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Abstract: We derive sufficient and necessary optimality conditions in terms of a stochastic maximum
principle (SMP) for controls associated with cost functionals of mean-field type, under dynamics
driven by a class of Markov chains of mean-field type which are pure jump processes obtained as
solutions of a well-posed martingale problem. As an illustration, we apply the result to generic
examples of control problems as well as some applications.
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1. Introduction

The goal of this paper is to find sufficient and necessary optimality conditions in terms of
a stochastic maximum principle (SMP) for a set of admissible controls ū which minimize payoff
functionals of the form

J(u) := Eu
[∫ T

0
f (t, x., Eu[κ f (x(t))], u(t))dt + h (x(T), Eu[κh(x(T))])

]
,

w.r.t. admissible controls u, for some given functions f , h, κ f and κh, under dynamics driven by a pure
jump process x with state space I = {0, 1, 2, 3, . . .}whose jump intensity under the probability measure
Pu is of the form

λu
ij(t) := λij(t, x., Eu[κ`(x(t))], u(t)), i, j ∈ I,

for some given functions λ and κ`, as long as the intensities are predictable. Due to the dependence of
the intensities on the mean of (a function of) x(t) under Pu, the process x is commonly called a nonlinear
Markov chain or Markov chain of mean-type, although it does not satisfy the standard Markov
property, as explained in the seminal paper by McKean [1] for diffusion processes. The dependence of
the intensities on the whole path x. over the time interval [0, T], makes the jump process cover a large
class of real-world applications. For instance, in queuing theory it is desirable that the intensities are
functions of

∫ t
0 x(s)ds, sup

0≤s≤t
x(s), or inf

0≤s≤t
x(s).

The Markov chain of mean-field type is obtained as the limit of a system of weakly interacting
Markov chains (xl,N , l = 1, . . . , N) as the size N becomes large. That is,

λij(t, x., E[κ`(x(t))]) = lim
N→∞

λij(t, xl,N
. ,

1
N

N

∑
l=1

κ`(xl,N(t))), l ∈ {1, . . . , N}, i, j ∈ I.
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Such a weak interaction is usually called a mean-field interaction. It occurs when the jump intensities
of the Markov chains depend on their empirical mean. When the system’s size grows to infinity,
the sequence of N-indexed empirical means, which describes the states of the system, converges to the
expectation E[κ`(x(t))] of x(t), which evolves according to a McKean–Vlasov equation (or nonlinear
Fokker–Planck). A more general situation is when the jump intensities of the obtained nonlinear
Markov chain depend on the marginal law P ◦ x−1(t) of x(t). To keep the content of the paper as
simple as possible, we do not treat this situation.

Markov chains of mean-field type have been used as models in many different fields, such as
chemistry, physics, biology, economics, epidemics, etc. (e.g., [2–6]). Existence and uniqueness results
with bounded and unbounded jump intensities were proven in [7,8], respectively. We refer to [9] for
existence and uniqueness of solutions to McKean–Vlasov equations with unbounded jump intensities,
and to [10,11] for results related to the law of large numbers for unbounded jump mean-field models,
and large deviations for corresponding empirical processes.

The present work is a continuation of [12], where the authors proved the existence and uniqueness
of this class of processes in terms of a martingale problem, and derived sufficient conditions
(cf. Theorem 4.6 in [12]) for the existence of an optimal control which minimizes J(u) for a rather
general class of (unbounded) jump intensities. Since the suggested conditions are rather difficult
to apply in concrete situations (see Remark 4.7 and Example 4.8 in [12]), we aim in this paper to
investigate whether the SMP can yield optimality conditions that are tractable and easy to verify.

While in the usual strong-type control problems the dynamics are given in terms of a process
Xu which solves a stochastic differential equation (SDE) on a given probability space (Ω,F , Q),
the dynamics in our formulation are given in terms of a family of probability measures (Pu, u ∈ U ),
where x is the coordinate process (i.e., it does not change with the control u). This type of formulation
is usually called a weak-type formulation for control problems.

The main idea in the martingale and dynamic programming approaches to optimal control
problems for jump processes (without mean-field coupling) suggested in previous work, including
the following first papers on the subject [13–16] (the list of references is far from being exhaustive),
is to use the Radon–Nikodym density process Lu of Pu w.r.t. some reference probability measure P
as dynamics and recast the control problem to a standard one. In this paper, we apply the same idea
and recast the control problem to a mean-field-type control problem to which an SMP can applied.
By a Girsanov-type result for pure jump processes, the density process Lu is a martingale and solves a
linear SDE driven by some accompanying P-martingale M. The adjoint process associated to the SMP
solves a (Markov chain) backward stochastic differential equation (BSDE) driven by the P-martingale
M, whose existence and uniqueness can be derived using the results by Cohen and Elliott [17,18].
For some linear and quadratic cost functionals, we explicitly solve these BSDEs and derive a closed
form of the optimal control.

In Section 2, we briefly recall the basic stochastic calculus for pure jump processes that we will
use in the sequel. In Section 3, we derive sufficient and necessary optimality conditions for the control
problem. As already mentioned, the SMP optimality conditions are derived in terms of a mean-field
stochastic maximum principle, where the adjoint equation is a Markov chain BSDE. In Section 3,
we illustrate the results using two examples of optimal control problems that involve two-state chains
and linear quadratic cost functionals. We also consider an optimal control of a mean-field version
of the Schlögl model for chemical reactions. We consider linear and quadratic cost functionals in all
examples for the sake of simplicity and also because, in these cases, we obtain the optimal controls in
closed form.

The obtained results can easily be extended to pure jump processes taking values on more general
state spaces such as I = Zd, d ≥ 1.
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2. Preliminaries

Let I := {0, 1, 2, . . .} equipped with its discrete topology and σ-field and let Ω := D([0, T], I) be
the space of functions from [0, T] to I that are right-continuous with left limits at each t ∈ [0, T) and
are left-continuous at time T. We endow Ω with the Skorohod metric d0 so that (Ω, d0) is a complete
separable metric (i.e., Polish) space. Given t ∈ [0, T] and ω ∈ Ω, put x(t, ω) ≡ ω(t) and denote by
F 0

t := σ(x(s), s ≤ t), 0 ≤ t ≤ T, the filtration generated by x. Denote by F the Borel σ-field over Ω.
It is well-known that F coincides with σ(x(s), 0 ≤ s ≤ T).

