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Abstract: This paper examines the subgame-perfect equilibria in symmetric 2 × 2 supergames.
We solve the smallest discount factor value for which the players obtain all the feasible and
individually rational payoffs as equilibrium payoffs. We show that the critical discount factor
values are not that high in many games and they generally depend on how large the payoff set is
compared to the set of feasible payoffs. We analyze how the stage-game payoffs affect the required
level of patience and organize the games into groups based on similar behavior. We study how the
different strategies affect the set of equilibria by comparing pure, mixed and correlated strategies.
This helps us understand better how discounting affects the set of equilibria and we can identify the
games where extreme patience is required and the type of payoffs that are difficult to obtain. We also
observe discontinuities in the critical values, which means that small changes in the stage-game
payoffs may affect dramatically the equilibrium payoffs.
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1. Introduction

The folk theorem tells us that any feasible and individually rational (FIR) payoff is an equilibrium,
when the players are patient enough [1–4]. However, the players may not be extremely patient but they
rather have some intermediate value for the discount factor. This paper finds the smallest discount
factor value for which the FIR payoffs are the equilibrium payoffs in the symmetric 2× 2 supergames.
This extends the folk theorem by solving exactly how patient the players need to be as a function of
the stage-game payoffs. This reveals why and in what type of games extreme patience is required in
the folk theorem and what payoffs are difficult to obtain.

This paper compares three types of strategies: pure strategies with and without public correlation
and mixed strategies without public correlation. We want to examine how these assumptions
affect the results. In some applications, it may be reasonable to assume that the players may
only use pure strategies and they may not be able to coordinate their actions using a correlation
device. The pure-strategy model has been examined in [5–8]. These papers characterize the
subgame-perfect equilibria with a set-valued fixed-point equation, which forms the basis of our
analysis. The mixed-strategy model has been studied in the more general model of imperfect public
monitoring [9–11]; see also [12,13] for the model examined in this paper.

The computation of the payoff set has been examined in [14–18]. These papers assume public
correlation, which makes the payoff set convex and simplifies the computation dramatically.
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References [19,20] have developed a method for computing pure-strategy equilibria without
public correlation.

The main result of this paper is to solve the critical values, i.e., the smallest discount factor value
for which the players obtain all the FIR payoffs as equilibrium payoffs. The results are based on solving
analytically and geometrically the fixed-point equation of [7,8]. This idea has been presented in [21]
where the critical values are solved in a class of prisoner’s dilemma games under public randomization;
see also Sections 2.5.3 and 2.5.6 in [11]. The pure-strategy model without public correlation is a quite
straightforward extension of [21], but the mixed-strategy model requires analyzing totally new types of
strategies with complicated payoffs; see [12,13]. We restrict our analysis to the symmetric 2× 2 games
since the set of pure-strategy equilibria may be empty in asymmetric games, it may be difficult to find
the smallest equilibrium payoffs [22], and it is tedious to examine all the asymmetric games.

The results of this paper can be used (i) to identify the games where the players have trouble in
obtaining all the payoffs and to find the payoffs that are difficult to obtain, (ii) to understand better
how the equilibrium payoffs depend on the discount factor, and (iii) to find a range of discount factor
values for which the computation of equilibria is easy. For example, we know that the payoff set
coincides with the FIR payoffs for all the discount factor values above the critical value, and there is no
need to compute the payoff set for these values. We also observe discontinuities in the critical values,
which means that the set of equilibria may not behave well, i.e., small changes in the stage-game
payoffs may affect dramatically the payoff set.

We organize the 2 × 2 games into groups based on the equations that determine the critical
values and provide a useful visualization of the critical values in different games. From the figures,
it is easy to see when the high level of patience is needed and to make the comparison between the
different strategies.

2. The Repeated Game

2.1. Stage Games

In a repeated game, a stage game is played again and again by the same players. A stage game
is defined by a finite set of players N = {1, . . . , n}, a finite set of pure actions for each player Ai,
i ∈ N, and the players’ utilities for each action profile u : A 7→ Rn, where A = ×i∈N Ai is the set of
pure-action profiles. Moreover, a pure action of player i is denoted ai ∈ Ai and a pure-action profile
is a ∈ A.

Each player i ∈ N may randomize over his pure actions ai ∈ Ai. This defines a mixed action
qi such that qi(ai) ≥ 0 for each ai ∈ Ai and ∑ai∈Ai

qi(ai) = 1. The set of probability distributions
over Ai is denoted Qi and Q = ×i∈NQi. A mixed-action profile is denoted by q = (q1, . . . , qn) ∈ Q.
A support of a mixed action is the set of pure actions that is played with a strictly positive probability:
Supp(qi) = {ai ∈ Ai|qi(ai) > 0}. We also define Supp(q) = ×i∈NSupp(qi), and for each a ∈ Supp(q),
we let πq(a) be the probability that the action profile a is realized if the mixed-action profile q is played:
πq(a) = ∏j∈N qj(aj). In pure strategies, we make the restriction that qi(ai) = 1 for one action ai ∈ Ai.

In a model with public correlation, the players observe a realization ω ∈ [0, 1] of a public lottery
and they can condition their action based on the signal ω. For example, two players may agree to
take action a1 if ω ≤ 1/2 and a2 otherwise. This way the players can coordinate their actions such
that they randomize between the outcomes (a1, a1) and (a2, a2), and avoid the outcomes (a1, a2) and
(a2, a1). The latter outcomes would be realized if standard mixed strategies were used and no public
correlation device was available.

