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Abstract: Evolution of cooperation has traditionally been studied by assuming that individuals
adopt either of two pure strategies, to cooperate or defect. Recent work has considered continuous
cooperative investments, turning full cooperation and full defection into two opposing ends of a
spectrum and sometimes allowing for the emergence of the traditionally-studied pure strategies
through evolutionary diversification. These studies have typically assumed a well-mixed population
in which individuals are encountered with equal probability. Here, we allow for the possibility of
assortative interactions by assuming that, with specified probabilities, an individual interacts with
one or more other individuals of the same strategy. A closely related assumption has previously been
made in evolutionary game theory and has been interpreted in terms of relatedness. We systematically
study the effect of relatedness and find, among other conclusions, that the scope for evolutionary
branching is reduced by either higher average degree of, or higher uncertainty in, relatedness with
interaction partners. We also determine how different types of non-linear dependencies of benefits
and costs constrain the types of evolutionary outcomes that can occur. While our results overall
corroborate the conclusions of earlier studies, i.e. higher relatedness promotes the evolution of
cooperation, our investigation gives a comprehensive picture of how relatedness affects the evolution
of cooperation with continuous investments.

Keywords: adaptive dynamics; evolution; cooperation

1. Introduction

Cooperation, and in particular the willingness to cooperate with relatives, is regularly observed in
many species. Observed forms of cooperation include egg trading, cooperative foraging, and predator
inspection among fishes; defensive coalitions, cooperative hunting, food sharing, and alarm calls
among birds; grooming behaviour, alarm signals, coalitions, alloparenting, and cooperative hunting
among various mammals; bloodsharing among vampire bats; care-giving behaviour in dolphins;
foraging, anti-predator behaviour, and hive thermoregulation in honeybee colonies; and “social
contracts” among paper wasps [1]. Social insects such as ants and bees also cooperate frequently
(e.g., [2,3]) and cooperation is observed even among microbes (e.g., [4]). Finally, human societies are
striking examples of cooperation.

Since cooperation often involves a cost to the individual without conveying a commensurate
immediate benefit, one would naively suspect that cooperation cannot evolve to any higher degree.
This, however, is not the case, and several mechanisms capable of promoting and supporting
cooperation has been proposed and explored [5,6]. An influential explanation of cooperation between
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related individuals is kin selection, which states that there can be positive selection for a gene conveying
cooperative behavior if the beneficiaries of that behavior are likely to share the same gene. This is
typically the case when interactions occurs between relatives, but the principle applies more generally
and assortative interaction between individuals can arise for a range of other reasons such as spatial
structure or social dynamics. In certain settings, the principle of kin selection can be formulated
quantitatively in a form that is now known as Hamilton’s rule: a cooperative gene is selected for if and
only if rb > c, where r is the average degree of relatedness, b is the average benefit to the recipients of
the cooperative act, and c is the average cost to the individual actor [7].

Cooperation has often been studied in the setting of evolutionary game theory based on the
prisoner’s dilemma or its many-player generalization, the public-goods game (see, e.g., [8,9]).
Although the latter game in principle allows for continuous investment, it is often assumed
that individuals adopt either of two pure strategies corresponding to cooperation and defection.
The evolutionary dynamics are studied with the so-called replicator equations in which strategies
with a higher payoff than average in the population increase in frequency. To allow for the possibility
of assortative interactions in this framework, Grafen [10] introduced the assumption that a fraction
of an individual’s interaction are with individuals of the same type with the remaining interactions
occurring with partners drawn at random from the population. This approach and related approaches
has since been used to address a range of evolutionary questions [11–17].

Recently, several studies have moved beyond the traditional cooperative games by considering
continuous cooperative investments as well as non-linearity of benefits and costs [4,18–23]. With this
setting, additional evolutionary outcomes become possible, including evolutionary branching in
the cooperative trait under consideration and the emergence of two or more different coexisting
strategies. In a landmark study, Doebeli et al. [18] considered a setting in which individuals interact
in pairs and each make a cooperative investment for their common good. Their joint benefit is
given by a non-linear function of their joint investment and their costs are given by a non-linear
function of their respective investments. Finally, their payoffs are determined as the difference of
the benefit and their respective costs. By assuming that the benefit and cost function were given
by quadrative polynomials, they classified all possible evolutionary outcomes. Building on this
framework, Cornforth et al. [4] showed how interaction assortment, interpreted as relatedness, can be
incorporated. Though developed independently, the idea is similar to Grafen [10]. Cornforth et al.
investigated how assortment affects the evolution of cooperation for three different benefit functions
and under the assumption of proportional costs.

