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Abstract: This article describes the synthesis of stereolithography (SLA) 3D-printed
catalyst-impregnated devices and their evaluation in the organocatalyzed Friedel–Crafts alkylation
of N–Me–indole with trans-β-nitrostyrene. Using a low-cost SLA 3D printer and freeware design
software, different devices were designed and 3D-printed using a photopolymerizable resin containing
a thiourea-based organocatalyst. The architectural control offered by the 3D-printing process allows
a straightforward production of devices endowed with different shapes and surface areas, with
high reproducibility. The 3D-printed organocatalytic materials promoted the formation of the
desired product up to a 79% yield, although with longer reaction times compared to reactions under
homogeneous conditions.
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1. Introduction

Three-dimensional (3D) printing, also known as additive manufacturing, refers to the process of
producing 3D solid objects through the successive layering deposition of material. In the last few years,
3D printing has drawn attention in various fields due to its ability to create prototypical parts according
to virtual concepts, and this technology has had very fast development in many scientific applications,
such as in dentistry and odontology fields [1,2], medical implants [3], the aerospace and aircraft
industries [4,5], jewelry making [6], clothes-manufacturing [7], food processing [8], and architecture [9].

Chemistry has also been drawn to 3D printing [10]; the technique represents an enabling tool
in pharmaceutical and biological applications [11,12], as well as in organic synthesis [13], where
sensors [14] and fluidic devices [15–19] were created. Three-dimensional printing applications range
from the educational field, with the fabrication of molecular models [20] and cheap lab equipment [21],
to the Active Pharmaceutical Ingredient (API) industry, where APIs such as Spritam are manufactured
with a 3D-printing system [22].

Advantages of 3D-printing technology are related to its accessibility due to a thriving open-source
community, to high customization freedom and cost-effectiveness (3D-printed objects cost less than
those sold by supply companies), and to its sustainability in terms of employed materials and amount
of generated waste.

Continuing our developments in the application of 3D-printing technology in organic
synthesis [13,19], we investigated the design and the creation of stereolithography (SLA) 3D-printed
catalytically active devices to be used as catalysts in synthetic transformations. SLA technology is the
first patented 3D-printing technology [23], and the process works by focusing an ultraviolet (UV) light
onto a vat of photopolymer resin. UV light is used to draw a preprogrammed design onto the surface
of the photopolymer. Because photopolymers are photosensitive under ultraviolet light, the resin is
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solidified and forms a single layer of the desired 3D object. This process is repeated for each layer
upon completion of the desired object.

The possibility to create a 3D-printed device containing an embedded organocatalyst is very
attractive, since the catalyst could be immobilized on solid support without the need for any chemical
modification of the catalyst itself. The supported catalytic species could easily be removed upon a
completed reaction and, possibly, be reused in further reactions. Advantages of this approach are similar
to those of immobilized species, such as easily completed isolation and purification procedure [24].

Only very few examples of this approach are known so far. Sotelo, Gil, and coworkers developed
a 3D-printed woodpile structure composed of a 5 wt % catalytic copper species immobilized onto
Al2O3 support. Those devices showed good catalytic efficacy and good recyclability in different
Ullmann reactions employed for the synthesis of imidazoles, benzimidazoles, and N-aryl amides [25].
In 2017, the same group reported that a 3D-printed woodpile that was made up of sintered Al2O3

could act as a Lewis acid catalyst in the synthesis of biologically active 1,4-dihydropyridines and
3,4-dihydropyrimidin-2(1H)-ones under solventfree conditions with microwave irradiation [26].
In another example, Hilton filed a patent application disclosing the realization of 3D-printing
impregnated plastics for chemical reactions [27]. Magnetic stirring-bar hosts were created by a
stereolithographic technique; a p-toluenesulfonic acid catalyst was embedded in the photopolymer
resin, and the “catalytic stirrer” was used to promote a Mannich reaction in good yields.

In order to further expand the classes of embedded catalysts in 3D-printed devices, we investigated
the incorporation of different organocatalysts into photocurable resins, which were subjected to a
3D-printing stereolithographic process for the creation of functionalized devices.