The stage-game payoffs are given by function u : Q 7→ Rn. For example, if the players choose a
mixed-action profile q ∈ Q, then player i receives an expected payoff of

ui(q) = ∑
a∈A

ui(a)πq(a). (1)
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Let q−i ∈ Q−i = ×j∈N,j 6=iQj denote player i’s opponents’ actions. Now, an action profile q is a
Nash equilibrium in the stage game if no player has a profitable deviation, i.e.,

ui(q) ≥ ui(q′i, q−i) for all q′i ∈ Qi and i ∈ N. (2)

The twelve symmetric strict ordinal 2 × 2 games are presented in Figure 1, see ref. [23] for
the taxonomy. Strict ordinality means that all of the payoffs must be unequal and there can be no
indifferences. The two actions are C (cooperate) and D (defect), and they give the players the payoffs
a = 1, b, c and d = 0; the corresponding action profiles are also denoted by letters a, b, c, d. For example,
if the players choose the action profile b = (C, D), the players receive payoffs b and c.
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Figure 1. Symmetric ordinal 2× 2 games with parameters b and c.

2.2. Repeated Games

We examine a model where the stage game is repeated infinitely many times and these games
are sometimes called as supergames. We assume that the players observe all the past realized pure
actions but not the probabilities that the other players are using in their mixed strategies. The public
past play is denoted by the set of histories Hk = Ak = ∏k A, where H0 = A0 = {∅} is the empty set
and corresponds to the beginning of the game. Thus, the history contains all the pure actions that were
played in the previous rounds. The set of all possible histories is H =

⋃∞
k=0 Hk. A behavior strategy σi

of player i ∈ N is a mapping that assigns a probability distribution over player i’s pure actions for
each possible history σi : H 7→ Qi. The set of player i’s strategies is Σi. The players’ strategies form
a strategy profile σ = (σ1, . . . , σn), a strategy profile of all players except player i is denoted by σ−i
and the set of strategy profiles is given by Σ = ×i∈NΣi. A pure strategy assigns a pure action for each
possible history σi : H 7→ Ai. With public correlation, the players observe a public signal ωk ∈ [0, 1] on
each round k before making their decisions, and thus the history contains all the past pure actions,
signals and the current signal.

We assume that the players discount the future payoffs with a common discount factor δ ∈ [0, 1).
They have the same discount factor since we examine symmetric games. The expected discounted
payoff of a strategy profile σ to player i is

Ui(σ) = E
[
(1− δ)

∞

∑
k=0

δkuk
i (σ)

]
, (3)

where uk
i (σ) is the payoff of player i at round k induced by the strategy profile σ. A strategy profile σ

is a Nash equilibrium if no player has a profitable deviation, i.e.,
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Ui(σ) ≥ Ui(σ
′
i , σ−i) for all σ′i ∈ Σi and i ∈ N, (4)

and it is a subgame-perfect equilibrium (SPE) if it induces a Nash equilibrium in every subgame, i.e.,

Ui(σ|h) ≥ Ui(σ
′
i , σ−i|h) for all σ′i ∈ Σi, h ∈ H, and i ∈ N, (5)

where σ|h is the restriction of the strategy profile after history h ∈ H. From now on, by equilibrium we
mean subgame-perfect equilibrium.

2.3. Critical Discount Factor Values

Let V be the compact set of SPE payoffs and we also use V(δ) when we want to emphasize the
players’ discount factor δ. By VC, VP and VM we refer to the equilibria in pure strategies with and
without public correlation, and mixed strategies, respectively.

The player i’s minimum equilibrium payoff, which is also called the punishment payoff, is denoted
by v−i (δ) = min{vi : v ∈ V(δ)}, when V(δ) is non-empty; and this is the case in the symmetric 2× 2
supergames. Similarly, the maximum equilibrium payoff is v+i (δ) = max{vi : v ∈ V(δ)}. The minimax
payoff is

vi = min
q−i∈Q−i

max
qi∈Qi

ui(qi, q−i). (6)

Please note that the minimax payoffs can be different in pure and mixed strategies. However,
it holds under perfect monitoring that v−i (δ) ≥ vi, ∀i ∈ N [4,11]. The player’s minimum and
maximum payoffs in a compact set W are denoted by v−i (W) and v+i (W), respectively. Moreover,
vs(W) = max{vi ∈W, vi = vj, ∀j ∈ N} is the maximum symmetric payoff in the set W.

Let V† = co (v ∈ Rn : ∃q ∈ A s.t. v = u(q)) be the set of feasible payoffs, where co denotes the
convex hull of the set. The set of feasible and individually rational (FIR) payoffs are

V∗ = {v ∈ V† : vi ≥ vi, i ∈ N}.

Let us denote the critical discount factor by

δF = min{δ : V(δ) = V∗}, (7)

which gives the smallest discount factor value when the payoff set coincides with the FIR payoffs.
Please note that V∗ is convex and thus V(δ) = V∗ for all δ ≥ δF by Theorem 3.

Please note that the minimum equilibrium payoff v−i (δ) may be strictly higher than the minimax
payoff vi, and then it is impossible to obtain all the FIR payoffs for given δ < 1. The minimum
pure-strategy payoffs have been studied in [24], and [22] present an algorithm for finding the
punishment paths and payoffs.

For most of the symmetric 2× 2 games, the minimum equilibrium payoffs in pure strategies are
equal to the minimax payoffs for all discount factors. No conflict, its anti-game and anti-stag hunt
games are the only exceptions. In these games, the minimum payoffs are equal to the minimax values
when the players are patient enough. This issue does not affect the results, since it can be shown the
required levels of patience are smaller than the critical values.

The minimax payoffs in mixed strategies are the same as in pure strategies, except in leader,
battle of the sexes, coordination and anti-coordination games. In these games, the minimax payoff is
given by a mixed-strategy Nash equilibrium. Thus, v−(δ) = v for all δ in mixed strategies. It can be
shown that the FIR payoffs are not obtained for any δ < 1 in these games.
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2.4. The Characterization of Equilibria

A pair (a, w) of an action profile a ∈ A and a continuation payoff w ∈ W is admissible with
respect to W if it satisfies

(1− δ)ui(a) + δwi ≥ max
a′i∈Ai

[
(1− δ)ui

(
a′i, a−i

)
+ δv−i (W)

]
, ∀i ∈ N. (8)

This incentive-compatibility condition means that it is better for player i to take action ai and get
the continuation payoff wi than to deviate and then obtain v−i (W).