Here, we extend the previous results by Cornforth et al. and systematically study the effects
of relatedness on the evolution of cooperation in non-linear public-goods games with continuous
investment. In Section 2, we present the general model. We consider both quadratic cost and benefit
functions and general, increasing, cost and benefit functions. In Section 3, we analyze the dynamics
of quadratic cost and benefit functions, and then derive results for general cost and benefit functions.
Finally, in Section 4, we recapitulate and discuss our main results and identify important challenges
for future research.

2. Model Description

2.1. Demographical Dynamics

We consider a model based upon Doebeli et al. [18] and Cornforth et al. [4]. We assume an
infinite population in which the ith individual has trait value xi representing cooperative investment,
with 0 ≤ xi ≤ 1. At each generation, N random individuals with respective trait values x1, . . . , xN are
chosen for an interaction, in which the payoff to the ith individual, with 1 ≤ i ≤ N, is given by

B(x1 + . . . + xN)

N
− C(xi), (1)
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where B : [0, N] → R+ ∪ {0} and C : [0, 1] → R+ ∪ {0} are two increasing functions such that
B(0) = C(0) = 0. B(x1 + . . . + xN) is the collective benefit of the cooperative investment of the entire
group, and C(xi) is the cost of the individual’s own investment. The collective benefit is assumed to be
divided equally among the members of the group, yielding a per capita benefit of B(x1 + . . . + xN)/N.

Each individual is assumed to be identical by descent (i.b.d.) to a random number of individuals
in the group including itself. We define Pr(k) to be the probability for an individual to be i.b.d. to
exactly k individuals in the group including itself. Similar to Cornforth et al. [4], the expected payoff to
a rare mutant with trait value m in a monomorphic population of residents with trait value r becomes

P(m, r) =
N

∑
k=1

Pr(k)B(km + (N − k)r)
N

− C(m). (2)

We assume that the population dynamics follow the replicator equation [8], i.e., that successful
strategies increase in frequency at a rate proportional to the difference with the average
population-level payoff.

We first carry out a comprehensive analysis of quadratic benefit and cost functions B(x) =

b2x2 + b1x, C(x) = c2x2 + c1x that typically look like in Figure 1. We restrict the range of possibilities
by requiring that B(x1 + . . .+ xN) and C(xi) should be increasing, i.e., that b1 > 0, c1 > 0, b1 ≥ −2Nb2,
and c1 ≥ −2c2. The signs of b2 and c2 will depend on whether the functions are accelerating or
decelerating. As a second step, we derive results for general increasing benefit and cost functions.
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Figure 1. Examples of cost and benefit functions. Parameters used are for decelerating benefit b2 = −1,
b1 = 20; for accelerating benefit b2 = 0.5, b1 = 1; for decelerating cost c2 = −2.75, c1 = 6; and for
accelerating cost c2 = 2, c1 = 1. In choosing the horizontal range for the plots of the benefit functions,
we have assumed N = 10.

2.2. Evolutionary Dynamics

We base our analysis of the evolutionary dynamics on adaptive-dynamics techniques [24–26].
Readers not familiar with these methods may want to refer to an introductory text such as by
Brännström et al. [27]. In brief, we consider the initial growth rate of a rare strategy m in an environment
dominated by a resident strategy r. This growth rate is called the invasion fitness and written as Sr(m).
The sign of the invasion fitness determines whether the rare strategy can grow in numbers and invade.
From the invasion fitness, we obtain the selection gradient S′r(r). Strategies at which selection ceases,
S′r(r) = 0 are called evolutionary singular. They can be evolutionary attractors, in which case they
are called convergence stable. Once established, the subsequent evolutionary dynamics depend on
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whether the singular strategy is evolutionarily stable or an evolutionary branching point. In the former
case, evolution comes to a halt while, in the latter case, the population diversifies and two coexisting
strategies emerge.