To x we associate the indicator process Ii(t) = 1{x(t)=i} whose value is 1 if the chain is in state i at
time t and 0 otherwise, and the counting processes Nij(t), i 6= j, independent of x(0), such that

Nij(t) = #{τ ∈ (0, t] : x(τ−) = i, x(τ) = j}, Nij(0) = 0,

which counts the number of jumps from state i into state j during the time interval (0, t]. Obviously,
since x is right-continuous with left limits, both Ii and Nij are right-continuous with left limits.
Moreover, by the relationship

x(t) = ∑
i

iIi(t), Ii(t) = Ii(0) + ∑
j: j 6=i

(
Nji(t)− Nij(t)

)
, (1)

the state process, the indicator processes, and the counting processes carry the same information,
which is represented by the natural filtration F0 := (F 0

t , 0 ≤ t ≤ T) of x. Note that (1) is equivalent to
the following useful representation:

x(t) = x(0) + ∑
i,j: i 6=j

(j− i)Nij(t). (2)

Let G = (gij, i, j ∈ I), where gij are constant entries, be a Q-matrix:

gij > 0, i 6= j, ∑
j: j 6=i

gij < +∞, gii = − ∑
j: j 6=i

gij. (3)

By Theorem 4.7.3 in [19], or Theorem 20.6 in [20] (for the finite state-space), given the Q-matrix
G and a probability measure ξ over I, there exists a unique probability measure P on (Ω,F ) under
which the coordinate process x is a time-homogeneous Markov chain with intensity matrix G and
starting distribution ξ (i.e., such that P ◦ x−1(0) = ξ). Equivalently, P solves the martingale problem
for G with initial probability distribution ξ, meaning that for every f on I, the process defined by

M f
t := f (x(t))− f (x(0))−

∫
(0,t]

(G f )(x(s)) ds (4)

is a local martingale relative to (Ω,F ,F0), where

G f (i) := ∑
j

gij f (j) = ∑
j: j 6=i

gij( f (j)− f (i)), i ∈ I,

and
G f (x(s)) = ∑

i,j: j 6=i
Ii(s)gij( f (j)− f (i)). (5)

By Lemma 21.13 in [20], the compensated processes associated with the counting processes Nij,
defined by

Mij(t) = Nij(t)−
∫
(0,t]

Ii(s−)gij ds, Mij(0) = 0, (6)
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are zero mean, square integrable, and mutually orthogonal P-martingales whose predictable quadratic
variations are

〈Mij〉t =
∫
(0,t]

Ii(s−)gij ds. (7)

Moreover, at jump times t, we have

∆Mij(t) = ∆Nij(t) = Ii(t−)Ij(t). (8)

Thus, the optional variation of M

[M](t) = ∑
0<s≤t

|∆M(s)|2 = ∑
0<s≤t

∑
i,j: j 6=i

|∆Mij(s)|2

is
[M](t) = ∑

0<s≤t
∑

i,j: j 6=i
Ii(s−)Ij(s). (9)

We call M := {Mij, i 6= j} the accompanying martingale of the counting process N := {Nij, i 6= j}
or of the Markov chain x.

Denote by F := (Ft)0≤t≤T the completion of F0 = (F 0
t )t≤T with the P-null sets of Ω. Hereafter,

a process from [0, T] × Ω into a measurable space is said to be predictable (resp. progressively
measurable) if it is predictable (resp. progressively measurable) w.r.t. the predictable σ-field on
[0, T]×Ω (resp. F).

For a real-valued matrix m(t) := (mij(t), i, j ∈ I) indexed by I × I, we let

‖m‖2
g(t) := ∑

i,j: i 6=j
|mij(t)|2gij1{x(t−)=i} < ∞. (10)

Consider the local martingale

W(t) =
∫ t

0
Z(s)dM(s) := ∑

i,j: i 6=j

∫ t

0
Zij(s)dMij(s). (11)

Then, the optional variation of the local martingale W is

[W](t) = ∑
0<s≤t

|Z(s)∆M(s)|2 = ∑
0<s≤t

∑
i,j: i 6=j

|Zij(s)∆Mij(s)|2, (12)

and its compensator is

〈W〉t =
∫
(0,t]
‖Z(s)‖2

gds. (13)

Provided that

E
[∫

(0,T]
‖Z(s)‖2

gds
]
< ∞, (14)

W is a square-integrable martingale and its optional variation satisfies

E [[W](t)] = E

[
∑

0<s≤t
|Z(s)∆M(s)|2

]
= E

[∫
(0,t]
‖Z(s)‖2

gds
]

. (15)

Moreover, the following Doob’s inequality holds:

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
Z(s)dM(s)

∣∣∣∣2
]
≤ 4E

[∫
(0,T]
‖Z(s)‖2

gds
]

. (16)
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3. A Stochastic Maximum Principle

We consider controls with values in some subset U of Rd and let U be the set of F-progressively
measurable processes u = (u(t), 0 ≤ t ≤ T) with values in U ⊂ Rd. U is the set of admissible controls.

For u ∈ U , let Pu be the probability measure on (Ω,F ) under which the coordinate process x is a jump
process with intensities

λu
ij(t) := λij(t, x., Eu[κ`(x(t)]), u(t)), i, j ∈ I, 0 ≤ t ≤ T, (17)

where for each i, j ∈ I,

λij : [0, T]×Ω×R×U 7→ R,

κ` : I 7→ R.

The cost functional associated to Pu is of the form

J(u) := Eu
[∫ T

0
f (t, x., Eu[κ f (x(t))], u(t))dt + h (x(T), Eu[κh(x(T))])

]
, (18)

where

f : [0, T]×Ω×R×U 7→ R,

h : I ×R 7→ R,

κ f : I 7→ R,

κh : I 7→ R.

In this section, we propose to characterize minimizers ū of J, that is, ū ∈ U satisfying

J(ū) = min
u∈U

J(u) (19)

in terms of a stochastic maximum principle (SMP). We first state and prove the sufficient optimality
conditions. Then, we state the necessary optimality conditions.