For a set of continuation payoffs W, the set of supportable action profiles is denoted by

Fδ(W) = {a ∈ A such that (a, w) is admissible for some w ∈W}. (9)

For a ∈ Fδ(W), we denote the set of admissible continuation payoffs as

Cδ
a(W) = {w ∈W such that (a, w) is admissible}. (10)

Let Dδ
a : Rn 7→ Rn be an affine mapping that corresponds to an action profile a ∈ A and a discount

factor δ

Dδ
a(w) = (I − T)u(a) + Tw, (11)

where I is an n× n identity matrix and T is an n× n diagonal matrix with the discount factor δ on
the diagonal. The mapping Dδ

a is also defined for sets; then the addition is the Minkowski sum and
Dδ

a(∅) = ∅. Finally, we denote the admissible payoffs that start with an action profile a ∈ A by
Bδ

a(W) = Dδ
a(Cδ

a(W)).

Theorem 1. The set of pure-strategy subgame-perfect equilibrium payoffs VP is the unique largest compact set
satisfying the fixed-point [8,11]

W = Bδ(W)
.
=

⋃
a∈Fδ(W)

Bδ
a(W). (12)

The payoff set under public correlation VC is given by the largest compact set satisfying [11]

W = Bδ(W)
.
= co

 ⋃
a∈Fδ(V)

Bδ
a(W)

 . (13)

Let us now characterize the set of equilibria in mixed strategies [12,13]. In a repeated game,
the play at each round is strategically equivalent to playing an augmented stage game, where the
continuation payoffs are included in the payoffs. For each action profile a ∈ A, the payoff in the
augmented game is given by

ũδ(a) .
= (1− δ)u(a) + δx(a),

where x(a) is the continuation payoff after a. Please note that in pure strategies there are only two
continuation payoffs for each player: wi if the player follows the equilibrium path or v−i if the player
deviates. In mixed strategies, there can be a different continuation payoff x(a) after each action profile
a ∈ A. Let M(u(a)) denote the set of Nash equilibrium payoffs in a stage game with payoffs u(a),
a ∈ A.

Now, we are ready to state the characterization for the subgame-perfect equilibrium
payoffs [12,13]. This result has been derived earlier in a more general model of imperfect
monitoring [11].
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Theorem 2. The payoff set VM is the largest compact fixed point of B:

W = B(W)
.
=

⋃
x(a)∈W

M((1− δ)u(a) + δx(a)). (14)

This means that the payoff set VM corresponds to the set of equilibria in augmented stage games
where the payoffs are (1− δ)u(a) + δx(a) and each x(a) can be chosen from the set VM.

2.5. Monotonicity and Helpful Results

In this subsection, by B(V) we refer to the sets B(V), B(V) and B(V), depending on which
strategies are in question. A set W is called self-generating if W ⊆ Bδ(W). The following result follows
directly from Theorems 1 and 2 and Equation (13).

Proposition 1. If a bounded set W is self-generating then Bδ(W) ⊆ V(δ).

The following shows that the payoff set is monotone in the discount factor when it is
convex [8,11,24,25].

Theorem 3. Suppose V(δ1) is convex then V(δ1) ⊆ V(δ2) for δ2 ≥ δ1.

Let vA(W), vB(W), vC(W) and vD(W) be the corners of a quadrilateral set W corresponding to
payoffs u(a), u(b), u(c) and u(d). For example, if u(a) and u(b) are the payoffs in the northeast and
northwest corners of V†, then vA(Bb(δ)) and vB(Ba(δ)) are the northeast and the northwest corners of
the sets Bb and Ba; see Figure 2a. Moreover, let

vM(δ) = (1− δ)max
a∈A

ui(a) + δv−i (δ). (15)

This is the right-hand side of Equation (8) for the column that contains the maximum payoff in
the game.

v
Mv

sHBdL

v
AHBbH∆LL

v
BHBaH∆LL

Bd Bc

Bb Ba

uHaL

uHbL

uHdL

uHcL

vI

F

(a) (b)

Figure 2. Admissible payoffs in Groups I and IIIc. The shaded areas show the Ba sets for a ∈ A.
(a) Group I; (b) Group IIIc.
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Remark 1. If Ba(δ) 6= ∅, a ∈ A, then vM(δ) = v−i (Ba(δ)) for all a and i where player i can deviate to the
maximum payoff of the stage game.

The following result describes how the sets Ba, a ∈ A, may cover the boundaries of V∗. The result
implies that we need as many sets Ba, a ∈ A, to cover the FIR payoffs as there are corner points in V∗.

Proposition 2. The set Bδ
a(V∗), a ∈ A, may only cover the corner point of V∗ closest to u(a). It cannot cover

the other corner points or the boundary of V∗ between these other corner points.

Proof. By the definition of Dδ
q , the set V∗ is contracted by δ and is thus strictly smaller than V∗.

The translation part (I − T)u(a) moves the set towards u(a).

3. Results for Different Strategies

We present now the results for the three different strategies, and the proofs are given in the
appendix. Section 4 gives an example of the proofs in a prisoner’s dilemma game. The proofs for the
mixed strategies are novel in Appendix C. However, the principle behind the proofs is the same but
finding all the mixed-strategy payoffs is more complicated.

The results are based on Theorems 1 and 2 and Equation (13), which tell that the payoff set
coincides with the FIR payoffs when the admissible payoffs cover all the payoffs in V∗. To find the
critical value δF, we need to find the smallest discount factor for this to happen. The main idea is to
find the last payoff point vF ∈ V∗ that is covered when the discount factor is increased to δF. The value
δF is typically solved from a condition that two sets, say Bb and Bc intersect. In the proofs, we show
both the necessary and sufficient conditions for δF: the point vF is not covered for a smaller discount
factor value and all the other FIR payoffs are covered for the given value δF.

