

Article

Supporting Information: Hydroalkoxylation of Terminal and Internal Alkynes Catalyzed by Dinuclear Gold(I) Complexes with Bridging Di(N-Heterocyclic Carbene) Ligands

Elena Marcheggiani ¹, Cristina Tubaro ¹, Andrea Biffis ¹, Claudia Graiff ² and Marco Baron ^{1,*}

1. NMR spectra of compound AuIL⁷

Figure S1. 1H-NMR spectrum (CDCl3, 300 MHz) of AuIL7.

Figure S2. ¹³C{¹H} NMR (CDCl₃, 75.5 MHz) of AuIL⁷.

Figure S3. Portion of the ¹H,¹³C-*HMBC* spectrum of **AuIL**⁷ in CDCl₃ showing the resonance of the carbone carbon.

Figure S4. ¹H,¹H -NOESY NMR spectrum of AuIL⁷ in CDCl₃.

2. Crystallographic data of compound Au₂Br₂L⁴

Compound	Au2Br2L ⁴	
Formula	C33.5H44.5Au2Br2Cl3N4	
Molecular Weight	1163.33	
Crystal system	Monoclinic	
Space group	P21/n	
<i>a</i> [Å]	13.5252(4)	
<i>b</i> [Å]	12.9755(4)	
<i>c</i> [Å]	23.9510(7)	
<i>α</i> [°]	90	
<i>β</i> [°]	91.8390(10)	
γ[°]	90	
V[ų]	4201.1(2)	
Temperature (K)	200(2)	
Ζ	4	
$D_{calc}[g \cdot cm^{-3}]$	1.839	
μ[cm ⁻¹]	9.095	

Table S1. Crystallographic data of compound Au₂Br₂L^{4.}

F(000)	2210.0	
Reflections collected	52909	
Independent reflections	10401	
Reflections in refinement	10401	
R(int)	0.0400	
Refined parameters	419	
$\operatorname{R}_1\left[I > 2\sigma(I)\right]$	$R_1 = 0.0509$ $wR_2 = 0.1330$	
wR2 [all data]	$R_1 = 0.0735$ $wR_2 = 0.1537$	
GOF	1.052	
CCDC	1968216	

 $R_1 = \Sigma |Fo-Fc|/\Sigma(Fo); wR_2 = [\Sigma[w(Fo^2-Fc^2)^2]/\Sigma[w(Fo^2)^2]]^{1/2}.$

3. Identification of the products of the alkyne hydroalkoxidation reactions

3aa. (E/Z) 3-methoxy-3-phenyl-ethylacrylate [1]

¹H-NMR Z-Isomer (200 MHz, CDCl₃) δ ppm: 7.63-7.31 (m, 5H), 5.54 (s, 1H), 4.22 (q, J=7.1 Hz, 2H),

3.84 (s, 3H), 1.32 (t, J=7.1, 3H).

¹H-NMR E-Isomer (200 MHz, CDCl₃) δ ppm: 7.63-7.31 (m, 5H), 5.27 (s, 1H), 4.05 (q, J=7.1 Hz, 2H),

3.81 (s, 3H), 1.15 (t, J=7.1Hz, 2H).

3ab. (E/Z)-Ethyl 3-butoxy-3-phenylacrylate

NMR signals of product **3ab** were identified by similarity with those of the analogous product **3aa**.

3ac. ethyl 3-phenoxy-3-phenylacrylate [2]

¹H NMR Z-Isomer (400 MHz, CDCl3) δ 7.60 (d, J = 8.0 Hz, 2H), 7.37-7.31 (m, 3H), 7.25-7.20 (m, 2H), 6.97-6.94 (m, 3H), 6.15 (s, 1H), 4.12 (q, J = 8.0 Hz, 2H), 1.18 (t, J = 8.0 Hz, 3H) ppm.

3ca. (Z/E)-Ethyl 3-methoxyacrylate

Product 3ca is commercially available and the NMR signals can be found in on-line databases.

3ca'. Ethyl 2-methoxyacrylate

NMR signals of product 3ca' were identified by similarity with those of the analogous species methyl

2-metoxyacrylate [3].