From the replicator equation, we obtain the following expression for the invasion fitness (see the
appendix of Brännström et al. [20] for background and derivation of a similar expression),

Sr(m) = P(m, r)− P(r, r) =
N

∑
k=1

Pr(k)B(km + (N − k)r)
N

− C(m)−
[

N

∑
k=1

Pr(k)B(Nr)
N

− C(r)

]
. (3)

Differentiating with respect to the mutant trait value and evaluating at m = r yields the
selection gradient

S′r(r) =
N

∑
k=1

k Pr(k)B′(Nr)
N

− C′(r) = µB′(Nr)− C′(r), (4)

where µ is the average whole-group relatedness, defined as the expected value of fraction of the group
that is i.b.d. to the focal individual (including the focal individual itself), i.e.,

µ =
N

∑
k=1

kPr(k)
N

. (5)

Given this selection gradient, we obtain the condition for convergence stability of an evolutionarily
singular strategy

NB′′(Nr∗)µ− C′′(r∗) < 0, (6)

and the condition for evolutionary stability

NB′′(Nr∗)[µ2 + σ2]− C′′(r∗) < 0, (7)

where σ2 = Var [K/N], with K being the random variable with probability density function Pr(k).
For a derivation of these conditions, see Cornforth et al. [4], as well as Appendix A.1.

3. Results

We first carry out a comprehensive analysis of the effect of assortment on the evolution of
cooperation with quadratic benefit and cost functions and then derive results for general cost and
benefit functions. Our key findings are illustrated in Figures 2 and 3. These show the effects of increased
average relatedness and increased variance in relatedness on the direction of selection and evolutionary
stability of the cooperative investment. Note, in particular, that a singular strategy increases with
increased relatedness if and only if it is convergence stable, and that increased relatedness as well
as increased uncertainty in relatedness can change the evolutionary stability of singular strategies.
Finally, we corroborate selected results using numerical simulations.

3.1. Quadratic Benefit and Cost Functions

Recall that we assume benefit and cost functions, B and C, that are increasing, satisfy B(0) =

C(0) = 0, and are given by quadratic polynomials, as shown in Figure 1. For these functions,
we completely classify the evolutionary dynamics and its dependence on on the mean and variance of
relatedness. Our conclusions are corroborated by numerical investigations (Figure 4).

With quadratic polynomials, the selection gradient, Equation (4), is given by

S′r(r) = µB′(Nr)− C′(r) = µ(2Nb2r + b1)− 2c2r− c1. (8)
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Recalling from Section 2.1 that that we must have b1 ≥ −2Nb2 for B to be increasing, we have
2Nb2r + b1 > 0 and it follows as expected that increased relatedness always alters selection pressures
in the direction of higher cooperative investments.

From Equation (8), we solve for the singular strategies, i.e., the values of r at which the selection
gradient vanishes, and find that, for each µ, there is at most one interior evolutionarily singular strategy
in the allowed range of cooperative investments. It is given by

r∗(µ) =
c1 − b1µ

2(Nb2µ− c2)
, (9)

whenever this value lies between 0 and 1.
Momentarily leaving aside the constraints on µ and r∗ imposed by their biological interpretation,

we note that the graph of r∗(µ) crosses zero at µ0 = c1/b1, has a vertical asymptote at µV = c2/(Nb2)

and a horizontal asymptote at rH = −b1/(2Nb2). The graph consists of two curves that are located
above and below the horizontal asymptote, respectively. Recalling from Section 2.1 that we must have
b1 ≥ −2Nb2 for B to be increasing, we see that the horizontal asymptote is located outside of the range
0 ≤ r < 1. Specifically, for accelerating benefits we have rH > 1 and for decelerating benefits we have
rH < −1. It follows that only one of the curves can be biologically relevant and this is the curve that
crosses zero at µ0 = c1/b1.