The results are given in Tables 1–3. They show the values of δF for different groups of games.
Please note that the group boundaries cross the game boundaries. For example, there are two groups
of prisoner’s dilemma (PD) games in pure strategies without public correlation: the quadrilateral PDs
belong to Group I (see example in Figure 2a) and the triangle PDs in Group IIIb, and the boundary
between these groups is given by the equation c = 2− b. Also, different games may belong to the same
group: the triangle PDs and triangle chicken games all belong to Group IIIb. Figure 3 shows the groups
for the different strategies. The thick grey lines show that there are discontinuities of δF between the
groups. This means that the value of δF is not continuous and there may be a jump, when b and c are
changed. Figure 4 shows the values of δF in different games.

Table 1. The values of the discount factor δF without public correlation. Some games have multiple
groups, and the equation that gives the boundary is shown on the right.

Game First Group Second Group Group Boundary

Prisoner’s dilemma I: δF = c−b
1+c−b IIIb: δF = 2c

b+3c c = 2− b
Chicken IIId: δF = c

1+c−b IIIb: δF = 2c
3c−b

Leader IIIb: δF = 2c
3c−b

Battle of the sexes IIIc: δF = 2b−2
3b−c−2

Anti-PD
V: δF = 0 IIIc: δF = 2b−2

3b−c−2 c = 2− bAnti-chicken

Stag hunt
II: δF = 1−b

1−2b+c IIIa: δF = 3−3b−2c+b(b+c)
5−4b+b2−3c+bc

c = 1 + (b− 1)
√

b
b−2Coordination

No conflict II: δF = 1+b(c−2)
1+b(b−3)+c

Anti-coordination
IV: δF = 1Anti-no conflict

Anti-stag hunt
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Table 2. The values of discount factor δF with public correlation.

Game First Group Second Group Third Group

Prisoner’s dilemma II: δF = (c− 1)/c

Ib: δF = b/(b− 1)

Ia: δF = −b/c

Stag hunt

Ia: δF = (1− c)/(1− b)Coordination

No conflict
IIIa: δF = b

Chicken
IIIa: δF = 2b/(b+ c)

II: δF = c−1
c−b

Leader

Anti-PD
V: δF = 0 Ia: δF = c−1

1−bAnti-chicken

Battle of the sexes IIIb: δF = (2− 2c)/(2− b− c)

Anti-coordination
IV: δF = 1Anti-no conflict

Anti-stag hunt

Table 3. The values of discount factor δF in mixed strategies.

Game First Group Second Group Third Group

Prisoner’s dilemma Ib: δF = (c− b)/2c Ia: δF = (c− b)/(1 + c− b)

Chicken
III ∗: δF = (b+ c)/2c

Ia: δF = (c− b)/(1 + c− 2b) III ∗: δF = 1
2−b

Leader ∗∗

Battle of the sexes ∗∗ III ∗: δF = b+c−2
2(b−1)

Stag hunt
IIa: δF = (1− c)/(1− b)

Ia: δF = (b− 1)/(b− 2)Coordination ∗∗

No conflict Ia: δF = 1/2 IIb ∗: δF = b

Anti-no conflict
IV: δF = 1Anti-coordination ∗∗

Anti-stag hunt

Anti-chicken
V: δF = 0 Ib: δF = (b− c)/2(b− 1)Anti-PD

∗ Possibly only an upper bound. ∗∗ δF = 1, the values correspond to obtaining the pure-strategy FIR payoffs.
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Figure 3. Illustration of the groups in pure, correlated and mixed strategies. The thick grey lines show
the discontinuities between the classes.
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Figure 4. Values of δF with pure, correlated and mixed strategies. The darker shade means that the
value of δF is higher.

The groups are based on the equations that determine the value of δF and the location of the last
payoff vF. We note that our classification is heuristic, and the games could be organized differently
into groups. In pure strategies without public correlation: in Group I, vF is found on the upper edge of
V∗ between u(a) and u(b), on the bottom edge between u(b) and u(d) in Group II, and in the middle
in Groups IIIa-d. In Group IV, we have δF = 1 and in Group V, δF = 0.

With public correlation, the groups are based on the last corner point to be covered: in Group I,
the last corner is in the northwest, corresponding to u(b) or u(c), the u(a) corner in Group II, and the
u(d) corner in Group III.

In mixed strategies, the groups are the following. In Group Ia, the last point to be covered is on
the boundary between u(b) and u(a), i.e., the intersection of Ba and Bb. Group Ib corresponds to the
triangle games, where Bb and Bc intersect. In Group II, a corner point determines the value of δF: u(b)
corner is last to be covered in Group IIa and u(d) corner in Group IIb. The intersection of Bd and Bb
determines the value for Group III.

The overview of the values of δF is similar for all the strategies. Groups IV and V are the same,
and the locations of the high and low values are about the same. However, the values of δF are much
lower with public correlation. The scale with public correlation is between 0 and 1, and between
1/2 or 2/3 to 1 with the other strategies. The smallest and the highest values within the game classes
are shown with z1 to z4. The difference between the pure and mixed strategies is surprisingly small;
the values are typically smaller than 0.05 in quadrilateral games and smaller than 0.15 in triangle games.

We note that for all groups, there are some payoff parameters for which δF → 1, except in Group V
where δF = 0 for all payoffs. For example, δF → 1 when b→ −∞ for prisoner’s dilemma, stag hunt
and coordination games. This means that we cannot extend the folk theorem unless these extreme
payoff parameters can be ruled out.

We can observe that the value of δF depends on how large V∗ is compared to V†. When V∗ is
small, it is difficult to play certain actions in the game and the value of δF is high. For example, it is
difficult to play the actions b and c in a prisoner’s dilemma when b→ −∞. Geometrically, this means
that V∗ stays almost the same but V† keeps increasing, making the proportion of V∗ to V† smaller.
On the other hand, if V∗ is large then δF is smaller. Please note that Groups IV and V are exceptions,
where δF is a constant and thus independent of V∗ and V†.