Let P be the probability measure on (Ω,F ) under which x is a time-homogeneous Markov chain
such that P ◦ x−1(0) = ξ and with Q-matrix (gij)ij satisfying (3). Then, by a Girsanov-type result for
pure jump processes (e.g., [20,21]), it holds that

dPu := Lu(T)dP, (20)

where, for 0 ≤ t ≤ T,

Lu(t) := ∏
i,j

i 6=j

exp

{∫
(0,t]

ln
λu

ij(s)

gij
dNij(s)−

∫ t

0
(λu

ij(s)− gij)Ii(s)ds

}
, (21)

which satisfies
Lu(t) = 1 +

∫
(0,t]

Lu(s−) ∑
i,j: i 6=j

Ii(s−)`u
ij(s)dMij(s), (22)
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where `u
ij(s) := `ij(t, x., Eu[κ`(x(s))], u(s)) is given by the formula

`u
ij(s) =

{
λu

ij(s)/gij − 1 if i 6= j,
0 if i = j,

(23)

and (Mij)ij is the P-martingale given in (6). Moreover, the accompanying martingale Mu = (Mu
ij)ij

satisfies
Mu

ij(t) = Mij(t)−
∫
(0,t]

`u
ij(s)Ii(s−)gijds. (24)

Noting that

J(u) = E
[

Lu(T)
∫ T

0
f (t, x., Eu[κ f (x(t))], u(t))dt + Lu(T)h(x(T), Eu[κh(x(T))])

]
.

Integrating by parts and taking expectation, we obtain

J(u) := E
[∫ T

0
Lu(t) f (t, x., E[Lu(t)κ f (x(t))], u(t))dt + Lu(T)h(x(T), E[Lu(T)κh(x(T))])

]
. (25)

We recast our problem of controlling a Markov chain through its intensity matrix to a standard
control problem which aims at minimizing the cost functional (25) under the dynamics given by the
density process Lu which satisfies (22), to which the mean-field stochastic maximum principle in [22]
can be applied. The corresponding optimal dynamics are given by the probability measure P̄ on (Ω,F )
defined by

dP̄ = Lū(T)dP, (26)

where Lū is the associated density process. (Lū, ū) is called an optimal pair associated with (19).
For w ∈ {y, ȳ, u}, ψw denotes the partial derivative of the function ψ(y, ȳ, u) w.r.t. w.

for α = {`, f }, we set

α(t) := α(t, x., E[Lu(t)κα(x(t))], u(t)), ᾱ(t) := α(t, x., E[Lū(t)κα(x(t))], ū(t)),

and we define

h(T) := h(x(T), E[Lu(t)κh(x(T))]), h̄(T) := h(x(T), E[Lū(t)κh(x(T))]).

To the admissible pair of processes (Lū, ū), we associate the solution (p, q) (if it exits) of the
following linear BSDE of mean-field type, known as first-order adjoint equation:

dp(t) = −
{
〈 ¯̀(t), q(t)〉g − f̄ (t) + κ`(x(t))E[Lū(t)(〈 ¯̀ ȳ(t), q(t)〉g]

−κ f (x(t))E[Lū(t) f̄ȳ(t)
}

dt + q(t)dM(t),

p(T) = −h̄(T)− κh(x(T))E[Lū(T)h̄ȳ(T)].

(27)

In the next proposition we give sufficient conditions on f , h, `, κ`, κ f , and κh that guarantee the
existence of a unique solution to the BSDE (27).

Proposition 1. Assume that

(A1) For each i, j ∈ I, i 6= j,

(a) (ȳ, u) 7→ λij(·, ·, ȳ, u) is differentiable,
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(b) there exists a positive constant Cλ s.t. P-a.s. for all (t, ȳ, u) ∈ [0, T]×R×U,

λij(t, ω, ȳ, u) +
∣∣∣∣ ∂

∂ȳ
λij(t, ω, ȳ, u)

∣∣∣∣ ≤ Cλ.

(A2) The functions f , h, κ f , and κh are bounded. f and h are differentiable in ȳ with bounded derivatives.

Then, the BSDE (27) admits a solution (p, q) consisting of an adapted process p which is right-continuous
with left limits and a predictable process q which satisfies

E

[
sup

t∈[0,T]
|p(t)|+

∫
(0,T]
‖q(s)‖2

gds

]
< +∞. (28)

This solution is unique up to indistinguishability for p and equality dP× gij Ii(s−)ds-almost everywhere
for q.

Remark 1. (i) Assumptions (A1) and (3) imply that there exists a positive constant C s.t. for all t ∈ [0, T]

‖`u(t)‖g + ‖`u
ȳ(t)‖g ≤ C P-a.s. (29)

(ii) By Theorem T11 (chapter VII) in [21], the uniform boundedness of (λij)ij, i 6= j implies that for each u ∈ U

C̃ := sup
0≤t≤T

E[(Lu(t))2] < ∞. (30)

Proof. Assumptions (A1) and (A2) make the driver of the BSDE (27) Lipschitz continuous in q.
The proof is similar to that of Theorem 3.1 for the Brownian motion-driven mean-field BSDE derived
in [23] by considering the following norm:

‖(p, q)‖2
β := E

∫ T

0
eβt(|p(t)|2 + ‖q(t)‖2

g)dt,

where β > 0, along with Itô–Stieltjes formula for purely discontinuous semi-martingales. For the sake
of completeness, we give a proof in Appendix A.

Remark 2. (i) The boundedness on f and h and their derivatives is strong and can be considerably weakened
using standard truncation techniques.

(ii) If `ȳ = 0 (i.e., the intensity does not contain any mean-field coupling), the BSDE (27) becomes standard.
Thanks to Theorem 3.10 in [12], it is solvable only by imposing similar conditions to (H1)–(H3) therein.

(iii) If `ȳ 6= 0 (i.e., the intensity is of mean-field type), we do not know whether we can relax the imposed
boundedness of `, κ` and `ȳ, because without this condition the standard comparison theorem for Markov
chain BSDEs simply does not generally apply for such drivers.

Let (Lū, ū) be an admissible pair and (p, q) be the associated first-order adjoint process solution
of (27).

For v ∈ U, we introduce the Hamiltonian associated to our control problem

H(t, v) := Lū(t)
(
〈`(t, x., E[Lū(t)κ`(x(t))], v), q(t)〉g − f (t, x., E[Lū(t)κ f (x(t))], v)

)
. (31)

Next, we state the SMP sufficient and necessary optimality conditions, but only prove the sufficient
optimality case, as the necessary optimality conditions result is tedious and more involved but by now
“standard” and can be derived following the same steps of [22,24,25].

In the next two theorems, we assume that (A1) and (A2) of Proposition 1 hold.
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Theorem 1 (Sufficient optimality conditions). Let (Lū, ū) be an admissible pair and (p, q) be the associated
first-order adjoint process which satisfies (27) and (28). Assume

(A4) The set of controls U is a convex body (i.e., U is convex and has a nonempty interior) of Rd, and the
functions ` and f are differentiable in u.