For this, we selected thiourea (4) as the catalyst of choice for our preliminary investigations.
This organocatalyst is robust, highly versatile, and, among other attributes, able to promote the
Friedel–Crafts alkylation of N–Me–indole (1) with trans-β-nitrostyrene (2) to afford the 3-substituted
indole derivative (3) in quantitative yields (Scheme 1) [28].
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Scheme 1. Organocatalyzed Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene.

Some issues need to be addressed in the development of the embedded catalyst in 3D-printed
devices: (i) resin compatibility towards used solvent and reactants; (ii) 3D printability of resin with
modified composition; (iii) catalyst leaching phenomena during the chemical transformation; and (iv)
identification of the optimal device shape to be 3D-printed.

2. Results and Discussion

Commercially available “clear” photopolymerizable resin, compatible with Formlabs Form 2 3D
printer, was selected as the resin of choice. This methacrylate-based resin is commercially available at
low cost and it has a good chemical resistance to solvents, as certified by the manufacturer [29]. Since
no compatibility information has been reported with toluene, we replicated the swelling test of the
manufacturer using this solvent (see Supporting Information (SI) for further details). Weight gain over
24 h for a printed and postcured (see SI) 1 × 1 × 1 cm cube immersed in toluene was less than 1%, and,
after 3 months, no appreciable deformations were observed. This solvent was chosen as the preferred
reaction medium for the addition of indoles to trans-β-nitrostyrene. Additional tests were performed
using a 0.15 M toluene solution of N–Me–indole, a 0.1 M toluene solution of trans-β-nitrostyrene, and a
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0.1 M toluene solution of compound 3; in each case, no deformation was observed after one week.
Having established the compatibility of “clear” resin with these mixtures, we focused our attention
on the capability of resins loaded with a different weight % amount of thiourea 4 to undergo the
photopolymerization process. Mixtures obtained by combination of clear resin and with the desired
amount of catalyst 4 were subjected to ultrasound irradiation for 30 min, followed by orbital shake
mixing (30 min, 400 rpm) in order to guarantee the homogeneity of the viscous mixture. Subsequently,
a thin layer of resin was subjected to polymerization by irradiation with a UV lamp (365 nm) for 2 h.
Results are reported in Table 1.

Table 1. Investigation on ultraviolet (UV) polymerization of resin samples containing thiourea catalyst.

Sample Thiourea (weight %) Catalyst Loading
(mmol/g)

UV Polymerization
Occurred

Resin 1 1 0.019 Yes
Resin 2 5 0.111 Yes
Resin 3 10 0.222 Yes
Resin 4 15 0.299 Yes
Resin 5 20 0.389 Yes

According to this survey, in each of the cases studied, the polymerization process occurred
positively. This thin solid cross-linked resin layer was then washed with isopropanol, sonicated for
15 min, air dried, and finally chipped into small flakes. These thiourea-embedded slivers were then used
to catalyse the addition of N–Me–indole to trans-β-nitrostyrene. In a typical experiment, 1 mol/equiv
of trans-β-nitrostyrene was reacted with 1.5 mol/equiv of N–Me–indole in a 0.1 M toluene solution and
stirred by an orbital shaker (400 rpm) for 24 h at room temperature. Yields were determined by 1H
NMR using 1,3,5-trimethoxybenzene as internal standard and are reported in Table 2 [30].

Table 2. Friedel-Crafts alkylation of N–Me–indole with trans-β-nitrostyrene promoted by embedded
thiourea UV-polymerized resin.
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Entry 
Thiourea Loading 

(wt %) 
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1 - - - 

2 1 0.1 - 

3 5 0.1 - 

4 10 0.1 - 

5 10 0.3 - 
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7 10 1 23 

8 15 0.3 - 

9 15 0.5 7 
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Entry Thiourea Loading (wt
%)

Embedded-Catalyst/Substrate
Ratio (mol/mol) Yield 1

1 - - -
2 1 0.1 -
3 5 0.1 -
4 10 0.1 -
5 10 0.3 -
6 10 0.5 -
7 10 1 23
8 15 0.3 -
9 15 0.5 7