The evolutionary dynamics now depends on whether the horizontal asymptote is located above
or below the allowed trait range and on whether the graph of r∗ crosses zero before or after the
vertical asymptote, i.e., on whether µH > µ0. As we have already noted, the answer to the former
question depends on whether benefits are accelerating or decelerating. We have not found a similar
straightforward interpretation of the latter condition, but we note that µ0 > µV whenever benefits and
costs are not simultaneously accelerating or simultaneously decelerating. For each of the four possible
combinations, we can characterize the evolutionary dynamics.

Theorem 1. Let µ0, µV , and rH be as defined above. Let r∗(µ) be the interior strategy given by Equation (9)
whenever 0 < r∗(µ) < 1. Otherwise, let r∗(µ) be the boundary strategy that results from directional selection.
The following conclusions then hold.

• Assume B is accelerating and that µ0 > µV , as is the case if C is decelerating. For µ < µV , we have
r∗(µ) = 0 and selection is thus towards no cooperation. For µV < µ < µ0, r∗(µ) is decreasing and
the evolutionary dynamics is bistable. For µ > µ0, we have r∗(µ) = 1 and selection is thus towards
full cooperation.

• Assume B is accelerating and that µ0 < µV . For µ < µ0, we have r∗(µ) = 0 and selection is thus
towards no cooperation. For µ0 < µ < µV , we have r∗(µ) is increasing and convergence stable, i.e.,
an evolutionary attractor. For µ > µV , we have r∗(µ) = 1 and selection is thus towards full cooperation.

• Assume B is decelerating and µ0 > µV , as is the case if C is accelerating. For µ < µ0, we have r∗(µ) = 0
and selection is thus towards no cooperation. For µ > µV , r∗(µ) is increasing and convergence stable,
i.e., an evolutionary attractor.

• Assume B is decelerating and µ0 < µV . For µ0 < µ < µV , r∗(µ) is increasing and convergence stable, i.e.,
an evolutionary attractor. For µ > µV , we have r∗(µ) = 1 and selection is thus towards full cooperation.

Proof. The conclusions follow from the geometric observations that precede the theorem and the fact,
also discussed above, that the selection gradient is increasing function of µ.

We next investigate the effects of relatedness on evolutionary stability. The condition for
evolutionary stability, Equation (7), is

Nb2(µ
2 + σ2)− c2 < 0. (10)
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We thus see that both increased average relatedness (µ) and increased variance in relatedness (σ2)
can affect the evolutionary stability of a singular strategy. We consider four cases depending on the
signs of b2 and c2. When benefits are accelerating (b2 > 0) and costs decelerating (c2 < 0), the singular
strategy is never evolutionarily stable. As Theorem 1 shows, any interior singular strategy will lack
convergence stability and there will thus not be any evolutionary branching points. Diversification may
still be possible, but would have to be established through a large change in strategy. When benefits
are decelerating (b2 < 0) and costs accelerating (c2 > 0), any interior singular strategy is always
evolutionarily stable. If benefits and costs are both accelerating (b2 > 0, c2 > 0), either is possible
and any change with increased relatedness µ or variance σ2 is a loss of evolutionary stability. Finally,
if benefits and costs are both decelerating (b2 < 0, c2 < 0), either is possible and any change with
increased relatedness µ or variance σ2 is a gain of evolutionary stability.

Figure 2 shows typical outcomes for four combinations of accelerating and decelerating costs and
benefits. The outcomes are typical and consistent with our conclusions, although it should be noted
that Theorem 1 allows for alternative outcomes of directional selection when benefits and costs are
both accelerating or both decelerating.
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Figure 2. Bifurcation diagrams showing how the evolutionary dynamics depend on average relatedness
for all four possible combinations of the accelerating and decelerating benefit and cost functions in
Figure 1. Green thin line represents convergence stability without evolutionary stability, blue thick
line represents convergence stability with evolutionary stability, black dotted line represents neither
convergence stability nor evolutionary stability, and black thick line represents evolutionary stability
without convergence stability. We see that the four cases are qualitatively different. We also see that,
when B and C are both decelerating, a certain range of relatedness leads to evolutionary branching.
The parameters used were in all cases N = 10, and b1, b2, c1, c2 as in Figure 1.