(A5) The functions (y, ȳ, u) 7→ y`(·, ·, ȳ, u) and (y, ȳ, u) 7→ −y f (·, ·, ȳ, u) are concave in (y, ȳ, u) for a.e.
t ∈ [0, T], P-almost surely.

(A6) The function (y, ȳ) 7→ yh(·, ȳ) is convex.

If the admissible control ū satisfies

H(t, ū(t)) = max
v∈U

H(t, v), a.e. t ∈ [0, T], P-a.s. , (32)

then the pair (Lū, ū) is optimal.

Proof. We want to show that if the pair (Lū, ū) satisfies (32), then

J(u)− J(ū) = E
[∫ T

0
(Lu(t) f (t)− Lū(t) f̄ (t))dt + Lu(T)h(T)− Lū(T)h̄(T)

]
≥ 0.

Since (y, ȳ) 7→ yh(·, ȳ) is convex, we have

E[Lu(T)h(T)− Lū(T)h̄(T)] ≥ E[(h̄(T) + κh(T)E[Lū(T)h̄ȳ(T)])(Lu(T)− Lū(T))]
= −E[p(T)(Lu(T)− Lū(T))].

Integrating by parts, using (27), we obtain

E[p(T)(Lu(T)− Lū(T))] = E
[∫ T

0 (Lu(t−)− Lū(t−))dp(t) + p(t−)d(Lu(t)− Lū(t))

+d[Lu − Lū, p](t)]
= −E

[∫ T
0

({
〈 ¯̀(t), q(t)〉g − f̄ (t) + κ`(x(t))E[Lū(t)(〈 ¯̀ ȳ(t), q(t)〉g]

−κ f (x(t))E[Lū(t) f̄ȳ(t)
}
(Lu(t)− Lū(t))− 〈Lu(t)`(t)− Lū(t) ¯̀(t), q(t)〉g

)
dt
]

.

We introduce the following “Hamiltonian” function:

H(t, x., y, ȳ, u, z) := y〈`(t, x., ȳ, u), z〉g − y f (t, x., ȳ, u). (33)

Furthermore, for u and ū in U , we set H(t) := Lu(t)
(
〈`(t, x., E[Lu(t)κ`(x(t))], u(t)), q(t)〉g − f (t, x., E[Lu(t)κ f (x(t))], u(t))

)
,

H̄(t) := Lū(t)
(
〈`(t, x., E[Lū(t)κ`(x(t))], ū(t)), q(t)〉g − f (t, x., E[Lū(t)κ f (x(t))], ū(t))

)
.

(34)

Since (y, ȳ, u) 7→ y`(·, ȳ, u) and −y f (·, ȳ, u) are concave, we have

H(t)− H̄(t) ≤ H̄y(t)(Lu(t)− Lū(t)) + H̄ȳ(t)(E[κ`(x(t))(Lu(t)− Lū(t))]) + H̄u(t) · (u(t)− ū(t)).

Since, by (32), H̄u(t) = Hu(t, ū(t)) = 0 a.e. t ∈ [0, T], we obtain

E[H(t)− H̄(t)] ≤ E
[{
〈 ¯̀(t), q(t)〉g − f̄ (t) + κ`(x(t))E[Lū(t)(〈 ¯̀ ȳ(t), q(t)〉g]

−κ f (x(t))E[Lū(t) f̄ȳ(t)
}
(Lu(t)− Lū(t))

]
for a.e. t ∈ [0, T].
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Therefore,

E[Lu(T)h(T)− Lū(T)h̄(T)] ≥ E
[∫ T

0

(
H(t)− H̄(t)− 〈Lu(t)`(t)− Lū(t) ¯̀(t), q(t)〉g

)
dt
]

.

Hence,

J(u)− J(ū) ≥ E
[∫ T

0

(
H(t)− H̄(t) + Lu(t) f (t)− Lū(t) f̄ (t)

−〈Lu(t)`(t)− Lū(t) ¯̀(t), q(t)〉g
)

dt
]
= 0.

Theorem 2 (Necessary optimality conditions (Verification Theorem)). If (Lū, ū) is an optimal pair of the
control problem (19) and there is a unique pair of F -adapted processes (p, q) associated to (Lū, ū) which satisfies
(27) and (28), then

H(t, ū(t)) = max
v∈U

H(t, v), a.e. t ∈ [0, T], P-a.s.

Remark 3. Unfortunately, the sufficient optimality conditions can rarely be satisfied in practice because
the convexity conditions imposed on the involved coefficients are not always satisfied, even for the simplest
examples: assume ` and f without mean-field coupling and linear in the control u. Then, none of the functions
(y, u) 7→ y`(·, u) and (y, u) 7→ −y f (·, u) are concave in (y, u). However, the verification theorem in terms of
necessary optimality conditions holds for a fairly general class of functions with sufficient smoothness. Hence,
if we can solve the associated BSDEs, the necessary optimality conditions result can be useful.

4. Numerical Examples

In this section we first solve the adjoint equation associated to an optimal control problem
associated with a standard two-state Markov chain, then we extend the problem to a two-state Markov
chain of mean-field type. As mentioned in Remark 3, whether sufficient or necessary conditions may
apply of course depends on the smoothness of the involved functions. Not all the functions involved
in the next examples satisfy the convexity conditions imposed in Theorem 1.

Example 1. Optimal Control of a Standard Two-State Markov Chain.

We study the optimal control of a simple Markov chain x whose state space is X = {a, b},
where (0 ≤ a < b) are integers, and its jump intensity matrix is

λu(t) =

[
−α α

u(t) −u(t)

]
,

where α is a given positive constant intensity and u is the control process assumed to be
nonnegative, bounded, and predictable. Let P be the probability measure under which the chain
x has intensity matrix

G =

[
−gab gab
gba −gba

]
, gab, gba > 0.

Further, let Lu(t) = dPu

dP

∣∣
Ft

be the density process given by (22), where ` is defined by

`u
ij(t) =

{
λu

ij(t)/gij − 1 if i 6= j,
0 if i = j.
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The control problem we want to solve consists of finding the optimal control ū that minimizes the
linear-quadratic cost functional

J(u) = Eu
[

1
2

∫ T

0
u2(t)dt + h(x(T))

]
, h(b) ≥ h(a). (35)

Given a control v ∈ U, consider the Hamiltonian

H(t, Lū(t), q(t), v) := Lū(t)(〈`v(t), q(t)〉g −
1
2

v2) =: H(t, v),

where
〈`v(t), q(t)〉g = qab(t)(α− gab)Ia(t−) + qba(t)(v− gba)Ib(t−).

