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Abstract: Different strains of influenza viruses spread in human populations during every epidemic
season. As the size of an infected population increases, the virus can mutate itself and grow in strength.
The traditional epidemic SIR model does not capture virus mutations and, hence, the model is not
sufficient to study epidemics where the virus mutates at the same time as it spreads. In this work,
we establish a novel framework to study the epidemic process with mutations of influenza viruses,
which couples the SIR model with replicator dynamics used for describing virus mutations. We
formulated an optimal control problem to study the optimal strategies for medical treatment and
quarantine decisions. We obtained structural results for the optimal strategies and used numerical
examples to corroborate our results.
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1. Introduction

An epidemic of infectious disease occurs when a virus population undergoes genetic mutations
or new species of viruses are introduced into the host population, and host immunity to that change
in the virus population is suddenly reduced below a certain threshold. Hence, epidemic modeling
should take into account not only the population dynamics of the host population, but also those of the
viruses. In traditional epidemiological models, differential equations are used to capture the dynamic
evolution of different classes of host populations. In particular, susceptible (S) is the class of people
who are not infected; infected (I) is the class of people who have the disease; and removed or recovered
(R) represents the quarantined or immune population. The commonly used SIR model [1,2] is used
to describe the population migrations between these three classes of models. In order to capture the
interdependencies between a virus and host populations, we established a system framework that
combines the SIR model with evolutionary models that describe virus mutations.

In this work, we studied an influenza epidemic in urban populations. We analyzed the
evolutionary model for virus mutations together with SIR models for the evolution of susceptible,
infected, and recovered subpopulations. Over the time, individuals from these subpopulations
randomly interact with each other and change their state. We consider the epidemic process as a
dynamic process of changing states from susceptible individuals to the infected and finally to the
recovered. The influenza epidemic is a fast-spreading process, involving a large part of the total
population. Hence, one key concern is protecting a population during the annual epidemic season.
There exist methods of prevention that reduce the sickness rate to protect populations, and medical
measures (pharmacological products, quarantine policies, etc.) that reduce the number of the infected
in the population.
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Another aspect of the influenza epidemic is that different strains of influenza viruses can spread
in the population during each epidemic season. As it was shown in previous studies, influenza viruses
have many modifications and can quickly transform every season. Thus, by including a simulation of
the mutation process into the SIR model, we can preliminarily forecast treatment strategies. In this
work, we used evolutionary-game tools to describe the evolution of the influenza virus because this
approach allows us to estimate the survivability of virus modifications and to determine the strongest
modification. Thereby, we can use treatment strategies more effectively.

More specifically, in our work, we assume that the virus has two types with different strains and
fitness functions. Both types of viruses spread in urban populations, and, hence, during an epidemic,
different parts of population are infected. In our model, we split infected subpopulations into two
subgroups and considered a modified SIR model. Therefore, the epidemic process in urban population
depends on changes in the virus population.

In our work, we formulated the SIR model under the mechanism of a virus mutation that affects a
human population and considered the minimization of treatment costs and the number of infected
in both subpopulations to reduce the speed of epidemics. This complex problem is formulated as an
optimal-control problem, and the virus mutation is described by replicator dynamics.

The paper is organized as follows. In Section 2, we discuss related work to our model. Section 3
presents the evolutionary model of viruses. In Section 4, we establish the epidemic model for urban
populations. In Section 5, we use Pontryagin’s maximum principle to find the optimal control and
present structural results of the optimal-control problem. In Section 6, we used a numerical simulation
to illustrate our results. The paper is concluded in Section 7.

2. Related Works

The recent literature has seen a surge of interest in using optimal control and game-theoretic
methods to study disease control of influenza for public health [3–5]. This research problem can be
traced back to Reference [6], where an SIR type of mathematical framework was proposed to study
epidemic spread in a homogeneous population. It provides a deterministic dynamical system model
as the mean field approximation of the underlying stochastic evolution of the host subpopulations.
In Reference [7], a control problem was formulated for a model of the carrier-borne epidemic model,
and it was shown that the optimal-control effort switches at maximum once between the maximum
and the minimum control effort. In Reference [8], many variants of optimal-control models of
SIR epidemics were investigated for the application of medical vaccination and health-promotion
campaigns. In References [9,10], a dynamic SIR epidemic model was used to identify the optimal
vaccination-policy mixes for flu season.

Epidemic models have also been used in computer science and engineering to describe the
temporal evolution of worm propagation in computer networks [11–13]. Methods such as stochastic
system analysis and optimal control have been applied to provide insights on the spread of
epidemics, as well as disease-control policies for protecting a population with quarantine and removal.
In Reference [14], sequential hypothesis testing was adopted to detect worm-epidemic propagation
over the Internet under a stochastic density-dependent Markov jump process propagation model.
In References [15,16], optimal-control methods were used to study the class of epidemic models in
mobile wireless networks, and Pontryagin’s maximum principle was used to quantify the damage that
malware could inflict on the network by deploying optimum decision rules.

Game-theoretic approaches were also used to analyze the strategic interactions between malicious
worms and the system under attack. In Reference [17], a virus-protection game was proposed based on
two-state epidemic models for N nodes and the characterization of the equilibrium focus on the steady
state of the response. In Reference [18], static- and dynamic-game frameworks were used to design
equilibrium-revocation strategies for defending sensor networks from node-capturing and cloning
attacks. It was shown that the N + 1 non-zero-sum differential game framework was equivalent to a
zero-sum differential game between a team of N attackers and the system. In References [19,20] the
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SIR model was combined with a game-theoretical approach to define the optimal medical approach:
vaccination or treatment of seasonal influenza.

In many modern studies, different modifications of SIR models were used to estimate the behavior
of infectious diseases, such as Ebola and Severe acute respiratory syndrome (SARS) [21].