Finally, we investigate the potential for evolutionary branching when benefits and costs are both
accelerating or both decelerating. Solving Equation (6) for µ, the boundary between convergence
stability and not convergence stability becomes

µc =
c2

Nb2
, (11)

assuming b2 6= 0. If B is decelerating, then µ > µc implies convergence stability, and if B is accelerating,
then µ < µc implies convergence stability.

Solving Equation (10) for σ2, we get the boundary between evolutionary stability and instability
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σ2
e =

c2 − Nb2µ2

Nb2
, (12)

once again assuming b2 6= 0. If B is decelerating, then σ2 > σ2
e implies evolutionary stability, and if B

is accelerating, then σ2 < σ2
e implies evolutionary stability. By instead solving Equation (10) for µ we

see that the singular strategy gains evolutionary stability at

µe =

√
c2 − Nb2σ2

e
Nb2

, (13)

If B is decelerating, then µ > µe implies evolutionary stability, and if B is accelerating, then µ < µe

implies evolutionary stability. For µe to equal µc implies σ2
e = µc(1− µc), that is, with maximum

variance (see Appendix A.2), convergence stability and evolutionary stability switch at the same time.
Assuming on the other hand that µe < µc, this would imply σ2

e > µe(1− µe) which is not possible
(see Appendix A.2). In other words, evolutionary stability will switch as soon as or after convergence
stability switches when increasing the average relatedness, depending on whether the variance is at its
maximum or not.

There is a region in the b2 − c2-plane where µe is undefined. This is when b2 < 0, c2 > Nb2σ2;
or b2 > 0, c2 < Nb2σ2. When the first one of these is the case, the condition for evolutionary stability
will always hold, and hence the strategy will always be evolutionarily stable. Conversely, when the
second is the case, the strategy will never be evolutionarily stable.

Using Equation (12), we can plot σ2 against µ to find out the effects of increased variance in
relatedness on the evolutionary stability, as in Figure 3.

We see that increased variance has a noticeable effect: The higher the variance, the sooner the
switch to evolutionary stability. We also see that increased relatedness can make the evolutionary
dynamics bistable.

We have carried out numerical simulations to corroborate our findings results, using the method
described in Appendix B. Our analytical investigation predicts evolutionary branching at µ = 0.4 and
evolutionary stability at µ = 0.8 for B and C decelerating, and bistability when µ = 0.5 for B and C
accelerating. This is consistent with the results from the simulations (see Figure 4).

No cooperation

Bistability (ESS)

Bistability

No cooperation

Bistability (ESS)

Bistability

Figure 3. Plots of variance in relatedness against average relatedness. The grey region represents
combinations of mean and variance that are not logically possible (see Appendix A.2). We see
that for decreasing cost and benefit, the region with evolutionary branching shrinks with increased
variance in relatedness. We also see that. for increasing cost and benefit, the region with neither
convergence stability nor evolutionary stability shrinks with increased variance in relatedness. In the
latter case, with increased average relatedness or variance in relatedness, the singular strategy moves
from evolutionary stability (ESS) without convergence stability to neither evolutionary stability nor
convergence stability. The parameters used are in both cases N = 10, and b2, b1, c2, c1 as in Figure 1.
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Figure 4. Simulations using group size N = 10, and B and C both decelerating or both accelerating.
As predicted by the analytical investigation, when B and C are decelerating, the population undergoes
evolutionary branching when µ = 0.4, and it reaches evolutionary stability when µ = 0.8. When B and
C are accelerating, bistability occurs when µ = 0.5. In all three cases, σ2 = 0.

3.2. General Cost and Benefit Functions

Having analyzed the case of quadratic cost and benefit functions, we now turn to the case of
general strictly increasing non-linear functions. As our first result, we note that the position of an
interior singular strategy, if it exists, depends only on the average relatedness and not on any higher
moment of the probability distribution. To see this, we recall that an interior singular strategy r∗ is by
definition a point at which the selection gradient, Equation (4), vanishes,

µB′(Nr∗)− C′(r∗) = 0. (14)

To see how increased relatedness affects an interior singular strategy, we differentiate implicitly
with respect to µ which gives,

r∗′(µ) =
B′(Nr∗)

C′′(r∗)− µNB′′(Nr∗)
. (15)

From Equation (6) we see that the denominator is positive if and only if the interior singular
strategy is convergence stable. Since the benefit function is strictly increasing, we conclude that
increased relatedness has opposite effect on interior singular strategies depending on whether they are
evolutionary attractors or repellers. As illustrated in Figure 2, evolutionary attractors increase with
relatedness while evolutionary repellers decrease with relatedness.

