperature was 1000 °C, displayed a higher half-wave potential of 0.856 V than that of commercial 
Pt/C in alkaline condition and an outstanding stability in both alkaline and acidic solutions. 

Figure 11. ORR activity measurement of the two Fe–N–CNT catalysts. (a) Linear sweep voltammetry
(LSV) curves in O2-saturated 0.1 M KOH and (b) Calculated H2O2 yield and electron transfer number
based on rotating ring-disc electrode (RRDE) tests. Reproduced with permission from Feiyu Kang, Lin
Gan, Jia Li, et al., Advanced Functional Materials; published by John Wiley and Sons, 2019.
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Figure 12. Schematic for achieving single-atom iron catalyst and traditional Fe–N–C catalyst. Reprinted
with permission from Li et al. (2019) [113]. Copyright 2019 American Chemical Society.

To increase the active sites in catalysts, some porous organic materials with high surface areas,
tunable compositions and various structural topologies, such as metal organic frameworks (MOFs) [116],
zeolitic imidazolate frameworks (ZIFs) and covalent organic frameworks (COFs), are used to serve as
carbon support after being heat treated. For example, Zhang et al. [117] used an MOF material named
NH2-MIL-101@PDA to synthesize the Fe–N–C catalysts with higher ORR activity and stability than
those of Pt/C catalyst (Figure 14). According to the XPS results, the Fe–N–C had a high content of N
(8.07 at.%) and Fe–Nx (1.22 at.%), which is one of the reasons for high activity. Besides, the large surface
area and porous structure are also favorable to the improvement of catalytic behavior. Mao et al. [118]
studied the catalytic performance of several Co/N/C catalysts derived from Co-doped ZIF precursors by
tuning the experimental conditions, such as the ratio of precursors, reaction temperature and reaction
time. The sample of Co/N/C-1000, for which the heating temperature was 1000 ◦C, displayed a higher
half-wave potential of 0.856 V than that of commercial Pt/C in alkaline condition and an outstanding
stability in both alkaline and acidic solutions.
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Apart from some traditional synthesis methods, some novel and effective approaches are 
emerging for facile synthesis of M–NxC catalysts. For instance, Peng et al. [119] developed a non-
pyrolysis method to prepare pfSAC-Fe catalysts via intermolecular interactions between the Fe-
containing COF and the graphene matrix. The prepared catalysts exhibited the superior ORR activity 
with four times higher than that of commercial Pt/C. This method could also simplify the 
computational process, as no random structures are involved. Kiciński et al. [120] introduced a 
permanent magnet to the ORR test system to provide an external magnetic field (Figure 15). This 
method was proven effective to increase activity and boost the 4e− pathway, as the catalytic 
performance of Fe–N–C/S was obviously enhanced with an applied magnetic field in the test.  

Figure 13. (a) Illustration of the synthesis process of FeAC@FeSA–N–C. (b) SEM image, (c) TEM image,
and (d–f) HAADF-STEM image of FeAC@FeSA–N-C. (g) HAADF-STEM image and corresponding EDS
element mapping images of FeAC@FeSA–N–C. Reprinted with permission from Ao et al. (2019) [115].
Copyright 2019, American Chemical Society.
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Figure 14. Schematic illustration of the synthesis of Fe–N–C. Reproduced with permission from
Xiangkun Zhang, Xiaobo Huang, Wenhui Hu, Yongmin Huang, International Journal of Hydrogen
Energy; published by Elsevier, 2019.

Apart from some traditional synthesis methods, some novel and effective approaches are emerging
for facile synthesis of M–NxC catalysts. For instance, Peng et al. [119] developed a non-pyrolysis
method to prepare pfSAC-Fe catalysts via intermolecular interactions between the Fe-containing COF
and the graphene matrix. The prepared catalysts exhibited the superior ORR activity with four times
higher than that of commercial Pt/C. This method could also simplify the computational process, as no
random structures are involved. Kiciński et al. [120] introduced a permanent magnet to the ORR test
system to provide an external magnetic field (Figure 15). This method was proven effective to increase
activity and boost the 4e− pathway, as the catalytic performance of Fe–N–C/S was obviously enhanced
with an applied magnetic field in the test.
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Figure 15. Schematic representation of the utilized electrochemical cell. Reproduced with permission
from Wojciech Kiciński, Jakub P. Sęk, Edyta Matysiak-Brynda, et al., Applied Catalysis B: Environmental;
published by Elsevier, 2019.

Since the earliest study of M–NxC catalysts, intensive focus and efforts have been attached to the
exploration and discussion on the active structure favorable to the ORR. It should be noticed out that
the ORR active site of M–NxC catalysts may be an integration of some active components varying
with the potential changes, rather than a steadfast concrete structure. Although there are some people
favoring of the statements that either some metal-free sites [121] or some carbon layer-coated metal
sites [122,123] are the active sites in M–NxC catalysts for the ORR, the most widely accepted theory
is still that M–Nx sites are the true active components for ORR catalysis [124–126]. However, the
debate, about whether M–N2 or M–N4 is the real active sites, never stop. For example, the majority
of researchers believe the Fe–N4 groups are the active sites towards ORR [127], while the rest of
investigators think that Fe–N2 would play a major part in ORR catalysis [128].