Different from past works, this paper considers a coupled system framework composed of the
SIR epidemic model and the evolutionary dynamic model for virus mutations. This framework is
motivated by the fact that the epidemic spread of a virus can facilitate virus mutations, strengthening
its virulence, which, in turn, expedites the spread and worsens epidemics. The SIR epidemic model
with virus mutations can capture this complex interactions between virus and host, and allows us to
explain more complex phenomena through analysis.

3. Evolutionary Model of Virus Mutations

Infectious diseases, such as influenza and SARS, are urgent public health problems in modern
urban environments. Influenza spreads faster, especially in large urban populations, and affects
people’s lifestyle and working facilities. The occurrence of epidemics depends on many factors, such
as the size of the human population, and the virus strain and virulence, and it has become important
to use effective tools to reduce their influence on human populations [22–24]. A mathematical model
of virus infections in a population can be used to study the factors that influence epidemic growth to
improve existing treatments and evaluate new effective prevention measures and treatment. In earlier
research in the literature, it was shown that, during epidemic season, the influenza virus can mutate,
and several types of the influenza virus circulate in the human population. Different mutations of the
influenza virus affect human beings with different intensities, and epidemics evolve depending on
virus type and intensity. Hence, the evolution of virus mutations should be taken into account when
the SIR model is used to model influenza epidemics.

In this work, we coupled together two dynamic processes, i.e., the evolution of virus mutations
and the epidemic process in human populations, as one dynamical system. The corresponding scheme
of the system is illustrated in Figure 1. At the top level, two different types of the influenza virus
compete to infect the host to continue their life cycles, and thereby lead to the spread of epidemics
in the human population. The total population would contain several infected subpopulations that
correspond to different virus types. On the bottom level, the human population is divided into
subpopulations: the susceptible (S), the infected (I), and the recovered (R).

Spreading of viruses can be controlled using prevention measures such as medical treatment or
isolation of infected individuals of population. Thus, at this level, we considered the SIR model with
those control parameters.

At the top level of coupled dynamical system, we used evolutionary dynamics to describe the
mutations within the virus population. We first describe the interactions between two virus types
using an evolutionary-game model, for which we defined pure strategies, fitness, and rule of changes
in a population. In the game, two types of viruses compete for human organisms, and, depending on
the strength of the virus, one type can survive or vanish from the virus population.

We assume that the virus has two types or strains, denoted by V1 and V2, and without loss of
generality, we assume that V2 dominates virus V1. The fitness of virus type Vi in the population is
Ji(Vi, Vj), i, j = 1, 2, which depends on the survivability of the virus among its infected population
(e.g., human beings). The life cycle of viruses requires a host organism, and occupation of such an
organism leads to energy costs. Hence, virus payoff Ji is composed of two components: one is the
utility of occupying the host organism, and the other is the cost, i.e., energy costs, Ji = bi − Ci, bi > 0,
Ci > 0, bi < Ci, C2 < C1. Utility of occupation bi = b(Ii), as well as energy costs CI = C(Ii), are the
functions of population state Ii and, hence, mixed strategies x1, x2 ∈ [0, 1] over set (V1, V2) are also
dependent on the population states. Here, a mixed strategy is defined as the fraction of corresponding
virus types circulating in a population. Thereby, the state of the virus population is defined as value
x(t) = (x1(t), x2(t)), where x1(t) + x2(t) = 1, ∀t ∈ [0, T].
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Figure 1. Transition rule: Scheme describes the reaction to two heterogeneous viruses circulating in a
population. We assumed that the epidemic process could be controlled using treatment or quarantine
methods. These measures can be considered as the control parameters in the system, which are used to
reduce the size of the infected population and terminate the epidemic process.

Depending on virus strength, the number of people infected by different virus types is different.
We used two flows of epidemic processes in a human population to describe our model and the
population. We used I1 to denote the population state for the subpopulation infected by the Type
1 virus, and I2 is the state for the subpopulation infected by the Type 2 virus. Both viruses spread
over the entire human population, and the interactions between two viruses when attacking the same
human organism are described with the following four scenarios:

• if virus V1 meets virus V1, then utility for both is equal to b1−C1
2 . The virus incurs energy costs C1

with probability 1/2 if it cannot occupy a host organism, and achieves utility of b1 with probability
1/2 if it succeeds in occupation.

• if virus V1 competes with virus V2, then virus V1 obtains utility of 0, and V2 obtains a payoff of b2.
• if virus V2 meets V2, then both viruses obtain a payoff of b2−C2

2 .

The above four competition cases between the two types of viruses are summarized in the
following matrix representation:

V1 V2

V1 (
b1 − C1

2
,

b1 − C1
2

) (0, b2)

V2 (b2, 0) (
b2 − C2

2
,

b2 − C2
2

) .

According to the theory of evolutionary games [25], we compared the payoff of the i-th pure strategy
with the average payoff of the total population. If the difference was positive, then the number of
individuals using this pure strategy increases, or otherwise decreases. The average payoff of population
u : R2 → R is defined as

u(x, x) =
k

∑
i=1

xiu(ei, x),

where ei ∈ R2, i = 1, 2, is a vector with i-th element being one and 0 otherwise, indicating the i-th pure
strategy; u is a continuous function. The payoff of the i-th pure strategy is defined by u(ei, x) = ei Ax,
where A is the payoff matrix of the current symmetric game, and xi(t) is a fraction of virus Vi [26].
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To describe the evolution of the virus, we need to use a system of differential equations. In the
current work, we focused on replicator dynamics [27] to describe changes of states in virus populations.

ẋi = ε[u(ei, x)− u(x, x)]xi, (1)

where ε ∈ R+ is the time-scaling factor. Since the mutation process in a virus population and the
epidemic process in a human population may develop with different speeds (e.g., virus can mutate
faster than spread in human populations), ε can be used to describe such difference in the time scale of
the two dynamics.