Next, we restrict attention to benefit and cost functions that are either accelerating or decelerating
for the full range of strategies considered, giving a total of four combinations to be explored. For two
cases, we give a full classification of the evolutionary dynamics, allowing for the possibility of large
mutational steps.

Theorem 2. Assume that benefits are decelerating and costs are accelerating, more specifically that B′′(x) < 0
and C′′(x) > 0 for all x ∈ [0, 1]. Then, there is exactly one continuously stable strategy r∗. Furthermore,
we have that Sr(m) < 0 if m < r ≤ r∗ or m > r ≥ r∗. The continuously stable strategy is always evolutionarily
stable and increases with the degree of relatedness.

In short, the theorem asserts that the evolutionary dynamics will lead to a monomorphic
population that, once established, cannot be invaded by any other strategy.

Proof. We have already shown in the analysis of quadratic benefit and cost functions that all three
outcomes can in fact occur, hence we only need to assert that no additional outcomes are possible.
To first see that there can never be more than one interior singular strategy, we show that the selection
gradient is a strictly declining function of the resident strategy. Differentiating the selection gradient,
Equation (4), with respect to the resident trait value gives,

d
dr

S′r(r) = µNB′′(Nr)− C′′(r) < 0 for all r ∈ [0, 1]. (16)
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Thus, we see that there can be maximally one interior singular strategy which can be either a
boundary strategy, r∗ = 0 (no investment) and r∗ = 1 (maximal investment), or an interior strategy,
0 < r∗ < 1 (intermediate investment). As the selection gradient is a declining function of the resident
strategy, we also conclude that directional selection will small evolutionary steps will eventually
lead to the vicinity of this strategy, i.e., the singular strategy is convergence stable. To see that large
mutational steps will also leads towards the strategy and that, once established, it cannot be invaded
by any other strategy, we write the invasion fitness as

Sr(m) =
∫ m

r
S′r(x)dx =

∫ m

r

(
S′r(r) +

∫ x

r
S′′r (y)dy

)
dx = (r−m)S′r(r) +

∫ m

r

∫ x

r
S′′r (y)dy dx. (17)

It is easily seen that S′′r (m) < 0 and hence the double integral in the second term is always negative
since x is intermediate between r and m. It follows that Sr(m) < 0 whenever (r−m)S′r(r) < 0, which is
precisely when m < r ≤ r∗ or m > r ≥ r∗. Thus, the strategy is continuously stable as asserted.

The other case which can similarly be classified is that of accelerating costs and decelerating
benefits. In this case, coexistence of cooperators and defectors is possible whenever the evolutionary
dynamics is bistable.

Theorem 3. Assume that benefits are accelerating and costs are decelerating, more specifically that B′′(x) < 0
and C′′(x) > 0 for all x ∈ [0, 1]. Then, selection is either towards full cooperation, towards no cooperation,
or there is exactly one interior singular stable strategy r∗ in the sense that Sr(m) > 0 if m < r ≤ r∗ or
m > r ≥ r∗. In the case of an interior singular strategy, we have that S0(1) > 0 and S1(0) > 0, enabling a
protected dimorphism or cooperators and defectors. The interior singular strategy is never evolutionarily stable
and decreases with the degree of relatedness.

Proof. The first part of the proof is nearly identical to the previous case, but with opposite signs.
Specifically, we show by differentiation that the selection gradient is increasing which implies that
there can be at most one interior singular strategy, r∗. Noting that S′′r (m) > 0, we conclude from
Equation (17) with r = r∗ that Sr(m) > 0 if m < r ≤ r∗ or m > r ≥ r∗.