We also note that there are discontinuities in δF on some of the group boundaries; see the thick grey
lines in Figure 3. The discontinuity means that small changes in the payoffs can affect dramatically the
payoff set and how large δF is. The discontinuity between the prisoner’s dilemma games is surprising
and it shows that a small geometric change from the triangle-shape to the quadrangle-shape may affect
whether the Pareto efficient payoffs are obtained or not.
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For mixed strategies, we have a few remarks. The necessary and sufficient conditions for δF are
more difficult to prove, since the strategies and their payoffs are more complicated. For Groups IIb and
III, the values are only upper bounds since we only use the sufficient conditions. In all leader, battle of
the sexes, coordination and anti-coordination games, δF = 1 but in the figure we use the values for
which the pure-strategy FIR payoffs are obtained as a comparison.

4. Group I in Pure Strategies without Public Correlation

This group is defined by parameters 1 < c < 2− b and b < 0. These are the prisoner’s dilemmas
where V∗ is a quadrilateral with an obtuse angle in u(a) corner; see Figure 2a. It is enough to examine
the upper half of V∗ where v2 > v1 since V∗ is symmetric with respect to the center line. Thus, the last
point vF that is covered is only defined in the upper half of V∗.

The point vF
I in Group I is located on the upper edge between u(a) and u(b). This point and the

corresponding discount factor δF
I are solved from the intersection of Ba and Bb. It is enough to consider

only player 1’s payoffs:

vF
I = vB(Ba(δ

F)) = vA(Bb(δ
F))

⇒ (1− δF)c+ δF · 0 = (1− δF)b+ δF · 1

⇒ δF
I =

c− b

1 + c− b
, (16)

vF
I =

(
c

1− b+ c
,

b− 2c
b− c− 1

)
. (17)

On the second line, the first payoff vB
1 (Ba(δF)) can be solved from the right-hand side of the

admissibility condition.
We first show that vF /∈ Bδ

a(V∗), a ∈ A, if δ < δF. Since the sets Ba and Bb intersect at δF, it means
that vF does not belong to either Ba or Bb for δ < δF. Moreover, the sets Bc and Bd cannot cover vF on
the boundary of V∗ by Proposition 2.

Now, let us show that every v = {v2 ≥ v1, v ∈ V∗} ∈ Bδ
a(V∗) for some a ∈ A and δ = δF.

We divide V∗ into three regions. If v1 ≥ vM(δF) then v ∈ Ba(δF) since vM(δ) coincides with v−1 (Ba(V∗))
for all δ ≥ δF by Remark 1. If v1 ≤ vM(δF) and v2 ≤ vM(δF) then we show that v ∈ Bd(δ

F).
We show that all corner points (vM(δF), vM(δF)), (0, 0) and (0, vM(δF)) belong to Bd. (0, 0) is the Nash
equilibrium and belongs to Bd for any δ. Also, (0, vM(δF)) belongs to Bd if (vM(δF), vM(δF)) belongs
to Bd, because vB

2 (Bd) is higher than vA
2 (Bd) due to c > 1. So for the last corner, we need to show that

vs(Vd(δ
F)) ≥ vM(δF). It holds that vs(Vd(δ

F)) = δF and vM(δF) = (1− δF)c and the above condition
holds if δF ≥ (1− δF). Using Equation (16), this is equal to b ≤ 0 and this is true in this group.

Finally, if v1 ≤ vM(δF) and v2 ≥ vM(δF) then we show that v ∈ Bb(δ
F). The corner points

are vB(V∗), (0, vM(δF)), (vM(δF), vM(δF)) and vB(Ba(δF)). vB(Ba) belongs to Bb trivially by the
definition of vF. vB(V∗) ∈ Bb since vF is at the upper edge and Bb covers the edge all the way
to vB(V∗). (0, vM(δF)) ∈ Bb since vM(δ) coincides with v−2 (Bb(V∗)) for all δ ≥ δF when c > b

by Remark 1. Again, c > 1 ensures that vC
1 (Bb) > vA

1 (Bb) and thus (vM(δF), vM(δF)) ∈ Bb since
vA

1 (Bb(δ
F)) = vF

1 = vM(δF).

5. Conclusions

This paper examines the discount factor values for which the subgame-perfect equilibrium payoffs
coincide with the FIR payoffs in the symmetric 2× 2 supergames. The main motivation is to study if
the folk theorem could be extended in a class of games and find out the reasons why a high level of
patience such as δ→ 1 is required in some games. We find that the main reason is that it is impossible
to obtain payoffs close to the minimax values: (1) this happens in Group IV in all strategies, (2) it is a
result of the fact that the mixed-strategy punishment payoff is strictly smaller than the pure-strategy
punishment in leader, battle of the sexes, coordination and its anti-game in mixed strategies, and (3) it
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is due to geometrical reasons in some games, i.e., how the stage-game payoffs are located and how
large the FIR payoffs V∗ are in proportion to feasible payoffs V†. If V∗ is small, which also means that
it is difficult to play certain actions in the game, then a high level of patience is required.

We also examine how the public correlation and the mixed strategies affect the results. The games
are organized into a few groups based on the equation that determines the smallest discount factor
value as a function of the stage-game payoffs. The groups and the equations are a bit different
under different strategies, but the overview looks similar. Even though a lower level of patience
is required with public randomization, the highest and the lowest values are obtained in the same
regions. The limit δF → 1 is obtained when b → −∞, when c ≈ b, when b ≥ 1 and b + c ≈ 2, or in
certain anti-games. Thus, it is not possible to extend the folk theorem in any of the typical game classes,
such as prisoner’s dilemma, chicken and stag hunt games, unless certain extreme payoffs can be ruled
out. Furthermore, the public correlation or mixed strategies do not provide a remedy in these games
and it holds that δF → 1 under all strategies.