The stationary state of System of differential Equation (1) leads to a symmetric Nash
equilibrium [26,27]. Therefore, depending on parameters bi and Ci, the game has two asymmetric Nash
equilibria (1, 0), (0, 1) corresponding to the strategies in which all populations are types V1 and V2,
respectively; and one symmetric Nash equilibrium (x, x), where x = (x1, x2), x1 = a2

a1+a2
, x2 = a1

a1+a2
,

here a1 = b1−C1
2 − b2, a2 = b2−C2

2 . The symmetric case is more interesting since both virus types have
influence on the human population. By using the evolutionary scenario of virus behaviors, we can
predict which type of virus will prevail in a human population. Hence, this knowledge can correct
treatment therapy and, at the same time, decrease the total cost of epidemics.

4. Epidemic Process for an Urban Population

Consider a total urban population of size N with two types of viruses circulating in the
population during epidemic season. The human population is divided into four groups: the susceptible,
the infected by virus V1, the infected by virus V2, and the recovered. The susceptible are a subpopulation
of human beings that are not infected by viruses but could be infected by one or both types of viruses,
and they do not have immunity to them. We assume that, in human populations, two types of viruses
coexist at the same time. Human organisms can be occupied by both types of viruses, and, hence, this
leads to competition between viruses for the host. Depending on virus strength, we observed that the
number of people infected by virus i or by virus j can be different, and people infected by virus V1 or V2

belong to the infected subpopulation. The recovered subpopulation consists of people recovered from
being infected. The mixing of urban populations allows viruses to spread quickly, and each person in
the population is assumed to be in contact with others with equal probability. Hence, when an infected
individual interacts with a susceptible one, the virus spreading is made possible. A virus with higher
virulence, by our assumption, has a higher probability of success in spreading when interaction occurs
between an infected individual and a susceptible individual.

4.1. Epidemic Dynamics

We modeled a virus spreading in an urban population using the epidemiological SIR model, where
a system of differential equations is used to describe the fraction of the urban population as a function
of time. Then, at time t, nS(t), nI1(t), nI2(t), nR(t) correspond to fractions of the population who are
susceptible, infected by virus V1, infected by virus V2, and recovered, respectively; for all t, condition

N = nS + nI1 + nI2 + nR is justified. Define S(t) = nS(t)
N , I1(t) =

nI1 (t)
N , I2(t) =

nI2 (t)
N , R(t) = nR(t)

N ,
(R(t) = 1− S(t)− I1(t)− I2(t)) as portions of the susceptible, the infected and the recovered in the
population. At the beginning of epidemic process t = 0, most people in the population belong to the
Susceptible subpopulation, a small group in the total population is infected, and the other people are
in the recovered subpopulation. Hence, the initial states are: 0 < S(0) = S0 < 1, 0 < I1(0) = I0

1 < 1,
0 < I2(0) = I0

2 < 1, R(0) = 1− S0 − I0
1 − I0

2 .
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We extended the simple SIR model introduced by References [6,28] to describe the situation with
two virus types:

dS
dt

= −δ1S(t)I1(t)− δ2S(t)I2(t);
dI1

dt
= (δ1S(t)− σ1 − u1(t))I1(t);

dI2

dt
= (δ2S(t)− σ2 − u2(t))I2(t);

dR
dt

= (σ1 + u1(t))I1(t) + (σ2 + u2(t))I2(t);

(2)

where δi are the infection rates for virus Vi, i = 1, 2, We can interpret self-recovery rate σ1 for virus
V1 or σ2 for virus V2, which shows the probability that infected nodes from subgroups I1 or I2 are
recovered from the infection without causing any costs to our system. Infection rate is defined as the
product of infection transmissibility, i.e., the probability of infection being transmitted during contact:

δi(t) = δi(t− ∆t) + δi(t− ∆t)(Ii(t)− Ii(t− ∆t)), (3)

where δi(0) = δi0 Ii(0). Here δi0 , i = 1, 2 determine the virulence of the particular virus or the ability to
infect a susceptible host.

In this work, changes in the virus population influence the parameters of the SIR model; therefore,
the number of infected is a function of corresponding virus subpopulation xi, Ii(t) = Ii(xi, t), i = 1, 2.
We let Ii(xi, t) be linear and δi(t) take the following form:

δi(t) = δi(t− ∆t) + δi(t− ∆t)(Ii(xi, t)− Ii(xi, t− ∆t)).

Then, the SIR model can be rewritten as follows:

dS
dt

= −δ1(t)S(t)− δ2S(t);
dI1

dt
= δ1(t)S(t)− σ1 I1(t)− u1(t)I1(t);

dI2

dt
= δ2(t)S(t)− σ2 I2(t)− u2(t)I2(t);

dR
dt

= (σ1 + u1(t))I1(t) + (σ2 + u2(t))I2(t).

(4)

In the model above, the infection rate is captured in the evolution of the mutation process in the urban
population. Medical treatment or quarantine isolation reduces the number of infected individuals
in the urban population. These prevention measures can be interpreted as control parameters in the
system defined as u = (u1, u2); here, ui are fractions of the infected that are quarantined or under
intensive medical treatment: 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, for all t.

4.2. Objective Function

In this work, we minimize overall cost in time interval [0, T]. At any given t, the following costs
exist in the system: f1(I1(t)), f2(I2(t)), infected costs; g(R(t)), benefit rate; h1(u1(t)), h2(u2(t)), costs
for medical treatments (i.e., quarantine or removal) that help reduce the epidemic spread; kI1 , kI1 , kR,
costs and benefit for invective and recovered at the end of the epidemic. Here, functions fi(Ii) are
non-decreasing and twice-differentiable, convex functions, i.e., fi(0) = 0, fi(Ii) > 0 for Ii > 0, i = 1, 2.,
g(R) is non-decreasing and differentiable function and g(0) = 0, hi(ui(t)) is twice-differentiable and
increasing function in ui(t) such as hi(0) = 0, hi(ui(t)) > 0, i = 1, 2, when ui(t) > 0. We show the
structure of the optimal control strategies for the general case of costs functions. Hence, in particular
cases this conditions will be satisfied for any functions with the same properties.
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The cost for the aggregated system is given by

J =
∫ T

0 f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))dt+
kI1 I1(T) + kI1 I2(T)− kRR(T),

(5)

and the optimal-control problem is to minimize the cost, i.e., min{u1,u2} J. To simplify the analysis,
we consider the case where kI1 = kI1 = kR = 0.