By the first-order optimality conditions, an optimal control ū is a solution of the equation
∂H(t,v)

∂v = 0, which implies

0 =

〈
∂`v

∂v
(t), q(t)

〉
g
− v = qba(t)Ib(t−)− v.

The optimal control is thus
ū(t) = qba(t)Ib(t−), (36)

where for each t, qba(t) ≥ 0, since ū(t) ≥ 0.

It remains to identify qba(t). Consider the associated adjoint equations given by
dp(t) = −

{
〈`ū(t), q(t)〉g − 1

2 ū2(t)
}

dt + qab(t)dMab(t) + qba(t)dMba(t), 0 ≤ t < T,

p(T) = −h(x(T)).

In view of (36), the driver reads

〈`ū(t), q(t)〉g − 1
2 ū2(t) = qab(t)Ia(t−)(α− gab) + qba(t)Ib(t−)

{
1
2 qba(t)Ib(t−)− gba

}
. (37)

The adjoint equation becomes

dp(t) = qab(t)
{
−(α− gab)Ia(t−)dt + dMab(t)

}
+ qba(t)

{
−(1

2
qba(t)− gba)Ib(t−)dt + dMba(t)

}
.

Now, considering the probability measure P̃ under which x is a Markov chain whose jump
intensity matrix is

G̃(t) =

[
−α α

1
2 qba(t) − 1

2 qab(t)

]
,

the processes defined by {
dM̃ab(t) = dMab(t)− (α− gab)Ia(t−)dt,
dM̃ba(t) = dMba(t)− ( 1

2 qba(t)− gba)Ib(t−)dt

are P̃-martingales having the same jumps as the martingales Mij:

∆M̃ab(t) = ∆Mab(t) = Ia(t−)Ib(t), ∆M̃ba(t) = ∆Mba(t) = Ib(t−)Ia(t) (38)
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and
dp(t) = qab(t)dM̃ab(t) + qba(t)dM̃ba(t). (39)

This yields
∆p(t) = qab(t)Ia(t−)Ib(t) + qba(t)Ib(t−)Ia(t). (40)

Integrating (39) and then taking conditional expectation yields

p(t) = −Ẽ[h(x(T))|Ft].

Therefore,
∆p(t) = −∆Ẽ[h(x(T))|Ft]. (41)

Under the probability measure P̃

h(x(T)) = h(x(t)) +
∫ T

t

{
α(h(b)− h(a))Ia(s−) +

1
2

qba(s)(h(a)− h(b))Ib(s−)
}

ds

+
∫ T

t
(h(b)− h(a))dM̃ab(s) +

∫ T

t
(h(a)− h(b))dM̃ba(s).

Taking conditional expectation, we obtain

Ẽ[h(x(T))|Ft] = h(x(t)) +
∫ T

t
Ẽ
[

α(h(b)− h(a))Ia(s−) +
1
2

qba(s)(h(a)− h(b))Ib(s−)|Ft

]
ds

and

∆Ẽ[h(x(T))|Ft] = ∆h(x(t)) = −(h(b)− h(a))Ia(t−)Ib(t)− (h(a)− h(b))Ib(t−)Ia(t),

which in view of (41) implies that

qab(t) = h(a)− h(b), qba(t) = h(b)− h(a). (42)

Therefore,

ū(t) = (h(b)− h(a))Ib(t−) = h(b)Ib(t−)− h(a) + h(a)Ia(t−) = h(x(t−))− h(a),

which yields the following explicit form of the optimal control:

ū(t) = h(x(t−))− h(a).

In the next two examples we highlight the effect of the mean-field coupling in both the jump
intensity and the cost functional on the optimal control.

Example 2. Mean-Field Optimal Control of a Two-State Markov Chain.

We consider the same chain as in the first example but with the following mean-field type jump
intensities, (t ∈ [0, T]),

λu(t) =

[
−α α

u(t) + Eu[x(t−)] −u(t)− Eu[x(t−)]

]
, α > 0, u(t) + Eu[x(t−)] ≥ 0,

and want to minimize the cost functional
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J(u) = Eu
[

1
2

∫ T

0
u2(t)dt

]
+ Varu(x(T)), (43)

where Varu(x(T)) denotes the variance of x(T) under the probability Pu defined by

Varu(x(T)) := Eu
[
(x(T)− Eu[x(T)])2

]
.

Given a control v ∈ U, consider the Hamiltonian

H(t, v) := Lū(t)(〈`v(t), q(t)〉g −
1
2

v2),

where
〈`v(t), q(t)〉g = qab(t)(α− gab)Ia(t−) + qba(t)(v + Eū[x(t−)]− gba)Ib(t−).

Performing similar calculations as in Example 1, we find that the optimal control is given by

ū(t) = qba(t)Ib(t−). (44)

We will now identify qba. The associated adjoint equation is given by


dp(t) = −

{
〈`ū(t), q(t)〉g − 1

2 ū2(t) + x(t)Eū[H̄ȳ(t)]
}

dt + qab(t)dMab(t) + qba(t)dMba(t),

p(T) = − (x(T)− Eū[x(T)])2 .

In view of (44), the driver reads

〈`ū(t), q(t)〉g − 1
2 ū2(t) + x(t)Eū[H̄ȳ(t)] = qba(t)

(
1
2 qba(t) + Eū[x(t−)]− gba

)
Ib(t−)

+qab(t)(α− gab)Ia(t−) + x(t)Eū[qba(t)Ib(t−)].

The adjoint equation becomes

dp(t) = qab(t) {dMab(t)− (α− gab)Ia(t−)dt} − x(t)Eū[qba(t)Ib(t−)]dt
+qba(t)

{
dMba(t)−

(
1
2 qba(t) + Eū[x(t−)]− gba

)
Ib(t−)dt

}
.

(45)

Consider the probability measure P̃, under which x is a Markov chain whose jump intensity matrix

G̃(t) =

[
−α α

1
2 qba(t) + Eū[x(t−)] − 1

2 qba(t)− Eū[x(t−)]

]
,

1
2

qba(t) + Eū[x(t−)] ≥ 0.