The results of this paper help in determining the payoff set for high discount factor values. If the
discount factor is higher than δF, then all the FIR payoffs are subgame-perfect equilibrium payoffs.
Moreover, it is a bit surprise how small δF can be with public correlation. It was also observed that
there are certain boundaries where δF is discontinuous, which means that small changes in the payoffs
may affect dramatically the equilibrium payoffs.

It should be noted that this kind of analysis could be done in asymmetric games with more than
two actions and more than two players. Furthermore, it is left for future research how to compute
efficiently all the equilibrium payoffs when the discount factors are smaller than δF.

Author Contributions: Kimmo Berg is the main author. Markus Kärki calculated the values for δF and prepared
the figures of admissible sets.

Funding: Berg acknowledges funding from Emil Aaltosen Säätiö (Post doc-pooli).
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Appendix A. Pure Strategies without Public Correlation

Appendix A.1. Groups II and IIIa

Groups II and IIIa include no conflict, stag hunt and coordination games. The payoffs satisfy
b < c < 1 and V∗ is a quadrangle with an acute angle in u(a) corner; see Figure A1a. In these games,
δF is a maximum of Equations (A2) and (A4). In Group II, the maximum is Equation (A2) and the point
vF

II is located at the bottom edge between u(b) and u(d). In Group IIIa, the maximum is Equation (A4)
and vF

II Ia is in the middle of V∗. The boundary between the groups is given when the two equations
are equal, i.e.,

c = 1 + (b− 1)

√
b

b− 2
. (A1)

This means that δF is continuous on the boundary.
The point vF

II and δF
II are solved from the intersection of Bb and Bd:

vF
II = vD(Bb(δ

F)) = vB(Bd(δ
F))

⇒ (1− δF) · 1 + δFv−2 (δ
F) =

c− b

1− b
δF +

1− c

1− b
v−2 (δ

F)

⇒ δF
II =

1− b− v−(δF) + cv−(δF)

1− 2b+ c− v−(δF) + bv−(δF)
, (A2)

vF
II =

(
0,

c− b+ (1− c)v−2 (δ
F) + (c− 1)v−2 (δ

F)2

1 + c+ b(v−2 (δ
F)− 2)− v−2 (δ

F)

)
. (A3)
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(a) (b)

Figure A1. Admissible payoffs in Groups II, IIIa and IV. (a) Group II and IIIa; (b) Group IV.

On the second line, the payoff vD
2 (Bb(δ

F)) is again solved from the admissibility condition.
The term vB

2 (Bd(δ
F)) can be solved from the equations: vB

1 (Bd(δ
F)) = (1− δF) · 0 + δFy1 = v−1 (δ

F),
vB

2 (Bd(δ
F)) = (1− δF) · 0+ δFy2, where (y1, y2) is a payoff on the line between payoffs (b, c) and (a, a),

defined by z1 and z2: bz1 + z2 = c, az1 + z2 = a and y1z1 + z2 = y2.
First, let us show that vF /∈ Bδ

a(V∗), a ∈ A, if δ < δF. This is exactly the same as before: vF /∈ Bd(δ)

or Bb(δ) when δ < δF and vF /∈ Ba(δ) or Bc(δ) by Proposition 2.
It is enough to check that Bd(δ

F) covers [0, vM]× [0, vM], i.e., all the corner points (0, 0), (0, vM(δF))

and (vM(δF), vM(δF)). It will be shown with Group IIIa that the other parts of V∗ are covered if
δ ≥ δF

II Ia and in Group II it holds that δF
II > δF

II Ia. Now, (0, vM(δF)) ∈ Bd(δ
F) by definition of δF

II and
since vM coincides with v−2 (Bb(δ

F)) by Remark 1. By the shape of V∗, vs(Bd) > vB
2 (Bd) since c < 1.

Thus, (0, 0) and (vM(δF), vM(δF)) belong to Bd(δ
F
II).

In Group IIIa, it holds that δF
II Ia > δF

II . The point δF
II Ia is located in the middle of V∗ at the

intersection of Ba, Bb and Bd:

vF
2,I I Ia = v+2 (Bd ∩ Bb) = v−2 (Ba ∩ Bb)

⇒ δF
II Ia =

3− 3b− 2c+ b(b+ c)

5− 4b+ b2 − 3c+ bc
, (A4)

vF
II Ia =

(
2− b− c

5− 3c+ b(b+ c− 4)
,

2 + b(b− 2)− c2

5− 3c+ b(b+ c− 4)

)
, (A5)

see Figure A1a. First, we show again that vF /∈ Bδ
a(V∗), a ∈ A, if δ < δF. vF /∈ Ba by definition of vF.

vF is not only located at the boundary of the intersection of Bb and Bd but also on the boundary of the
union of these sets. Thus, vF /∈ Bb or Bd. Finally, vF /∈ Bc(δ), δ < δF, since v−1 (Bc(δ)) > v−1 (Bc(δF)) =

v−1 (Ba(δF)).
If v1 ≥ vF

1 then v ∈ Ba(δF). If v1 ≤ vF
1 and v2 ≥ vM(δF) then v belongs to either Bb or Bd

because the slope between vA(Bd) and vB(Bd) is greater than the slope between vA(Bb) and vB(Bb).
Finally, the region where 0 ≤ v2 ≤ vM(δF) is examined with Group II and it is covered since δF

II IA > δF
II

in this group.
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Appendix A.2. Group IIIb

In this group, the payoffs satisfy b+ c > 2 and c > b. These are triangular versions of prisoner’s
dilemma, chicken and leader games. The set V∗ is a triangle since b+ c > 2 and u(a) is inside the set
V∗. The point vF is located in the middle of V∗ and it is solved from the intersection of Bd, Bb and Bc:

vF
II Ib = vs(Bd(δ

F)) =
(

vM(δF), vM(δF)
)

⇒ (1− δF) · 0 + δF b+ c

2
= (1− δF)c+ δFv−(δF)

⇒ δF
II Ib =

2c
b+ 3c− 2v−(V∗)

, (A6)

vF
II Ib =

(
c(b+ c)

b+ 3c− 2v−(δF)
,

c(b+ c)

b+ 3c− 2v−(δF)

)
. (A7)

First, we examine δ < δF. vF /∈ Ba since v−i (Ba(δ)) ≥ vM(δ) > vF(δF), i = 1, 2. vF /∈ Bb since
v−2 (Bb(δ)) ≥ vM(δ) > vM(δF). vF /∈ Bc since v−1 (Bc(δ)) ≥ vM(δ) > vM(δF). Finally, vF /∈ Bd by the
definition of vF.