5. Optimal Control of Epidemics

We used Pontryagin’s maximum principle [29] to find optimal control u(t) = (u1(t), u2(t)) to the
problem described in Section 4 above. Define associated Hamiltonian H and adjoint functions λS, λI1 ,
λI2 , λR as follows:

H = f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))+
(λI1 − λS)δ1SI1 + (λI2 − λS)δ2SI2 + (λR − λI1)σ1 I1+

(λR − λI2)σ2 I2 − (λI1 − λR)I1u1 − (λI2 − λR)I2u2.
(6)

Here, we used condition R(t) = 1− S(t)− I1(t)− I2(t). We constructed an adjoint system as
follows:

λ̇S(t) = −
∂H
∂S

= −λS(−δ1 I1 − δ2 I2)− λI1 δ1 I1;

λ̇I1(t) = −
∂H
∂I1

= − f ′1(I1) + λSδ1S− λI1(δ1S− σ1)− λRσ1;

λ̇I2(t) = −
∂H
∂I2

= − f ′2(I2) + λSδ2S− λI2(δ2S− σ2)− λRσ1;

λ̇R(t) = −
∂H
∂R

= (g′(R));

(7)

with transversality conditions given by:

λI1(T) = 0, λI2(T) = 0, λS(T) = 0, λR(T) = 0. (8)

According to Pontryagin’s maximum principle, there exist continuous and piecewise continuously
differentiable costate functions λi that, at every point t ∈ [0, T], where u1 and u2 are continuous, satisfy
System (7) and Equation (8). In addition, we have:

(u1, u2) ∈ arg min
u1,u2∈[0,1]

H(λ, (S, I1, I2, R), (u1, u2)). (9)

5.1. Structure of Optimal Control

Based on previous research [12,16,29], in this subsection we show that optimal control
u(t) = (u1(t), u2(t)) has the following structural results:

Proposition 1. The following statements hold for the optimal-control problem described in Section 4:

• When hi(·) are concave functions, then there exist time moments t1 ∈ [0, T], such that:

u(t) = (u1(t), u2(t)) =

{
(1, 1), for 0 < t < t1;
(0, 0), for t1 < t < T.

• When hi(·) are strictly convex functions, then there exist time moments t0, t1, 0 < t0 < t1 < T such that:

ui(t) =


0, φi(t) ≤ h′i(0), i = 1, 2;
h′−1(φi), h′i(0) < φi(t) ≤ h′i(1), i = 1, 2;
1, h′i(1) < φi(t), i = 1, 2.
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The proof of Proposition 1 requires auxiliary Lemma 1 and it is discussed in detail in Section 5.2.
Before stating Lemma 1, we define functions φi as follows:

φ1(t) = (λI1(t)− λR(t))I1(t), φ2(t) = (λI2(t)− λR(t))I2(t).

Rewrite the Hamiltonian in terms of function φ and we obtain:

H = ( f1(I1(t)) + f2(I2(t))− g(R(t)) + (λI1 − λS)δ1SI1+

(λI2 − λS)δ2SI2 + (λR − λI1)σ1 I1 + (λR − λI2)σ2 I2+

(h1(u1(t))− φ1u1) + (h2(u2(t))− φ2u2).
(10)

For any admissible control ũ1, ũ2 and according to Equation (9), for all t ∈ [0, T]:

[(h1(u1(t))− φ1u1) + (h2(u2(t))− φ2u2)] ≤
h1(ũ1(t))− φ1ũ1) + (h2(ũ2(t))− φ2ũ2),

(11)

then, we obtain

(u1(t), u2(t)) ∈ arg min
x ∈ [0, 1], y ∈ [0, 1]

(h1(x)− φ1x) + (h2(y)− φ2y).
(12)

We observe that

min
u1,u2

[(h1(u1(t))− φ1u1(t)) + (h2(u2(t))− φ2u2(t))]

= min
u1

(h1(u1(t))− φ1u1) + min
u2

(h2(u2(t))− φ2u2).

Since u1 = u2 = 0 are admissible control, using Equation (11), we obtain

(h1(u1(t))− φ1u1) + (h2(u2(t))− φ2u2) ≤
(h1(0)− φ10) + (h2(0)− φ20) = 0, for all t. (13)

To prove Proposition 1, we consider the following auxiliary lemma:

Lemma 1. Functions φi, i = 1, 2 are decreasing functions of t, for t ∈ [t0, T], t0 ≥ t ≥ 0, while

δiSIi − σi Ii ≥ ui, i = 1, 2. (14)

Proof of Lemma 1. The state and costate functions are differentiable functions; then, φi are also
differentiable functions at each time t, t ∈ [0, T] at which functions u1, u2 are continuous. We have to
show that φ̇i < 0 at each time t ∈ [t0, T], t0 ≥ t ≥ 0. Consider function φ1 given by

φ̇1 = −( f ′1(I1)− (λI1 − λS)δ1S− (λR − λI1)σ1 − g′(R))I1−
(λR − λI1)(δ1SI1 − σ1 I1 − I1u1),

(15)

and, likewise, φ2 as follows:

φ̇2 = −( f ′2(I2)− (λI2 − λS)δ2S− (λR − λI2)σ2 − g′(R))I2−
(λR − λI1)(δ2SI2 − σ2 I2 − I2u2).

(16)

Here, f ′1(I1) ≥ 0, f ′2(I2) ≥ 0, g′(R) ≥ 0, δi ≥ 0, I1, I2, S, R ≥ 0, then, the right-hand side
of Expressions (15) and (16) are negative if conditions δ1SI1 − σ1 I1 ≥ u1 and δ2SI2 − σ2 I2 ≥ u2

are satisfied; otherwise, functions φi are increasing. Term δiSIi − σi Ii ≥ ui ≥ 0, i = 1, 2 can be
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interpreted as a condition for the beginning of the epidemic (see Reference [6]). The proof of Lemma 1
is completed.