In practice, M–NxC catalysts are usually consisted of M–Nx sites and graphene encapsulated metal
nanoparticles simultaneously, which increases the difficulty to identify the true active sits in M–NxC.
Most recently, Feng’s group [109] proposed a low-temperature NH4Cl-treatment method to efficiently
wipe off the graphene-encapsulated nanoparticles from M–NxC catalysts without destruction of M–Nx

groups (Figure 16). This strategy firmly demonstrates the dominant position of M–Nx sites in catalyzing
ORR. Wang et al. [129] used first-principles calculation to build a microkinetic model for ORR on
single atom Fe–N–C catalysts, and the modeling results indicated that the real active site of single
atom Fe–N–C is the Fe(OH)N4 group, rather than inactive FeN4 center, as the latter is covered with an
intermediate OH* which is a part of the active component, and the ∆G values along the associative
path on the Fe(OH)N4 center are more favorable to ORR catalysis than that of FeN4 center (Figure 17).
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Then they applied the conclusion to analyze the mechanism of ORR catalyzed on single atom
Fe–N–C (shown in Figure 18), and the result was in good accordance with the previous experimental
results. For Co–NxC, several studies have indicated that both the Co–N2 and Co–N4 sites have
ideal catalytic performance towards ORR, while the Co–N4 could be converted into Co–N2, which
has a stronger interaction with H2O2 under high temperature, therefore boosting the 4e− process of
ORR [130–133]. Zhai et al. [134] prepared a catalyst of cobalt and nitrogen co-doped reduced graphene
oxide (Co–N-rGO) with an increasing activity, a four-electron selectivity and a similar stability with
commercial Pt/C. They gave some possible active sites in the Co–N-rGO towards ORR, including the
edge plane CoN2/C, CoN4/C, and basal plane macrocyclic CoN4/C, via DFT calculations shown in
Figure 19. Most recently, Xiao et al. [135] firstly reported a novel binuclear active site structure of
Co2N5 with a Co–Co distance of 2.1–2.2 Å. The strategy is to encapsulate the CoN4 and Co particles
in the carbon shell through the self-adjusting of the bimetal organic framework. The mechanism of
Co2N5 for catalyzing ORR is shown in Figure 20. It was indicated that the ORR catalytic activity of
Co2N5 is higher than that of CoN4, which opens a new door to the fabrication of highly effective
ORR electrocatalysts.
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5. Conclusions

We have introduced the mechanism of ORR briefly and summarized the history of M–NxC
catalysts, including the earliest non-pyrolyzed transition metal macrocyclic compounds, then pyrolyzed
transition metal macrocyclic compounds, and recent developed M–NxC catalysts with simple and
general structures. Besides, we give more detailed information about the currently developed M–NxC
catalysts from the perspectives of choice of carbon and nitrogen precursors, the recent emerging
Fe–NxC and Co–NxC catalysts, the newly developed method to prepare Fe–NxC and Co–NxC catalysts,
and their active sites analyses. The intrinsic structure and catalytic performance of M–NxC catalysts
are directly influenced by the choice of precursors. In most recent achievements, some porous organic
materials with high surface areas, tunable compositions and various structural topologies, such as
MOFs, ZIFs and COFs, have gained many priorities to be the precursors. The size of metals in the
M–NxC catalyst is reduced to single atoms, which contributes to an enhanced catalytic performance
due to the utmost metal utilization and the low coordination to raise the activity, and the N-containing
support’s anchoring effect to improve the stability. The most acknowledged active sites of M–NxC
catalysts are M–N2 and M–N4 groups, while there are some trials to design new kinds of active sites,
such as the binuclear active sites. Overall speaking, the thorough understandings about the M–NxC
catalysts stated in this review are favorable to provide a universal principle of highly effective M–NxC
catalysts’ design.

In fact, although the M–NxC catalysts with high ORR activities are demonstrated as one of the most
promising substitutes for Pt-based catalysts, their performance is far from the practical requirements in
PEMFCs due to the appeal to much higher activity and stability in acidic environments. According to
this review, we think there are three main directions in the M–NxC ORR catalysts field:

1. The study of the ORR catalytic mechanism. Understanding the character of M–NxC and the
catalytic kinetics in the catalytic process is helpful to us to regulate the catalyst structure and
composition accurately, therefore improving the catalytic performance.

2. The study of active sites. Although there are already several researches on the identification of
active structures, the true catalytic sites in M–NxC catalyst are still confusing which drastically
hinder the development of catalysts with adequate activity and stability. It is suggested that
the atom-by-atom structural and chemical analysis in graphene can be achieved by the gentle
ADF-STEM, which is a promising pathway to explore the local environment of active sites [136,137].

3. The exploration of new types of active sites. The aforementioned design of binuclear active
sites, which are proven to be more positive than traditional M–N2 and M–N4 active sites, is a
successful example to search for new kinds of active sites. It has inspired us greatly to enter a
newly emerging but promising world to design satisfactory ORR catalysts.
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