It remains to show that a protected dimorphism of cooperators and defectors is possible whenever
we have an interior singular strategy, 0 < r∗ < 1. Note that, in this case, S′1(1) > 0 and S′0(0) < 0 due
to the bistable evolutionary dynamics. Furthermore, noting that the double integral in Equation (17) is
positive independent of whether m > r or r < m, we have that

S1(0) = (1− 0)S′1(1) +
∫ 1

0

∫ 1

x
S′′r (y)dy dx > 0, (18)

and

S0(1) = (0− 1)S′0(0) +
∫ 1

0

∫ x

0
S′′r (y)dy dx > 0, (19)

showing that a protected dimorphism of cooperators and defectors is possible.

4. Discussion

In this paper, we have carried out a systematic investigation of the effects of relatedness on the
evolution of cooperation in non-linear public goods game with continuous investments. As expected,
we found that relatedness is beneficial for cooperation. When the evolutionary outcome is a single
intermediate level of cooperation, higher relatedness increases that level. If, on the other hand,
the evolutionary outcome is bistable such that an initially uncooperative population evolves to lower
levels of cooperation and an initially cooperative society evolves to higher levels of cooperation,
higher relatedness decreases the threshold level of cooperation that separates the two outcomes.
The degree of relatedness also affects the potential for evolutionary branching, i.e., the emergence
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of two or more coexisting strategies. We find that relatedness reduces the scope for evolutionary
branching, making it more likely that all individual evolve the same strategy.

Our framework allows us to also investigate the consequences of uncertainty in the degree to
which an individual is related with his or her interaction partners, and we find that such uncertainty
also reduces the scope for evolutionary branching. This can be compared with an earlier result showing
that uncertainty in the size of interaction groups reduces the scope for evolutionary branching when
the payoff structure has an additive form but not when it has a multiplicative form [20]. In this
study, we have considered only payoff functions with an additive form and by analogy it appears
plausible that uncertainty in relatedness might increase the scope for evolutionary branching under
multiplicative payoff structures.

In a related study, Molina and Earn [23] rigorously analyzed a similar public goods game with
non-linear benefits and linear costs. While they did not consider relatedness or assortment per se,
one of their results, Theorem 4.4, in which they give conditions for the existence of a continuously
stable strategy, allows for finite proportions of mutants and can be recast as a result of assortment.
Our results differ by asserting global convergence stability and global evolutionary stability as well
as in allowing for non-linear cost functions. The latter is important, as one cannot reduce to the case
of linear costs by measuring investments in units of fitness costs, i.e., by redefining trait values as
x̃ := C(x), with C being the cost function. Although this change of unit would make the cost function
linear, the benefit function B would no longer depend on the sum of individual investments. Hence,
the results by Molina and Earn [23] do not extend to public goods games with non-linear costs.

There are several directions in which the work presented here could be extended and we
particularly wish to highlight two. First, our assumptions that the public goods are formed by
adding individual contributions and that the payoff can be expressed as a difference of benefit and
cost function are rather limiting and are unlikely to adequately describe all relevant settings involving
public goods. Recently, Ito et al. [21] introduced and considered a large class of possible interaction
structures in cooperative games. We think it would be interesting to extend our work to this larger
framework and, in particular, systematically explore the effects of relatedness under the different
options for aggregating rewards. Second, we base our results on a simplified representation of
assortment. While simple representations have advantages, we think it would be good to complement
our approach with more mechanistically-grounded studies of how assortment arises and influences
the evolution of cooperation.

Our conclusion that increased assortment facilitates the evolution of cooperation is expected,
in-line with empirical studies (e.g., [28]), and only a few exceptions to this rule has been reported in
the literature (see, for example, [29], which shows how increased competition may prevent selection
for altruistic genes). The value of our study thus does not lie as much in its overall conclusion as in
revealing in detail how increased assortment helps to promote cooperation, for example by showing
how thresholds in bistable evolutionary regimes shift and revealing that the scope for evolutionary
diversification is reduced by both increased assortment and increased uncertainty in assortment.
As such, our findings should prove valuable to both theoreticians and empiricists striving to interpret
results on the evolution of cooperation from laboratory experiments and field observations.
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Appendix A. Analytical Investigations