5.2. Proof of Proposition 1

In this subsection, we prove Proposition 1 under two cases of cost functions hi(ui), i = 1, 2.

5.2.1. hi Are Concave

Let h1 and h2 be concave (h′′1 < 0, h′′2 < 0); then, (h1(x) − φ1x) and (h2(y) − φ2y) are convex
functions of x and y. For any time t, the unique mimimum is either in x = 0 or x = 1 (y = 0 or y = 1).

From Equation (10), we have that optimal ui satisfies hi(ui)− uiφi ≤ hi(ũi)− ũiφi, where ũi are
any admissible control, ũi ∈ [0, 1]. If ui = 1, then switching functions are satisfied φi ≥ hi(1), and, if
ui = 0, then φi < hi(1).

ui(t) =

{
0, φi(t) < hi(1),
1, φi(t) ≥ hi(1).

(17)

Lemma 1 suggests that φi are decreasing functions; then, there can be, at most, one time moment
t ∈ [0, T] at which φi(t) = h′i(ui(t)). Moreover, if such moment exists, for example, t1, then φi(t) <
hi(1) on 0 ≤ t < t1 and φi(t) ≥ hi(1) on t1 ≤ t < T. Then, Control (17) is satisfied.

5.2.2. hi(·) Are Convex

When hi(·) are strictly convex (h′′i > 0), then ∂
∂x (h1(x) − φ1x) |x=x1= 0 and ∂

∂y (h2(y) −
φ1y) |y=y1= 0 at a x ∈ [0, 1] or y ∈ [0, 1], then u1(t) = x1 and u2(t) = y1, else u1(t) ∈ [0, 1] and
u2(t) ∈ [0, 1]. Then,

ui(t) =


0, φi(t) ≤ h′i(0), i = 1, 2;
h′−1(φi), h′i(0) < φi(t) ≤ h′i(1), i = 1, 2.
1, h′i(1) < φi(t), i = 1, 2.

(18)

Function φi, h′i, ui is continuous at all t ∈ [0, T]. In this case, hi is strictly convex and h′i is a strictly
increasing function, so h′(0) < h′(1). Thus, there exist points t0, t1, 0 < t0 < t1 < T, so that Conditions
(14) and (18) are satisfied; according to that, φi is a decreasing function. In a time interval where
δiSIi − σi Ii < ui, i = 1, 2, functions φi are increasing and Conditions (18) are rewritten. There may exist
such time interval [0, t0) that ui = 0 and φi ≤ h′i(0), i = 1, 2; then, for time interval [t0, T], Conditions
(18) continue to be satisfied.

Using auxiliary Lemma 2, we completed the proof of Proposition 1. From Lemma 1, we need to
check that multipliers (λI1(t)− λS(t)), (λI2(t)− λS(t)), (λR(t)− λI1(t)) in Equations (15) and (16) are
non-negative.

Lemma 2. For all 0 ≤ t ≤ T, we have (λI1(t)−λS(t)) > 0, (λI2(t)−λS(t)) > 0 and (λR(t)−λI1(t)) > 0.

Property 1. Let w(t) be a continuous and piecewise differential function of t. Let w(t1) = L and w(t) > L for
all t ∈ (t1, . . . , t0]. Then ˙w(t+1 ) ≥ 0, where w(t+1 ) = lim

x→x0
v(x).

Property 2. For any convex and differentiable function y(x), which is 0 at x = 0, y′(x)x− y(x) ≥ 0 for all
x ≥ 0.

Proof: We first prove the case for t = T and then for t < T.
Step 1. At time T, we have (λI1(T)− λS(T)) = 0, (λI2(T)− λS(T)) = 0, and (λR(T)− λI1(T)) =

0 according to (8). λ̇I1(T)− λ̇S(T) = − f ′1(I1(T)) < 0 and by analogy λ̇I2(T)− λ̇S(T) = − f ′2(I2(T)) <
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0 and λ̇R(T)− λ̇I1(T) = f ′1(I1(T)) + g(R(T)) > 0, therefore expressions (λI1(T)− λS(T)), (λI2(T)−
λS(T)), (λR(T)− λS I1(T)) are positive in open interval (0, T).

Step 2. (Proof by contradiction).
Let t∗ < T be the last time at which one of the inequality constraints holds:
Case I. In this case, we prove that (λI1(t) − λS(t)) > 0. Suppose that (λI1(t) − λS(t)) = 0,

(λI2(t)− λS(t)) = 0 and (λR(t)− λI1(t)) > 0 then

λ̇I1(t
∗)− λ̇S(t∗) = f ′1(I1)− (λI1 − λS)δ1S− (λR − λI1)σ1−

(λS − λI1)δ1 I1 − (λS − λI2)δ2 I2,

and hence we obtain that (λ̇I1(t
∗)− λ̇S(t∗)) < 0. This contradicts Property 1 for function (λI1(t

∗)−
λS(t∗)), which means that (λI1(t

∗)− λS(t∗)) > 0.
Now, let (λR(t) − λI1(t)) = 0 and (λR(t) − λI2(t)) = 0 and (λS(t) − λI1(t)) > 0, (λS(t) −

λI2(t)) > 0.
λ̇I1(t

∗+)− λ̇S(t∗+) = (− f ′1(I1) + λSδ1S− λI1(δ1S− σ1)− λRσ1)−
(−λS(−δ1 I1 − δ2 I2)− λI1 δ1 I1)

= − f ′1(I1)− (λI1 − λS)δ1S− (λR − λI1)σ1+

(λI1 − λS)δ1 I1 + (λI2 − λS)δ2 I2

= − f ′1(I1)− (λI1 − λS)δ1S− (λR − λI1)σ1−
(λS − λI1)δ1 I1 − (λS − λI2)δ2 I2.