This change of measure yields the P̃-martingales{
dM̃ab(t) = dMab(t)− (α− gab)Ia(t−)dt,
dM̃ba(t) = dMba(t)− ( 1

2 qba(t) + Eū[x(t−)]− gba)Ib(t−)dt

and
dp(t) = −x(t)Eū[qba(t)Ib(t−)]dt + qab(t)dM̃ab(t) + qba(t)dM̃ba(t). (46)

This yields
∆p(t) = qab(t)Ia(t−)Ib(t) + qba(t)Ib(t−)Ia(t). (47)

Integrating (46), then taking conditional expectation yields
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p(t) = −Ẽ[
(

x(T)− Eū[x(T)]
)2 |Ft] + Ẽ[

∫ T

t
x(s)Eū[qba(t)Ib(s−)]ds|Ft].

Therefore,

∆p(t) = −∆Ẽ[
(
x(T)− Eū[x(T)]

)2 |Ft]. (48)

Next, we compute the right hand side of (48), then we identify qba by matching.
Set µ̄(t) := Eū[x(t)]and φ(t, x(t)) := (x(t)− µ̄(t))2. Under P̃, Dynkin’s formula yields

φ(T, x(T)) = φ(t, x(t)) +
∫ T

t

(
∂φ

∂s
+ G̃φ

)
(s, x(s))ds + M̃φ

T − M̃φ
t .

Taking conditional expectation yields

Ẽ[φ(T, x(T))|Ft] = φ(t, x(t)) +
∫ T

t
Ẽ
[(

∂φ

∂s
+ G̃φ

)
(s, x(s))

∣∣∣Ft

]
ds

and

∆Ẽ[φ(T, x(T))|Ft] = ∆φ(t, x(t)),

where

∆φ(t, x(t)) = ∑
i,j: i 6=j

(φ(t, j)− φ(t, i)) Ii(t−)Ij(t) (i, j ∈ {a, b})

=
(
(b2 − a2)− 2µ̄(t)(b− a)

)
Ia(t−)Ib(t) +

(
(a2 − b2)− 2µ̄(t)(a− b)

)
Ib(t−)Ia(t).

Therefore,

∆p(t) = −∆Ẽ[(x(T)− µ̄(T))2 |Ft]

=
(
(a2 − b2) + 2µ̄(t)(b− a)

)
Ia(t−)Ib(t) +

(
(b2 − a2) + 2µ̄(t)(a− b)

)
Ib(t−)Ia(t). (49)

Matching (47) with (49) yields {
qab(t) = (a2 − b2) + 2µ̄(t)(b− a),
qba(t) = (b2 − a2) + 2µ̄(t)(a− b).

Hence,
ū(t) =

(
(b2 − a2) + 2µ̄(t)(a− b)

)
Ib(t−).

Noting that a ≤ µ̄(t) ≤ b, to guarantee that both λū(t) and G̃(t) above are indeed intensity
matrices, it suffices to impose that

0 ≤ µ̄(t) ≤ 1
2
(a + b). (50)

We further characterize the optimal control ū(t) by finding µ̄(t) which satisfies (50). Indeed,
under Pū, x has the representation

x(t) =x(0) +
∫ t

0

{
α(b− a)Ia(s−) + µ̄(s)(a− b)Ib(s−) + ū(s)(a− b)Ib(s−)

}
ds

+
∫ t

0
(b− a)dMū

ba(s) +
∫ t

0
(a− b)dMū

ab(s).
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Taking the expectation under Pū yields

µ̄(t) = µ̄(0) + Eū[
∫ t

0

{
α(b− a)Ia(s−) + µ̄(s)(a− b)Ib(s−) + (a− b)ū(s)Ib(s−)

}
ds]. (51)

In particular, the mapping t→ µ(t) is absolutely continuous. Using the fact that (a− b)Ib(t−) =
a− x(t−) and (b− a)Ia(t−) = b− x(t−), Equation (51) becomes

µ̄(t) =µ̄(0) +
∫ t

0
{α(b− µ̄(s)) + µ̄(s)(a− µ̄(s))} ds +

∫ t

0

{
Eū[(a− b)ū(s)Ib(s−)]

}
ds

=µ̄(0) +
∫ t

0
{α(b− µ̄(s)) + µ̄(s)(a− µ̄(s))} ds

+
∫ t

0

{
Eū
[
(a− b)Ib(s−)

(
(b2 − a2) + 2µ̄(s)(a− b)

)]}
ds

=µ̄(0) +
∫ t

0
{α(b− µ̄(s)) + µ̄(s)(a− µ̄(s))} ds

+
∫ t

0

{
(b2 − a2)(a− µ̄(s)) + 2(a− b)µ̄(s)(a− µ̄(s))

}
ds

=µ̄(0) +
∫ t

0

{(
αb + a(b2 − a2)

)
+ (2(b− a)− 1) µ̄2(s) + (3a2 + a(1− 2b)− b2)µ̄(s)

}
ds,

with 
A := 2(b− a)− 1,
B := 3a2 + a(1− 2b)− b2,
C := αb + a(b2 − a2).

Thus, in view (50), µ̄ should satisfy the following constrained Riccati equation:
˙̄µ(t) = Aµ̄2(t) + Bµ̄(t) + C,
µ̄(0) = m0,
0 ≤ µ̄(t) ≤ 1

2 (a + b),
(52)

where m0 is a given initial value. As is well-known, without the imposed constraint on µ̄, the Riccati
equation admits an explicit solution that may explode in finite time unless the involved coefficients
a, b, α and m0 evolve within certain ranges. With the imposed constraint on µ̄, these ranges may become
tighter. Below, we illustrate this with a few cases. As shown in Tables 1–5 below, for low values of α,
the ODE (52) can be solved for any time. How low the intensity should be mainly depends on the size
of b and b− a. The larger b is, the wider is the range for α for which the ODE is solvable. In particular,
when a = 0 and b = 1, (52) is solvable for any time when α = 0.1, 0.2. For greater values of α, the ODE
violates the constraint proportionally “faster”.