10 15 1 60
11 20 0.1 7
12 20 0.2 14
13 20 0.5 25
14 20 1 49
15 20 2 53

1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard.
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As shown, no product formation occurred when polymerized resin flakes without embedded
thiourea 4 were used (Entry 1). Reactions performed in the presence of thiourea-embedded slivers
with low catalyst loading or with low embedded-catalyst/substrate ratios gave no product or very
poor results (Entries 2–9). However, when a 15 weight % thiourea-embedded resin was used in an
equimolar ratio with the substrate, product 4 was formed in a 60% yield (Entry 10). Positive results
were also obtained using resins with higher catalyst loading (Entries 14–15).

In order to confirm that the Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene
was catalyzed by heterogeneous thiourea-embedded flakes and not promoted by homogeneous catalyst
4 released from the resin in solution, we evaluated the leaching of the catalyst using different procedures.
At first, 10 weight % thiourea slivers were refluxed with chloroform in a Soxhlet apparatus for 24 h.
Since “clear” resin is not stable under chlorinated solvents (see Supporting Information), further sliver
fragmentation was observed. After solvent evaporation, the resulting solid material was analyzed
by NMR; only signals belonging to the polymer material were detected, with no evidence of catalyst
signals in the crude form.

In an additional test, the crude reaction mixtures of Entries 7 and 11 in Table 2 were analyzed by
19F NMR in order to verify the absence/presence of a thiourea 4 fluorine signal. Only very minor traces
of the catalyst were detected in the solution. In order to quantitatively analyze the catalyst leaching
of the slivers loaded with different amounts of catalyst 4, 19F NMR analysis was performed using a
0.017 M solution of hexafluorobenzene in toluene as 19F NMR internal standard. Results are reported
in Figure 1.
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Figure 1. Wt % catalyst leaching calculated on entire catalyst amount dissolved in resin.

As shown, 10 wt % thiourea-embedded material showed a catalyst leaching of 0.25 wt % after
24 h, and 1.3 wt % after 10 days of continuous shaking at 400 rpm. In addition, 15 and 20 wt %
thiourea-embedded flakes showed comparable negligible leaching after 24 h (0.27% and 0.33%,
respectively); after 10 days, the first showed catalyst leaching of 2.5%, while 8.2 wt % leaching was
detected for the second.

Therefore, we selected 15 wt % resin as a good compromise between efficiency and (re)usability.
However, the observed catalyst leaching (0.27 wt %) was not sufficient to promote Friedel–Crafts
alkylation. Indeed, after 24 h reaction between N–Me–indole and trans-β-nitrostyrene (60% yield,
Entry 7, Table 2), thiourea-embedded slivers were removed, and the reaction was shaken for 24 h more.
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After this period, no yield increase was observed, confirming that the small amount of catalyst leached
during the reaction was not able to promote the reaction by itself.

On the basis of these positive preliminary results using thiourea-embedded flakes of
methacrylate-based resin as a catalyst in organocatalytic Friedel–Crafts alkylation, we focused our
attention on the creation of devices with a well-defined shape that could be manufactured using an SLA
3D-printing process. Considering that the higher performance of catalysts could be related to increased
exposed surface areas (as for a typical heterogeneous process), we designed four different devices
characterized by the presence of many grooves. Autodesk 123d design freeware CAD software [31]
was used to design and generate the corresponding Surface Tessellation Language (.stl) files. The
rendering of these devices is reported in Figure 2.
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Figure 2. Three-dimensionally printed devices.

Device 1 consisted of a 6 mm diameter sphere with two circular channels (diameter = 1 mm) and
was characterized by 0.07 cm3 volume and 1.57 cm2 surface area. Device 2 was a “gear wheel” of 6 mm
diameter and 3 mm height (0.05 cm3 volume, 2.06 cm2 surface area); Device 3 was a cubic woodpile
structure (6 × 6 × 6 mm, 0.11 cm3 volume, and 3.78 cm2 surface area); and Device 4 was a cube with
nine channels for each face (6 × 6 × 6 mm, 0.10 cm3, 4.36 cm2 surface area).