(19)

If δ1 = 0 and δ2 = 0 and (λR(t)− λI1(t)) > 0 then λ̇I1(t
∗)− λ̇S(t∗) < 0, this contradicts Property

1 for functions (λI1(t
∗)− λS(t∗)) at time t∗, and such moment t∗ does not exist. Lemma 2 is proved in

this case.
If δ1 > 0 and δ2 > 0, then the system of O.D.E. is autonomous, and hence the Hamiltonian and

the control do not have the dependence of variable independent t.

H(S(t), I1(t), I2(t), R(t), u1(t), u2(t), λS(t), λI1(t), λI2(t), λR(t)) = constant. (20)

From Hamiltonian (6), we obtain

H = f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))+
(λI1 − λS)δ1SI1 + (λI2 − λS)δ2SI2 + (λR − λI1)σ1 I1 + (λR − λI2)σ2 I2−
(λI1 − λR)I1u1 − (λI2 − λR)I2u2.

(21)

Since g(R) is a nondecreasing function, then g(R(T)) ≥ g(R(t)), and we obtain

H − f1(I1(t)) + g(R(t) ≥ f2(I2(t)) + h1(u1(t)) + h2(u2(t))+
(λI1 − λS)δ1SI1 + (λI2 − λS)δ2SI2+

(λR − λI1)σ1 I1 + (λR − λI2)σ2 I2+

(λR − λI1)I1u1 + (λR − λI2)I2u2 ≥ 0.

(22)

This follows from the assumptions on functions f1(I1) and h1(u1), h2(u2), such that I1(T) > 0
then f1(I1) > 0 and u1(t) > 0, u2(t) > 0; then, h1(u1) ≥ 0, h2(u2) ≥ 0.

From Hamiltonian (10), we have:

H = ( f1(I1(t)) + f2(I2(t))− g(R(t)) + (λI1 − λS)δ1SI1+

(λI2 − λS)δ2SI2 + (λR − λI1)σ1 I1 + (λR − λI2)σ2 I2

+(h1(u1(t))− φ1u1) + (h2(u2(t))− φ2u2).
(23)
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Therefore, we obtain

λ̇I1(t)− λ̇S(t) = − f ′1(I1) +
f1(I1(t)) + f2(I2(t))− g(R(t)− H

I1
+

(h1(u1(t))− φ1u1)

I1
+

(h2(u2(t))− φ2u2)

I1
− (λS − λI2)δ2S

I2

I1
−

(λI2 − λR)σ2
I2

I1
+ (λI1 − λS)δ1 I1 + (λI2 − λS)δ2 I2

=
1
I1
( f1(I1)− f ′1(I1)I1)−

1
I1
(H − f2(I2) + g(R))+

(h1(u1(t))− φ1u1)

I1
+

(h2(u2(t))− φ2u2)

I1
−

(λS − λI2)δ2S
I2

I1
− (λI2 − λR)σ2

I2

I1
− (λS − λI1)δ1 I1−

(λS − λI2)δ2 I2.

(24)

Here, f1(I1) is a convex increasing function and f1(0) = 0, I1 > 0 and ( f1(I1)− f ′1(I1)I1) ≤ 0,
by Property 2. From Transversality (8), and Lemmas (19) and (22), then λ̇I1(t)− λ̇S(t) < 0, which
contradicts Property 1. Case I of the lemma follows.

Case II. We have to prove that (λI2(t)− λS(t)) > 0. This is a symmetric case to Case I. Using the
same reasoning, we obtain

λ̇I2(t)− λ̇S(t) = − f ′(I2) + (λS − λI2)δ2S + (λI2 − λR)σ2 + (λI1 − λS)δ1 I1+

(λI2 − λS)δ2 I2 =
1
I2
( f2(I2)− f ′2(I2)I2)−

1
I2
(H − f1(I1) + g(R)) +

(h1(u1(t))− φ1u1)

I2
+

(h2(u2(t))− φ2u2)

I2
− (λS − λI1)δ1S

I1

I2
− (λI1 − λR)σ1

I1

I2
−

(λS − λI2)δ2 I2 − (λS − λI1)δ1 I1.

(25)

Thus, we have λ̇I2(t) − λ̇S(t) < 0 that contradicts Property 1, and, hence, functions
(λI2(t)− λS(t)) > 0.

Case III. In this case, we prove that (λR(t)− λI1(t)) > 0 in a similar way.

H − f2(I2(t)) + g(R(t) ≥ − f1(I1(t)) + h1(u1(t)) + h2(u2(t))+
(λI1 − λS)δ1SI1 + (λI2 − λS)δ2SI2+

(λR − λI1)σ1 I1 + (λR − λI2)σ2 I2 + (λR − λI1)I1u1+

(λR − λI2)I2u2 ≥ 0.

(26)

This follows from the assumptions on functions h1(u1), h2(u2) such as I1(T) > 0 then f1(I1) > 0
and u1(t) > 0, u2(t) > 0 then h1(u1) ≥ 0, h2(u2) ≥ 0. Therefore, we obtain

λ̇R(t)− λ̇I1(t) = g′(R) + f ′1(I1)− λI1 δ1S + λI2(δ1S− σ1) + λRσ1

= g′(R) + f ′1(I1) + (λI1 − λS)δ1S + (λR − λI1)σ1

= g′(R) + f ′1(I1) +
H
I1
− f2(I2)

I1
+

1
I1
( f ′1(I1)I1 − f1(I1)) +

g(R)
I1

+ (λS − λI2)δ2S
I2

I1
+

(λR − λI2)σ2
I2

I1
− (h1(u1(t))− φ1u1)

I1
− (h2(u2(t))− φ2u2)

I1
.

(27)

From Transversality (8), Equation (13), and Lemmas (19) and (22), we obtain λ̇R(t)− λ̇I1(t) > 0
and by Property 1 λR(t)− λI1(t) > 0, Lemma 2 follows.