The results also show that the initial conditions may affect the time horizon T. Starting with
values reasonably close to a+b

2 , the ODE (52) is solvable only for relatively shorter time horizons than
when we start with values reasonably close to zero.
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Table 1. Solvability of the ODE (52) with the states a = 0 and b = 1.

a b α Tm0=0 Tm0=0.25

0 1 0.1 . .
0 1 0.2 . .
0 1 0.3 5.145 3.762
0 1 0.4 2.355 1.481
0 1 0.5 1.571 0.928
0 1 0.6 1.870 0.676
0 1 0.7 0.955 0.532
0 1 0.8 0.800 0.439
0 1 0.9 0.689 0.373
0 1 1 0.605 0.325
0 1 5 0.104 0.053
0 1 10 0.051 0.026

Table 2. Solvability of the ODE (52) with the states a = 1 and b = 2.

a b α Tm0=0.25 Tm0=1

1 2 0.1 . .
1 2 0.2 . .
1 2 0.3 . .
1 2 0.4 2.644 2.153
1 2 0.5 1.429 1.001
1 2 0.6 1.073 0.692
1 2 0.7 0.878 0.535
1 2 0.8 0.750 0.438
1 2 0.9 0.659 0.371
1 2 1 0.589 0.322
1 2 5 0.121 0.053
1 2 10 0.062 0.026

Table 3. Solvability of the ODE (52) with the states a = 2 and b = 3.

a b α Tm0=0.25 Tm0=2

2 3 0.1 . .
2 3 0.2 . .
2 3 0.3 . .
2 3 0.4 . .
2 3 0.5 1.206 0.761
2 3 0.6 0.899 0.494
2 3 0.7 0.746 0.373
2 3 0.8 0.648 0.302
2 3 0.9 0.578 0.254
2 3 1 0.524 0.220
2 3 5 0.131 0.035
2 3 10 0.070 0.018
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Table 4. Solvability of the ODE (52) with the states a = 0 and b = 2.

a b α Tm0=0 Tm0=0.75

0 2 0.1 . .
0 2 0.2 . .
0 2 0.3 . .
0 2 0.4 . .
0 2 0.5 . .
0 2 0.6 . .
0 2 0.7 5.593 1.433
0 2 0.8 2.227 0.636
0 2 0.9 1.470 0.418
0 2 1 1.111 0.312
0 2 5 0.112 0.029
0 2 10 0.053 0.014

Table 5. Solvability of the ODE (52) with the states a = 0 and b = 3.

a b α Tm0=0 Tm0=1

0 3 0.1 . .
0 3 0.2 . .
0 3 0.3 . .
0 3 0.4 . .
0 3 0.5 . .
0 3 0.6 . .
0 3 0.7 . .
0 3 0.8 . .
0 3 0.9 . .
0 3 1 . .
0 3 5 0.126 0.043
0 3 10 0.056 0.019

Example 3. Mean-Field Schlögl Model.

We suggest to solve a control problem associated with a mean-field version of the Schlögl model
(cf. [3,9,10,26]) where the intensities are of the form

λu
ij(t, x, u(t)) :=

{
νij(t) if j 6= i− 1,
u(t) + βEu[x(t)] if j = i− 1

(53)

for some predictable and positive control process u, where β > 0 and (αij)ij is a deterministic Q-matrix
for which there exists N0 ≥ 1 such that αij = 0 for |j− i| ≥ N0 and αij > 0 for |j− i| < N0.

We consider the following mean field-type cost functional

J(u) = Eu
[∫ T

0

1
2

u2(t)dt + x(T)
]

. (54)

Given a control v > 0, the associated Hamiltonian reads

H(t, v) := Lū(t)

(
∑

i,j,j 6=i,i−1
{Ii(t−)(αij − gij)qij(t)}+ ∑

i
{Ii(t−)(v + β1Eū[x(t)]− gii−1)qii−1(t)} − v2

2

)
. (55)

The first-order optimality conditions yield

ū(t) = ∑
i

Ii(t−)qii−1(t). (56)
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Next, we write the associated adjoint equation and identify qii−1.
dp(t) = −∑

i
qii−1(t)

{
Ii(t−)( 1

2 qii−1(t) + βEū[x(t)]− gii−1)dt− dMii−1(t)
}

− ∑
ij,j 6=i,i−1

qij(t)
{

Ii(t−)(νij − gij)dt− dMij(t)
}
− βx(t)Eū

[
∑
i

qii−1(t)Ii(t−)
]

dt,

p(T) = −x(T).

Consider the probability measure P̃, under which x is a pure jump process whose jump intensity
matrix is

G̃ij(t) =

{
αij if j 6= i− 1,
1
2 qij(t) + βEū[x(t)] if j = i− 1.

The adjoint equations become dp(t) = −βx(t)Eū∑
i
[qii−1(t)Ii(t−)]dt + ∑

i
qii−1(t)dM̃ii−1(t) + ∑

i 6=j,j 6=i−1
qij(t)dM̃ij(t),

p(T) = −x(T),

where M̃ij, i 6= j are mutually orthogonal P̃-martingales.
Thus

p(t) = −Ẽ[x(T)|Ft] + β
∫ T

t
Ẽ

[
x(s)Eū

[
∑

i
qii−1 Ii(s−)

] ∣∣Ft

]
ds,

and
∆p(t) = ∆Ẽ[−x(T)|Ft]. (57)

Following the same steps leading to (42), from (57), we obtain qij(t) = i− j, thus qii−1(t) = 1,
i = 1, 2, . . .

Therefore,
ū(t) = ∑

i≥1
Ii(t−) = 1− I0(t−).

Final remark. There are more real-world Markov chain mean-field control problems that we can
apply our results to, such as the mean-field model proposed in [27] for malware propagation over
computer networks where the nodes/devices interact through network-based opportunistic meetings
(e.g., via internet, email, USB keys). Markov chains of mean-field type can be used to model the state
of the devices, which can be either Susceptible/Honest (H), Infected (I), or Dormant (D). The fact that
the jump intensities may depend nonlinearly on the mean-field coupling makes it more involved to
have closed-form expressions even when considering linear quadratic cost functionals.
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Appendix A

Proof of Proposition 1. Below, Cφ denotes the bound of φ ∈ {λ, κ, h, f }.
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Uniqueness.

Assume (p, q) and (p̄, q̄) are two solutions of (27) which satisfy (28). Set y(t) := p(t)− p̄(t), z(t) :=
q(t)− q̄(t) and

γ(s) := 〈 ¯̀(s), z(s)〉g + κ`(x(s))E[Lū(s)〈 ¯̀ ȳ(s), z(s)〉g],

we have

y(t) =
∫ T

t
γ(s)ds−

∫ T

t
z(s)dM(s),

where

E[ ∑
t<s≤T

|z(s)∆M(s)|2] = E[
∫ T

t
‖z(s)‖2

gds]. (A1)

We can apply the Itô–Stieltjes chain rule to obtain

|y(t)|2 = 2
∫ T

t
y(s−)γ(s)ds− 2

∫ T

t
y(s−)z(s)dM(s)− ∑

t<s≤T
|∆p(s)− ∆ p̄(s)|2.