Then, 150 mL of 10 wt % and 150 mL of 15 wt % thiourea (4)-embedded resin were prepared
(with 0.300 and 0.199 mmol/g catalyst loading, respectively) and loaded into a Formlabs Form 2
stereolithography (SLA) 3D printer. The 3D-printing process was performed with 50 µm layer
thickness, and supports were added in order to facilitate the process. Multiple copies of the devices
were simultaneously printed on the same build plate to provide a good number of catalytically active
devices to be employed in Friedel–Crafts alkylation (Figure 3).

Catalysts 2019, 9, x FOR PEER REVIEW 5 of 9 

 

more. After this period, no yield increase was observed, confirming that the small amount of catalyst 

leached during the reaction was not able to promote the reaction by itself.  

On the basis of these positive preliminary results using thiourea-embedded flakes of 

methacrylate-based resin as a catalyst in organocatalytic Friedel–Crafts alkylation, we focused our 

attention on the creation of devices with a well-defined shape that could be manufactured using an 

SLA 3D-printing process. Considering that the higher performance of catalysts could be related to 

increased exposed surface areas (as for a typical heterogeneous process), we designed four different 

devices characterized by the presence of many grooves. Autodesk 123d design freeware CAD 

software [31] was used to design and generate the corresponding Surface Tessellation Language (.stl) 

files. The rendering of these devices is reported in Figure 1.  

Device 1 consisted of a 6 mm diameter sphere with two circular channels (diameter = 1 mm) and 

was characterized by 0.07 cm3 volume and 1.57 cm2 surface area. Device 2 was a “gear wheel” of 6 

mm diameter and 3 mm height (0.05 cm3 volume, 2.06 cm2 surface area); Device 3 was a cubic 

woodpile structure (6 × 6 × 6 mm, 0.11 cm3 volume, and 3.78 cm2 surface area); and Device 4 was a 

cube with nine channels for each face (6 × 6 × 6 mm, 0.10 cm3, 4.36 cm2 surface area).  

 

Figure 1. Three

-

dimensionally printed devices. 

Then, 150 ml of 10 wt % and 150 ml of 15 wt % thiourea (4)-embedded resin were prepared (with 

0.300 and 0.199 mmol/g catalyst loading, respectively) and loaded into a Formlabs Form 2 

stereolithography (SLA) 3D printer. The 3D-printing process was performed with 50 μm layer 

thickness, and supports were added in order to facilitate the process. Multiple copies of the devices 

were simultaneously printed on the same build plate to provide a good number of catalytically active 

devices to be employed in Friedel–Crafts alkylation (Figure 2).  

 

Figure 3. (A) Devices (blue) arranged on printer plate with software-generated supports (grey). (B)
Devices obtained after 3D-printing process. (C) Devices 1-4 after support removal compared with
€0.01 coin.



Catalysts 2020, 10, 109 6 of 9

Freshly printed objects need to be carefully cleaned before use to remove any residue of
unpolymerized material. For this purpose, crude 3D-printed devices were sonicated in an iPrOH
bath for 20 min, and the same operation was repeated twice with toluene until lost weight was lower
than 1%. After this washing process, the solvent was removed, and devices were air-dried prior to
postcuring for 20 min under a UV lamp. Their efficiency as organocatalysts was then investigated in
the Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene. Reactions were performed
with different catalyst/substrate ratios (mol/mol) considering the required catalyst amount as the global
amount of catalyst present into the entire device (the catalyst that is really accessible and interacts with
the reactants is much less). Results are reported in Table 3.

Table 3. Friedel–Crafts alkylation promoted by stereolithography (SLA) 3D-printed devices.
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 

was employed (Table 3, Entry 4). Comparable results were also obtained using holed-cube Device 4, 

which presented the highest exposed surface, while other device shapes seemed to be less effective 

in promoting the Friedel–Crafts alkylation of N–Me–indole with trans--nitrostyrene.  