Let v = {v2 ≥ v1, v ∈ V∗}. If v2 ≥ vM(δF) then v ∈ Bb(δ
F) by the geometry. Similarly, if v2 ≤

vM(δF) then v ∈ Bd(δ
F).

Appendix A.3. Group IIIc

This group is the reversed version of Group IIIb so that b > c. These are the battle of the sexes,
the triangular versions of anti-prisoner’s dilemma and anti-chicken games. The set V∗ is triangular as
in Group IIIb but the sets Bb and Bc are in reverse order. Again, the point vF is located in the middle of
V∗ and it is in the intersection of sets Ba, Bb and Bc:

vF
II Ic = vs(Ba(δ

F)) =
(

v−1 (Bb(δ
F)), v−2 (Bc(δ

F))
)

⇒ (1− δF) · 1 + δF b+ c

2
= (1− δF)b+ δFv−(δF)

⇒ δF
II Ic =

2b− 2
−2 + 3b− c

(A8)

vF
II Ic =

(
b2 + bc− 2v−(δF)

3b+ c− 2(1 + v−(δF))
,

b2 + bc− 2v−(δF)

3b+ c− 2(1 + v−(δF))

)
, (A9)

see Figure 2b. Let δ < δF. vF /∈ Ba(δ) by the definition. vF /∈ Bb since v−1 (Bb(δ)) > v−1 (Bb(δ
F)). vF /∈ Bc

because v−2 (Bc(δ)) > v−2 (Bb(δ
F)). Finally, vF /∈ Bd since vs(Bd(δ

F)) < vs(Ba(δF)) due to d < a.
Now, v2 ≥ v−2 (Bc(δF)) implies that v ∈ Bc(δF). Also, v2 ≤ v−2 (Bc(δF)) implies v ∈ Ba(δF).

Appendix A.4. Group IIId

This group contains the quadrilateral versions of chicken such that b+ c > 2 and the u(a) corner
is obtuse due to c > 1. These games are only slightly different from Group I. Since b > d = 0, Bd needs
higher discount factor to reach Ba than Bb does. The point vF is in the middle and solved as an
intersection of Ba and Bd:

vF
II Id = vA(Bd(δ

F)) = vD(Ba(δ
F)) (A10)

⇒ (1− δF) · 0 + δF · 1 = (1− δF)c+ δFb

⇒ δF
II Id =

c

1 + c− b
, (A11)

vF
II Id =

(
c

1 + c− b
,

c

1 + c− b

)
.
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Let δ < δF. vF /∈ Ba or Bd by the definition of vF. vF /∈ Bb since v−2 (Bb(δ)) = v−2 (Ba(δ)) >

v−2 (Ba(δF)). Similarly, vF /∈ Bc since v−1 (Bb(δ)) = v−1 (Ba(δ)) > v−1 (Ba(δF)).
Now, v1 ≥ vM(δF) implies that v ∈ Ba(δF). v2 ≤ vM(δF) implies that v ∈ Bd(δ

F) due to the
shape and c > 1 as in Group I. Next, we show that v1 ≤ vM(δF), v2 ≥ vM(δF) belong to Bb(δ

F).
We examine all the corner points: p1 = (b, vM(δF)), p2 = (vM(δF), vM(δF)), p3 = vB(Ba(δF)) and
p4 = u(b). u(b) is a Nash equilibrium of the stage game and thus u(b) ∈ Bb(δ), ∀δ < 1. By Remark 1,
pk

2 ≥ v−2 (Bb(δ
F)) = vM(δF). Also, it holds that vC

1 (Bb(δ
F)) > vA

1 (Bb(δ
F)) > vA(Bd(δ

F)) ≥ pk
1.

Thus, pk ∈ Bb(δ
F) for all k.

Appendix A.5. Groups IV and V

Group IV contains the anti-coordination, anti-no conflict and anti-stag hunt games. The payoff
set is covered only in the limit when δ → 1. By Proposition 2, the corner point vC(V∗) can only
be covered with Bc. However, this is not covered with any δ < 1 because v−1 (Bc(δ)) = vM(δ) =

(1− δ)a + δv−(V∗) > v−(V∗).
Group V contains the trivial anti-games, where b > 1 and b+ c < 2. In these games a is both the

minimax and Pareto-efficient payoff. Thus, the set V∗ = (1, 1) is a single point and the payoff set is
always covered, i.e., for all 0 ≤ δ < 1.

Appendix B. Pure Strategies with Public Correlation

Appendix B.1. Corner I

Let us examine the northwest corner of V∗. The set that covers this corner may only be Bb
when c > b and Bc otherwise, by Proposition 2. There are three conditions that are needed: the set
Bb (or Bc) should reach south, east and west enough to cover the corner. The first condition is that
vM(δ) ≤ vB

2 (V
∗) and from this we can solve

δF
Ia =

v+2 (V
†)− v+2 (V

∗)

v+2 (V
†)− v−2 (δ)

. (A12)

This is the maximum of the three values and thus a sufficient condition in the triangular games
which form Group Ia.

In quadrilateral games, where c+ b < 2, the second condition is v+1 (Bb) ≥ v−1 (δ), which gives

δF
Ib =

b− v−2 (δ)
b− 1

. (A13)

This condition is the maximum in Group Ib games.
The third condition is that v−1 (Bb) = v−1 (δ). This is satisfied for all δ in Group Ia and Ib games.