Since ∆p(s) = q(s)∆M(s), ∆ p̄(s) = q̄(s)∆M(s), we have

|y(t)|2 = 2
∫ T

t
y(s−)γ(s)ds− 2

∫ T

t
y(s−)z(s)dM(s)− ∑

t<s≤T
|z(s)∆M(s)|2.

Now, since (y, z) satisfies (28), by Doob’s inequality the stochastic integral
∫ t

0 y(s−)z(s)dM(s) is
in fact a uniformly integrable martingale. Therefore,

E[|y(t)|2] = 2
∫ T

t
E[y(s−)γ(s)]ds− E[ ∑

t<s≤T
|z(s)∆M(s)|2]

= 2
∫ T

t
E[y(s−)γ(s)]ds−

∫ T

t
E[‖z(s)‖2

g]ds. ( by (A1) )

We can now just use Young’s inequality

2ab ≤ εa2 +
b2

ε

to get

2y(s−)γ(s) ≤ ε|y(s−)|2 + γ2(s)
ε

.

We have

γ2(s) ≤ 2(|〈 ¯̀(s), z(s)〉g|2 + |κ`(x(s))|2(E[Lū(s)〈 ¯̀ ȳ(s), z(s)〉g])2)

≤ 2(‖ ¯̀(s)‖2
g‖z(s)‖2

g + Cκ(E[Lū(s)‖ ¯̀ ȳ(s)‖g‖z(s)‖g])
2)

≤ 2C(‖z(s)‖2
g + CκE[(Lū(s))2]E[‖z(s)‖2

g]) ( by (29) and Cauchy–Schwarz )

≤ (2C + 2CκCC̃)(‖z(s)‖2
g + E[‖z(s)‖2

g]) ( by (30) ).

By setting Ĉ := 2(C + CκCC̃), we have

γ2(s) ≤ Ĉ(‖z(s)‖2
g + E[‖z(s)‖2

g]). (A2)
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Therefore,

E[|y(t)|2] ≤ E[
∫ T

t
(ε|y(s)|2 + (

2Ĉ
ε
− 1)‖z(s)‖2

g)ds],

choose ε s.t. 2Ĉ
ε − 1 = − 1

2 , i.e., ε = 4Ĉ, to get

E[|y(t)|2] + 1
2

E[
∫ T

t
‖z(s)‖2

gds] ≤ εE[
∫ T

t
|y(s)|2ds],

and by Gronwall’s inequality we obtain y = 0 P-a.s. Moreover,

E[
∫ T

t
‖z(s)‖2

gds] ≤ 2εE[
∫ T

t
|y(t)|2ds] = 0,

implying that z = 0 dP× gijdt.

Existence.

We use the Picard iteration as follows: set ξ := −h̄(T)− kh(x(T))E[Lū(T)h̄ȳ(T)] and

F(q(t), q̃(t)) := 〈 ¯̀(t), q(t)〉g − f̄ (t) + κ`(x(t))E[Lū(t)〈 ¯̀ ȳ(t), q̃(t)〉g]
− κ f (x(t))E[Lū(t) f̄ȳ(t)].

By assumption (A2), |ξ| ≤ C P-a.s. Moreover, set (p0(t), q0(t)) = (0, 0) and consider the BSDE

pn+1(t) = ξ +
∫ T

t
F(qn+1(s), qn(s))ds−

∫ T

t
qn+1(s)dM(s).

Given qn; (pn+1, qn+1) solves a standard linear BSDE whose existence and uniqueness is
guaranteed (thanks to (A1) and (A2)) by Theorem 5.1 of [17]. We have

pn+1(t)− pn(t) =
∫ T

t
F(qn+1(s), qn(s))− F(qn(s), qn−1(s))ds (A3)

−
∫ T

t
qn+1(s)− qn(s)dM(s).

In particular,

E[ sup
0≤t≤T

|pn(t)|+
∫ T

0
‖qn(s)‖2

gds] ≤ ∞. (A4)

Applying a similar estimate as (A2) we obtain

|F(qn+1(t), qn(t))− F(qn(t), qn−1(t))|2 ≤Ĉ‖qn+1(t)− qn(t)‖2
g

+ ĈE[‖qn(t)− qn−1(t)‖2
g].

Set yn(t) := pn(t)− pn−1(t), zn(t) := qn(t)− qn−1(t) and apply the Itô–Stieltjes chain rule to
eβt|yn(t)|2 to get

E[eβt|yn+1(t)|2] + E[
∫ T

t
βeβs|yn+1(s)|2ds] + E[

∫ T

t
eβs‖zn+1(s)‖2

gds]

= E[
∫ T

t
eβs|yn+1(s)|(F(qn+1(s), qn(s))− F(qn(s), qn−1(s)))ds].
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Applying Young’s inequality, we obtain

E[eβt|yn+1(t)|2]+E[
∫ T

t
βeβs|yn+1(s)|2ds] + E[

∫ T

t
eβs‖zn+1(s)‖2

gds]

≤εE[
∫ T

t
eβs|yn+1(s)|2ds] +

Ĉ
ε

E[
∫ T

t
eβs‖zn(s)‖2

gds]

+
Ĉ
ε

E[
∫ T

t
eβs‖zn+1(s)‖2

gds]

or

E[eβt|yn+1(t)|2] + (β− ε)E[
∫ T

t
βeβs|yn+1(s)|2ds]+

(
1− Ĉ

ε

)
E[
∫ T

t
eβs‖zn+1(s)‖2

gds]

≤ Ĉ
ε

E[
∫ T

t
eβs‖zn(s)‖2

gds].

Choose ε = 3Ĉ, β = 3Ĉ + 1 to get

E[
∫ T

0
eβs(|yn+1(s)|2 + ‖zn+1(s)‖2

g)ds] ≤1
2

E[
∫ T

0
eβs‖zn(s)‖2

gds]

≤1
2

E[
∫ T

0
eβs(|yn(s)|2 + ‖zn(s)‖2

g)ds].

This shows that (pn, qn) is a Cauchy sequence w.r.t the norm ‖(y, z)‖β = E[
∫ T

0 eβs(|y(s)|2 +
‖z(s)‖2

g)ds]. Taking the limit (p = lim
n→∞

pn, q = lim
n→∞

qn) in (A3), it holds that (p, q) solves (27) as a

fixed point and thus satisfies (28) (cf. [23]).
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