Preliminary recycling studies were also carried out using the described general procedures (1:1 

catalyst/substrate ratio). The 3D-printed 15 wt % thiourea-embedded devices were used; although 

devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  

3. Materials and Methods  
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90 h Yield
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postcuring for 20 min under a UV lamp. Their efficiency as organocatalysts was then investigated in 

the Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene. Reactions were performed 
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global amount of catalyst present into the entire device (the catalyst that is really accessible and 

interacts with the reactants is much less). Results are reported in Table 3.  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 

was employed (Table 3, Entry 4). Comparable results were also obtained using holed-cube Device 4, 

which presented the highest exposed surface, while other device shapes seemed to be less effective 

in promoting the Friedel–Crafts alkylation of N–Me–indole with trans--nitrostyrene.  

Preliminary recycling studies were also carried out using the described general procedures (1:1 

catalyst/substrate ratio). The 3D-printed 15 wt % thiourea-embedded devices were used; although 

devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 

was employed (Table 3, Entry 4). Comparable results were also obtained using holed-cube Device 4, 
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in promoting the Friedel–Crafts alkylation of N–Me–indole with trans--nitrostyrene.  
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devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  

3. Materials and Methods  

10 2 17 31

3

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 9 

 

Figure 2. (a) Devices (blue) arranged on printer plate with software-generated supports (grey). (b) 

Devices obtained after 3D-printing process. (c) Devices 1-4 after support removal compared with 

€0.01 coin. 

Freshly printed objects need to be carefully cleaned before use to remove any residue of 

unpolymerized material. For this purpose, crude 3D-printed devices were sonicated in an iPrOH bath 

for 20 min, and the same operation was repeated twice with toluene until lost weight was lower than 

1%. After this washing process, the solvent was removed, and devices were air-dried prior to 

postcuring for 20 min under a UV lamp. Their efficiency as organocatalysts was then investigated in 

the Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene. Reactions were performed 

with different catalyst/substrate ratios (mol/mol) considering the required catalyst amount as the 

global amount of catalyst present into the entire device (the catalyst that is really accessible and 

interacts with the reactants is much less). Results are reported in Table 3.  

Table 3. Friedel–Crafts alkylation promoted by stereolithography (SLA) 3D-printed devices. 

 

Entry 
Device 

Shape 

Thiourea Loading 

(% w/w) 

Catalyst/substrate 

ratio (mol/mol)  

24 h Yield 

(%)1 

90 h Yield 

(%)1 

1  10 1 5 10 

2  10 2 17 31 

3  15 0.5 6 37 

4  15 1 40 60 

5  15 2 36 56 

6  10 1 13 74 

7  15 1 23 79 

8  15 1 33 56 

9  15 1 11 382 
1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 
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devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 

was employed (Table 3, Entry 4). Comparable results were also obtained using holed-cube Device 4, 

which presented the highest exposed surface, while other device shapes seemed to be less effective 

in promoting the Friedel–Crafts alkylation of N–Me–indole with trans--nitrostyrene.  

Preliminary recycling studies were also carried out using the described general procedures (1:1 

catalyst/substrate ratio). The 3D-printed 15 wt % thiourea-embedded devices were used; although 

devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 
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devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 
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run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 

was employed (Table 3, Entry 4). Comparable results were also obtained using holed-cube Device 4, 

which presented the highest exposed surface, while other device shapes seemed to be less effective 

in promoting the Friedel–Crafts alkylation of N–Me–indole with trans--nitrostyrene.  

Preliminary recycling studies were also carried out using the described general procedures (1:1 

catalyst/substrate ratio). The 3D-printed 15 wt % thiourea-embedded devices were used; although 

devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h. 

After completing the reactions, the catalytic devices were easily removed from the reaction 

mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3, but 

longer reaction times were required. From a general point of view, devices realized with 10 wt % 

thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction 

compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical 

devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio 

was employed (Table 3, Entry 4). Comparable results were also obtained using holed-cube Device 4, 

which presented the highest exposed surface, while other device shapes seemed to be less effective 

in promoting the Friedel–Crafts alkylation of N–Me–indole with trans--nitrostyrene.  