Together with Lemma 1, proof of Lemma 2 completes the proof of Proposition 1.
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5.3. Quadratic Cost Functions

In this subsection, we consider a particular case of Proposition 1, where cost functions hi(u), i =
1, 2 are quadratic, i.e.,

hi(u) = a0u2
i + a1ui + a2, a0 6= 0. (28)

The quadratic function is strictly convex if coefficient a0 > 0, and we can apply the same
arguments as in Case II of Lemma 1. Consider ∂

∂x (hi(x)− φix) |x=x1= 0 from Proposition 1, where
hi(u) is defined as in Function (28); then, we obtain:

∂
∂x (hi(x)− φix) |x=x1=

∂
∂x (a0u2

i + a1ui + a2 − φix) |x=x1= 2a0ui + a1 − φi.

Hence, we arrive at the following form of optimal control:

ui(t) =


0, φi(t) ≤ h′i(0), i = 1, 2;
φi−a1

2a0
, h′i(0) < φi(t) ≤ h′i(1), i = 1, 2.

1, h′i(1) < φi(t), i = 1, 2.
(29)

Functions φi, h′i, ui are continuous at all t ∈ [0, T]. In this case, hi is strictly convex and h′i is
a strictly increasing function, so h′(0) < h′(1). Thus, there exist points t0, t1, 0 < t0 < t1 < T, such that
conditions (29) and (14) are satisfied, and φi is a decreasing function. If Conditions (14) are broken,
then there may exist such time interval [0, t0) that ui = 0 and φi ≤ h′i(0), i = 1, 2; then, for time interval
[t0, T], Conditions (29) continue to be satisfied.

6. Numerical Simulation

In this section, we present numerical simulations to corroborate our results. Consider a city with
population N = 100,000 people, where two viruses, of different strengths, spread (δ10 = 0.4 and
δ20 = 0.5). At time moment t = 0, half of the population are susceptible to the infection, i.e., S(0) = 0.5.
The initial Recovered subpopulation is R(0) = 0. We set 18% of population as infected by virus V1,
and 32% of the population are infected by virus V2, i.e., I1(0) = 0.18 and I2(0) = 0.32. The epidemic
lasted for 45 days. We assumed that, in this experiment, the self-recovery rates were equal to σ1 = 0.001
and σ2 = 0.002. During the epidemic, people from the infected population incur infected costs and,
hence, we defined cost functions as f1(I1) = 5I1, f2(I2) = 6I2; the benefit rate from the recovered
subpopulation was g(R) = 0.1R. In Section 5, we have shown that medical-treatment cost functions
to describe the value of treatment can be chosen as concave or strictly convex. In our simulations, or
concave cost functions, we used h1(u1) = 7u1, and h2(u2) = 9u2; for convex cost functions, we used
h1(u1) = 15u2

1 and h2(u2) = 10u2
2. The costs here were measured in the same monetary units (m.u.),

which could be US dollars, Chinese RMB, or Euros, depending on the context.
The first experiment shows the behavior of the system in the absence of treatment (control).

As a control strategy, we used the medical treatment of the infected host, and the convex form of cost
functions, i.e., h1(u1) = 15u2

1 and h2(u2) = 10u2
2. After simulations, we obtained that the maximum

amount of replicas in the case without applying treatment were I1(t1) = 0.3031 at t1 = 11.25, and
I2(t2) = 0.6742 at t2 = 10.25 (Figure 2). From Experiment 1, we can see that, in the absence of treatment
in the end of epidemic period, our population had the following distribution of Infected hosts: 29%
are infected by first type of virus and 64% are infected by the second type of virus. As we have
self-recovery rate σ1 = 0.001 and σ2 = 0.002, a fraction of the Recovered is R(T) = 0.07. In the case
when we applied the control, the fraction of infected hosts was zero at the end of interval T = 45, and
the fraction of the recovered was 92%. There were also some susceptible nodes (S(T) = 0.07) that were
not affected by the epidemic. Comparing the controlled and uncontrolled case, the aggregated system
costs were: J = 1004.43 in the uncontrolled model and J = 268.35 in the controlled model (Figure 3).
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Figure 2. Experiment 1. Left: SIR model without virus mutation and without applying control. Initial
states are I1(0) = 0.18, I2(0) = 0.32, maximum values are I1max = 0.3031 and I2max = 0.6742. Epidemic
peaks a reached at 11th and 10th days. Right: SIR model without virus mutation with application of
control. Vertical axes show the fractions of the subpopulations.

Figure 3. Experiment 1. Left: Optimal control in SIR model without virus mutation; cost functions are
convex hi(ui). Vertical axis shows the amount of applied control. Right: Comparison of aggregated
costs of SIR model without virus mutation (Controlled model: J = 268.35; uncontrolled model:
J = 1004.43). Vertical axis shows the aggregated costs at time moment t in m.u.

Experiment 2 represents the SIR model with virus mutation. Infection rates δi(t), i = 1, 2 indicate
the speed of viruses spreading in the population. In our work, it means that we take the competition
between viruses for the host into account. Here, we supposed that the stronger virus captures more
hosts. The strength of the virus depends on the infection rates, which change under a mutation process.
In this experiment, infection rates changed by the formula δi(t) = δi(t − ∆t) + δi(t − ∆t)(Ii(t) −
Ii(t − ∆t)) for i = {1, 2}. Evolutionary dynamics allow us to estimate how viruses evolve in an
urban population, and to calculate the Nash equilibrium. The Nash equilibrium shows the expected
proportions of infected populations after a certain amount of time. This estimation can be useful when
building forecasts and tactics to prevent an epidemic. We can allocate available resources in such way
that the aggregated costs of the system are minimized. Using the SIR model, we illustrate how the
system develops under various types of control.