In Group IV games, this condition does not hold for any δ < 1, regardless of public correlation.
These are the only games where the column maximum that limits the set is different from the
punishment of the game.

Appendix B.2. Corner II

The corner vA(V∗) exist only if the set V∗ is quadrilateral, i.e., c+ b < 2. This point is covered
when vM(δ) ≤ a, from which we get

δF
II =

v+2 (V
†)− 1

v+2 (V
†)− v−2 (δ)

. (A14)

Please note that this condition means that δF
II = 0, i.e., a is a Nash equilibrium, if c < 1.
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Appendix B.3. Corner III

The corner vD(V∗) is covered by the set Bd if b < c, and by Ba if b > c. In the case where Ba covers
the corner, the discount factor is solved from the equation (1− δ)a+ δvS(V∗) = v−2 , which gives

δF
II Ia =

v−2 (δ)− a

vs(V∗)− a
. (A15)

In the Bd case, the value is solved from (1− δ)d+ δvS(V∗) = v−2 and we get

δF
II Ib =

v−2 (δ)− d

vs(V∗)− d
. (A16)

These equations simplify a bit in different games, since vs(V∗) = a in quadrilateral games and
vs(V∗) = (b+ c)/2 in triangular games. Please note that δF

II I = 0 if the punishment is a or d.

Appendix C. Mixed Strategies

Appendix C.1. Group I

In Group Ia, the necessary and sufficient condition for δF is that Ba and Bb intersect. In prisoner’s
dilemma, this is obvious since the last point to be covered in pure strategies is on the boundary and
this payoff cannot be obtained in non-pure mixed strategies; thus, the condition in PD is the same as in
pure strategies. The same argument for the necessity of the condition also holds for the other games in
Group Ia. However, we need to prove the sufficiency for the other games.

In quadrilateral chicken, a sufficient condition is that (1) Ba and Bb intersect and (2) Bd and Bb
intersect. It is possible to cover the payoffs in the middle that do not belong to the pure-strategy sets Ba,
a ∈ A, with mixed strategies. For example, we can construct a stage game with payoffs (u+

1 , z1) ∈ Ba,
(u−1 , z2) ∈ Bb, (u+

1 , u2) ∈ Bc and (u−1 , u2) ∈ Bd, where u+
1 > u−1 and z1 and z2 do not matter as long as

the payoffs are in Ba and Bb. Now, there is a Nash equilibrium where the first player plays bottom
and the second player can use any probability. Thus, they can obtain any payoff on the line between
(u−1 , u2) and (u+

1 , u2). By going through the sets Bc and Bd, these lines cover all the payoffs in the
middle that are left between the sets Ba, a ∈ A. Please note that this is only a sufficient condition,
and it is possible that all these payoffs can be obtained with lower discount factors with some other
mixed strategies.

u+
1 , z1 u−1 , z2

u+
1 , u2 u−1 , u2

In stag hunt and coordination games, the necessary and sufficient conditions are that (1) Ba and
Bd intersect and (2) vB(V∗) is covered with Bb. The reason is the fact that the line between u(a) and
u(b) can only be obtained by playing pure strategies a and b. In Group Ia, condition (1) implies (2)
which makes condition (1) a necessary and sufficient condition. In Group IIa, condition (2) implies (1),
which makes condition (2) a necessary and sufficient condition. In other words, the condition is the
maximum over (1) and (2) in all these games. The gaps between the pure-strategy sets Ba, a ∈ A,
can be covered with similar strategies as explained above.

In no conflict games, there is an additional condition (3) Bd should be non-empty. The value of δF

is a maximum over the three conditions, and these give the three regions Ia (Ba and Bb), IIa (b corner
covered) and IIb (d corner covered). Again, the gaps between the sets Ba, a ∈ A, are covered with
suitable mixed strategies.

In triangle PD, anti-PD and anti-chicken, the necessary and sufficient condition is that Bb and
Bc intersect. This condition implies that Bd and Bb has intersected. Thus, it is possible to cover the
gaps between the sets Ba, a ∈ A with suitable mixed strategies as explained before. The condition is
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necessary since the payoffs between u(b) and u(c) can only be obtained by playing the pure strategies
b and c.

Appendix C.2. Group II

In Group IIb, a necessary and sufficient condition is that the payoffs near vD(V∗) are covered.
A sufficient condition for this is that Bd is non-empty. This is satisfied when it is possible to play d:
(1− δ) · 0 + δ · 1 = (1− δ)b+ δb and thus δF = b for Group IIb. We are not sure if this condition
is necessary as all the payoffs near vD(V∗) may be obtained with some mixed strategies with lower
discount factor value.

In Group IIa, a necessary and sufficient condition is that vB(V∗) is covered with Bb. This implies
that the sets Ba and Bd have intersected, as explained before. Please note that the conditions are the
same as with public correlation of Group Ia.

Appendix C.3. Group III

A sufficient condition for this group is that Bd and Bb intersect. This guarantees that the gaps
between the pure-strategy sets Ba, a ∈ A, are covered with suitable mixed strategies. We can solve the
value δF for triangle chicken and leader games in the following way. We first solve the value of δ when
it is possible to play d: (1− δ) · 0 + δ(b+ c)/2 = (1− δ)b+ δb, from which we get δ1 = 2b/(b+ c).
Now, vB(Bd(V∗)) moves linearly from vD(V∗) to vB(V∗) when δ goes from the above value to 1:
z1δ1 + z2 = b and z1 · 1 + z2 = c, from which we get z1 = b + c and z1 = −b. Finally, we can
solve the value when it intersects vD(Bb): z1δF + z2 = (1− δF)c+ δFb and we have δF = (b+ c)/2c.
Again, we are not sure if this condition is necessary but it provides an upper bound for δF.
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