Preliminary recycling studies were also carried out using the described general procedures (1:1 

catalyst/substrate ratio). The 3D-printed 15 wt % thiourea-embedded devices were used; although 

devices changed in color from yellow to pale orange, the reused devices were effective for a second 

run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 

40%; second run, 37%; third run, 11%).  
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1 Calculated by 1H NMR using 1,3,5-trimethoxybenzene as internal standard. 2 Reaction time, 48 h.

After completing the reactions, the catalytic devices were easily removed from the reaction
mixture. All 3D-printed thiourea-embedded devices could promote the synthesis of compound 3,
but longer reaction times were required. From a general point of view, devices realized with 10 wt %
thiourea-embedded resin were characterized by less chemical efficiency in promoting the reaction
compared to the same device realized at 15 wt % thiourea-embedded resin. However, spherical
devices led to the formation of the desired compound in 60% yield when a 1:1 catalyst/substrate ratio
was employed (Table 3, Entry 4). Comparable results were also obtained using holed-cube Device 4,
which presented the highest exposed surface, while other device shapes seemed to be less effective in
promoting the Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene.

Preliminary recycling studies were also carried out using the described general procedures
(1:1 catalyst/substrate ratio). The 3D-printed 15 wt % thiourea-embedded devices were used; although
devices changed in color from yellow to pale orange, the reused devices were effective for a second
run without significant loss of yield, but showed clear drop in efficiency in the third run (first run, 40%;
second run, 37%; third run, 11%).
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3. Materials and Methods

Reactions were monitored by analytical thin-layer chromatography (TLC, Merck KGaA, Darmstadt,
Germany) using silica gel 60 F254-precoated glass plates (0.25 mm thickness) and visualized using UV
light. Flash chromatography was carried out on silica gel (230–400 mesh). Proton NMR spectra were
recorded on spectrometers operating at 300 MHz (Bruker Avance 300, Bruker, Billerica, MA, USA);
proton chemical shifts were reported in ppm (δ) with the solvent reference relative to tetramethylsilane
(TMS) employed as the internal standard (CDCl3 δ = 7.26 ppm). 19F NMR spectra were recorded on
300 MHz spectrometers (Bruker Avance 300) operating at 282.1 MHz; fluorine chemical shifts were
reported in ppm (δ) relative to CF3Cl with the respective solvent resonance as the internal standard
(CDCl3, δ = 77.0 ppm). Three-dimensionally printed devices were created using a Formlabs Form
2 3D printer (Formlabs Inc., Somerville, MA, USA). Microwave reactions were performed using a
Discovery-SP CEM microwave (CEM Corporation, Matthews, NC, USA) and photopolymerization
was pursued using a Shengtuo Kangtuo SK-818 UV lamp. Dry solvents were purchased and stored
under nitrogen over molecular sieves (bottles with crown caps, Merck KGaA, Darmstadt, Germany).
All chemicals were purchased from commercial suppliers and used without further purification unless
otherwise specified. Clear V4 resin was purchased from https://formlabs.com, and used as received.

4. Conclusions

In conclusion, in this work, 3D-printed thiourea-embedded devices were designed, prepared,
and used in an organic transformation. Stereolithography 3D-printed catalytically active devices
differing in shape and accessible surface were designed. Three-dimensionally printed organocatalytic
materials were employed in the Friedel–Crafts alkylation of N–Me–indole with trans-β-nitrostyrene,
leading to the formation of the desired product up to a 79% yield, although longer reaction times
were required compared to the reaction under homogeneous conditions. The architectural control
offered by the 3D-printing process allowed the straightforward production of devices endowed with
different shapes and surface areas, with high reproducibility. More studies are needed related to the
characteristics and the properties of the monomer to be polymerized to increase catalyst accessibility,
and improve catalytic efficiency and the reaction rate. Nevertheless, in the future, the same 3D-printing
approach might be used to fabricate catalytically active objects that are able to efficiently promote other
organic reactions, including stereoselective transformations catalyzed by chiral catalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/1/109/s1:
details of the procedure and NMR traces of products reported in Supporting Information.
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