3ea. (Z)-1-methoxy-1,2-diphenylacetylene [4]

¹H-NMR Z-Isomer (250 MHz, CDCl₃) δ ppm: 3.55 (s, 3H), 6.02 (s, 1H), 7.13-7.16 (m, 1H), 7.24-7.32 (m,

5H), 7.48 (dd, J = 8.0 Hz, J = 1.5 Hz, 2H), 7.63 (d, J = 7.3 Hz, 2H).

5a. 3-oxo-3-phenyl Ethylpropionate [5]

¹H-NMR of the keto form (400 MHz, CDCl₃) δ ppm: 1.22-1.26 (m, 3H), 3.96 (s, 2H), 4.17-4.29 (m, 2H),

7.37-7.48 (m, 2H), 7.55-7.59 (m, 1H), 7.92-7.95 (m, 2H).

¹H-NMR (250 MHz, CDCl₃) δ ppm: 2.54 (s, 3H), 7.36-7.53 (m, 3H), 7.88-7,93 (m, 2H).

5c. Ethyl pyruvate [7]

¹H-NMR (400 MHz, CDCl₃) δ ppm: 1.38 (t, 3H), 2.47 (s, 3H), 4.32 (q, 2H).

5d. 3-hexanone [8]

¹H-NMR (200 MHz, CDCl3) δ ppm: 0.89 (s, 3H), 1.02 (s, 3H), 1.60 (q, J =7.4 Hz, 2H), 2.49-2.26 (m, 4H).

5e. 1,2-diphenylethanone [9]

¹H-NMR (400 MHz, CDCl₃) δ ppm: 4.32 (s, 2H), 7.31-7.29 (m, 3H), 7.36 (t, J=7.3 Hz, 2H), 7.49 (t, J=7.6 Hz, 2H), 7.59 (t, J=7.4 Hz, 1H), 8.05 (d, J=7.7 Hz, 2H).

5g. Methyl 3-oxo-3-phenylpropionate [10]

¹H-NMR (400 MHz, CDCl₃) δ ppm: 3.75 (s, 3H), 4.00 (s, 2H), 7.50-7.46 (m, 2H), 7.61-7.57 (m, 1H), 7.95-

7.93 (m, 2H).

4ca. Ethyl 3,3-dimethoxypropionate [11]

¹H-NMR (400 MHz, CDCl₃) δ ppm: 1.25 (t, J=3.6 Hz, 3H), 2.63 (d, J=6.0 Hz, 2H), 3.35 (s, 6H), 4.15 (q,

J=3.6 Hz, 2H), 4.82 (t, J=6.0 Hz, 1H).

1g. Methyl phenylpropiolate [12]

 $Ph \longrightarrow CO_2Me$

¹H-NMR (300 MHz, CDCl₃) δ ppm: 3.85 (s, 3H), 7.32-7.42 (m, 2H), 7.42 - 7.49 (m, 1H), 7.54-7.64 (m,

2H).

4. Catalysts screening in the hydromethoxylation of ethyl phenylpropiolate

Entry	Cat (mol %)	t (h)	Alkyne Conversion (%) ^a	Yield (%) ^a
1	$Au_2Br_2L^1$	1.5	67	(E)- 3 aa (9); (Z)- 3 aa (13); 4 aa (5); 5 a (40)
		6.5	91	4aa (30); 5a (61)
		22	92	4aa (5); 5a (87)
2	$Au_2Br_2L^2$	1.5	78	(E)- 3aa (14); 5a (64)
		6.5	90	(Z)- 3aa (10); 5a (80)
3	$Au_2Br_2L^3$	1.5	62	(E)- 3aa (8); (Z)- 3aa (43); 4aa (7); 5a (4)
		6.5	86	(E)- 3aa (1); (Z)- 3aa (2); 4aa (53); 5a (30)
		22	87	4aa (19); 5a (68)
4	$Au_2Br_2L^4$	1	100	(E)- 3aa (33); 5a (67)
		18.5	100	5a (100)
5	Au ₂ Br ₂ L ⁵	1	86	(<i>E</i>)- 3aa (27); (<i>Z</i>)- 3aa (39); 4aa (9); 5a (11)
		18.5	89	4aa (17); 5a (72)
6	Au ₂ Br ₂ L ⁶	1	72	(<i>E</i>)- 3aa (32); (<i>Z</i>)- 3aa (24); 4aa (6); 5a (10)
		23	100	5a (100)

Table S2. Catalysts screening in the hydromethoxylation of ethyl phenylpropiolate.