Here, we have utility of occupation functions as b1(I1) = I1 and b2(I2) = I2, and energy-cost
functions are C1(I1) = 5I1 and C2(I2) = 2I2. According to these data, we observed that the Nash
equilibrium was equal to (0.24; 0.76) in the case when we did not apply any treatment. Figure 4 (left)
shows the behavior of the system in the uncontrolled case, where the maximum population of V1 was
I1(t1) = 0.2165 at t1 = 11.25 and the maximum population of V2 was I2(t2) = 0.7746 at t2 = 8.5. By
applying optimal treatment strategies, we observed that the maximal values for both types of viruses
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were equal to their initial state (I1(0) = 0.12 and I2(0) = 0.38). The structure of the optimal control
in the case with the virus mutation is shown in Figure 5 (left). Comparison of aggregated costs is
presented on Figure 5 (right). The aggregated system cost was J = 1048.5 in the uncontrolled model
and J = 294.59 in the controlled model.

Figure 4. Experiment 2. Left: SIR model with virus mutation and without applying control. Maximum
values are I1max = 0.2165, I2max = 0.7746. Epidemic peaks reached at the 11th and 8th days. Right:
SIR model with virus mutation and application of control. Functions hi(ui) were convex. Vertical axes
show the fractions of the subpopulations.

Figure 5. Experiment 2. Left: Optimal control in the SIR model with virus mutation and convex
cost functions hi(ui). Vertical axis shows the amount of applied control. Right: Comparison of
aggregated costs of the SIR model with virus mutation (Controlled model J = 294.59, uncontrolled
model J = 1048.5). Vertical axis shows the aggregated costs at time moment t in m.u.

Experiment 3 shows the SIR model with the virus mutation (Figure 6). Utility-of-occupation
functions were b1(I1) = 2I1 and b2(I2) = 2I2, and energy-cost functions were C1(I1) = 5I1 and
C2(I2) = 3I2. The expected proportions of infected subpopulations were equal to the Nash equilibrium
(0.17; 0.83), according to simulations we received that the difference between parameters bi and
Ci influences the equilibrium state. From Equation (1), we have that the fraction of the stronger
virus is higher if the difference is smaller. Figure 7 demonstrates the change of the infection rates of
Experiments 2 and 3. Under the application of optimal control, we have that the maximum values for
both types of viruses are equal to their initial state (I1(0) = 0.2 and I2(0) = 0.3).

The fourth experiment describes the case when the costs for medical treatments are concave
functions. In this case, we have proven in Section 5 that the optimal control has a “bang-bang”
structure, i.e., Figure 8 (right). The control for the first type of virus is turned off on the seventh
day, and, for the second type, on the ninth day. At the end of interval T = 45, the proportion of
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the recovered hosts was 60%, while the remaining population was still susceptible to infection. The
comparisons of the aggregated costs are presented on Figure 9 (left). Aggregated system cost was
J = 1035.4 in the uncontrolled model and J = 289.42 in the controlled model.

Figure 9 (right) demonstrates the evolution of viruses over time in human populations.
Here, we can see that there are three stationary states corresponding to three Nash equilibria, and that
the convergence of solution trajectories of ODE (1) depends on the initial states.

Figure 6. Experiment 3. Left: SIR model with virus mutation and application of control. Functions
hi(ui) are convex. Vertical axis shows the fractions of the subpopulations. Right: Optimal control in
SIR model with virus mutation and convex-cost functions hi(ui). Vertical axis shows the amount of
applied control at time moment t.

Figure 7. Left: Experiment 2. Infected rates of the SIR model with virus mutations (uncontrolled case).
Utility-of-occupation functions were b1(I1) = I1 and b2(I2) = I2. Cost functions were C1(I1) = 5I1 and
C2(I2) = 2I2. Infectious rates were δ1 = 0.43 and δ2 = 0.67. Right: Experiment 3. Infected rates of the
SIR model with virus mutations (controlled case). Utility-of-occupation functions were b1(I1) = 2I1

and b2(I2) = 2I2. Cost functions were C1(I1) = 5I1 and C2(I2) = 3I2. Infectious rates were δ1 = 0.339
and δ2 = 0.342.
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Figure 8. Experiment 4. Left: SIR model with virus mutation and application of control. Functions
hi(ui) are concave. Vertical axis shows the fractions of the subpopulations. Right: Optimal control
in SIR model with virus mutation and concave-cost functions hi(ui). Control was switched off at the
seventh day for V1, and at the ninth day for V2. Vertical axis shows the amount of applied control at
time moment t.

Figure 9. Left: Experiment 4. Comparison of aggregated costs of the SIR model with virus mutation
(Controlled model J = 289.42, uncontrolled model J = 1035.4). Vertical axis shows the aggregated
costs at time moment t in m.u. Right: Simplex of mixed strategies of the symmetric bimatrix game for
modeling virus mutations. In this numerical example, the set of Nash equilibrium was found to be
{(1, 0), (0, 1), (0.5, 0.5)}.

7. Conclusions and Discussion

In this paper, we studied an epidemic model that takes into account the evolutionary dynamics
of virus mutations. Different from other studies, we did not consider a group of latent individuals
who are already infected but they do not have any clinical symptoms. Many studies have shown that
this subgroup can intensively influence epidemic dynamics, but, in the current study, we concentrated
on the extended SIR model, including the virus-mutation process. However, we believe that this
additional group could enrich our future research. Classical SIR epidemic dynamics are strongly
coupled with the replicator dynamics of the virus. We formulated an optimal-control problem in
which we sought to minimize the costs of preventing outbreaks by describing the structure of the
optimal treatment and quarantine strategies against infection from two different types of viruses. Using
Pontryagin’s maximum principle, we showed that, depending on the structure of the cost functions,
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optimal control has a threshold structure. We corroborated our results with numerical examples,
observing different switching times for the control strategies under models with and without virus
mutations. As future work, we would extend this study to multiple types of viruses and apply different
evolutionary dynamics to model the process of virus mutations, including imitative dynamics and
best-response dynamics.
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