Appendix A.1. Condition for Evolutionary Stability

We aim to determine a condition for evolutionary stability in terms of average relatedness, µ,
and variance in the degree of relatedness, σ2. We write K for the random variable having probability
density function Pr(k), and use the notation 〈K〉 for expected value. Following the Appendix from [4],
we get to the condition

B′′(Nr∗)
N

(〈K〉2 + Var[K])− C′′(r∗) < 0. (A1)

Changing variables from K to ρ = K/N, we get

B′′(Nr∗)
N

(〈Nρ〉2 + Var[Nρ])− C′′(r∗) < 0. (A2)

Thus,

B′′(Nr∗)
N

(N2〈ρ〉2 + N2Var[ρ])− C′′(r∗) < 0, (A3)

which we simplify to

NB′′(Nr∗)(〈ρ〉2 + Var[ρ])− C′′(r∗) < 0, (A4)

and the desired form is achieved after noticing that 〈ρ〉 = µ and Var(ρ) = σ2.

Appendix A.2. Impossible Region in the µ− σ2-Plane

We want to find the upper bound on σ2 in terms of µ. Firstly, since µ and σ2 are defined through
the fraction k/N where N ≥ k and k ≥ 1, we note that µ, σ2 ∈ [0, 1]. Next, given µ ∈ [0, 1], by the
definition of variance, the maximum variance will be achieved when all the values are at the endpoints.
This is because, as long as any value is in the interior of [0, 1], the sum of the squares of the distances
from µ, and hence the variance, will be lower. In other words, the maximum variance is achieved
when we are dealing with a Bernoulli distribution, in which case σ2 = µ(1− µ). Thus, given µ ∈ [0, 1],
we must have σ2 ∈ [0, µ(1− µ)].

Appendix A.3. Implicit Differentiation

We want to find the effects of relatedness on the location of the singular strategy in the general case,
but, having no explicit formula for r∗ in terms of µ, we need to differentiate implicitly. We view r∗ as a
function of µ and we want to find the derivative r∗′(µ). To do this, we use the relationship µB′(Nr∗)−
C′(r∗) = 0, and differentiate both sides implicitly with respect to µ: B′(Nr∗) + µB′′(Nr∗)Nr∗′(µ)−
C′′(r∗)r∗′(µ) = 0, from which we get

r∗′(µ) =
B′(Nr∗)

C′′(r∗)− µNB′′(Nr∗)
. (A5)

Appendix B. Individual-Based Simulations

We follow the method from Doebeli et al. [18], with a few alterations. A population size Npop and
a virtual group size N is fixed, and each player has the two attributes generation and trait value. Next,
the following procedure is repeated until the generation of the offspring is higher than a chosen bound:
A random focal individual with trait value x is chosen to be replaced by an offspring. The x individual
gets to interact with another random individual with trait value u. The payoff to the focal individual,
Px = P(x, u), is then computed as
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P(x, u) =
N

∑
k=1

Pr(k)
N

B(kx + (N − k)u)− C(x), (A6)

where the probabilities Pr(k) are chosen such that ∑N
k=1 Pr(k) = 1, and ∑N

k=1 kPr(k)/N gets the desired
value (e.g., 0.4 or 0.8). A third random individual with trait value y is chosen for an interaction with a
fourth random individual with trait value v. The payoff to this other individual, Py, is computed in
a similar way as Px. Px is then compared to Py to see which individual is the parent to the offspring
replacing the x individual. If Py < Px, then the x individual is the parent. Otherwise, the y individual
is the parent with a probability w = (Py − Px)/α, where

α = max
0≤x,u,y,v≤1

|P(x, u)− P(y, v)| (A7)

to ensure w ∈ [0, 1]. The offspring inherits the parent’s trait value at a high probability, otherwise the
offspring’s trait value is taken from a normal distribution centred on the parent’s trait value. If the trait
value gets lower than 0 then it is set to 0, and if it gets higher than 1 then it is set to 1. The generation and
trait value of each individual is saved to a text file in order to keep the time complexity at a minimum.
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