Reaction conditions: Ethyl phenylpropiolate (0.6 mmol), MeOH (0.5 mL, 12.3 mmol), Au₂Br₂L (0.006 mmol), AgOTf co-cat. (0.012 mmol), 40 °C. ^{*a*} Alkyne conversion and product yields have been determined by ¹H NMR.

References

- 1. McNulty, J.; Keskar, K.; Crankshaw, D.J.; Holloway, A.C. Discovery of a new class of cinnamyl-triazole as potent and selective inhibitors of aromatase (cytochrome P450 19A1). *Bioorg. Med. Chem. Lett.* **2014**, *24*, 4586–4589.
- Li, Y; Wang, Z; Ding, K. Minimizing Aryloxy Elimination in Rh¹-Catalyzed Asymmetric Hydrogenation of β-Aryloxyacrylic Acids using a Mixed-Ligand Strategy. *Chem. Eur. J.* 2015, *21*, 16387–16390.
- 3. Marti, C.; Carreira, E.M. Total Synthesis of (–)-Spirotryprostatin B: Synthesis and Related Studies. *J. Am. Chem. Soc.* **2005**, *127*, 11505–11515.

- Bousrez, G.; Déchamps, I.; Vasse, J.-L.; Jaroschik, F. Reduction of titanocene dichloride with dysprosium: access to a stable titanocene(II) equivalent for phosphite-free Takeda carbonyl olefination. *Dalton Trans.* 2015, 44, 9359–9362.
- 5. Maurya, R.A.; Min, K-I. Kim, D.-P. Continuous flow synthesis of toxic ethyl diazoacetate for utilization in an integrated microfluidic system. *Green Chem.* **2014**, *16*, 116–120.
- 6. Iranpoor, N.; Panahi, F. Nickel-Catalyzed One-Pot Deoxygenation and Reductive Homocoupling of Phenols via C–O Activation Using TCT Reagent. *Org. Lett.* **2015**, *17*, 214–217.
- Du, Y.; Li, C.; Tan, X.; Fu, H.; Zheng, X.; Li, R.; Chen, H. Enantioselective Hydrogenation of Ethyl Pyruvate Catalyzed by 1,2-Diphenyl-ethylenediamine-Modified Iridium Complex: Effect of Solvent. *Asian J. Chem.* 2014, 26, 319–322.
- 8. Gatto, M.; Baratta, W.; Belanzoni, P.; Belpassi, L.; Del Zotto, A.; Tarantelli, F.; Zuccaccia, D. Hydration and alkoxylation of alkynes catalyzed by NHC–Au–OTf. *Green Chem.* **2018**, *20*, 2125–2134.
- 9. Sun, H.; Yang, C.; Gao, F.; Li, Z.; Xia, W. Oxidative CÀC Bond Cleavage of Aldehydes via Visible-Light Photoredox Catalysis. *Org. Lett.* **2013**, *15*, 624–627.
- Giboulot, S.; Liron, F.; Prestat, G.; Wahl, B.; Sauthier, M.; Castanet, Y.; Mortreux, A.; Poli, G. Pd-catalyzed domino carbonylative–decarboxylative allylation: an easy and selective monoallylation of ketones. *Chem. Commun.* 2012, *48*, 5889–5891.
- 11. Wang, Z.-Y.; Jiang, H.-F.; Ouyang, X.-Y.; Qi, C.-R.; Yang, S.-R. Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism. *Tetrahedron* **2006**, *62*, 9846–9854.
- 12. Wendling, T.; Risto, E.; Krause, T.; Gooßen, L.J. Salt-Free Strategy for the Insertion of CO₂ into C–H Bonds: Catalytic Hydroxymethylation of Alkynes. *Chem. Eur. J.* **2018**, *24*, 6019–6024.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).