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Abstract: We discuss the strategy that rational agents can use to maximize their expected long-term
payoff in the co-action minority game. We argue that the agents will try to get into a cyclic state,
where each of the (2N + 1) agents wins exactly N times in any continuous stretch of (2N + 1)
days. We propose and analyse a strategy for reaching such a cyclic state quickly, when any direct
communication between agents is not allowed, and only the publicly available common information
is the record of total number of people choosing the first restaurant in the past. We determine
exactly the average time required to reach the periodic state for this strategy. We show that it
varies as (N/ ln 2)[1 + α cos(2π log2 N)], for large N, where the amplitude α of the leading term in
the log-periodic oscillations is found be 8π2

(ln 2)2 exp (−2π2/ ln 2) ≈ 7× 10−11.
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1. Introduction

Since its introduction by Challet and Zhang in 1997, the Minority Game (MG) has become
a prototypical model for the study of behavior of a system of interacting agents [1]. In the original
model, the key element is the so-called “bounded rationality” of the agents: the agents are adaptive,
and have limited information about the behavior of other agents. They use simple rules to decide their
next move, based on the past outcomes. It is found that, for a range of parameter values, the system
of agents evolves into a state, where the global efficiency is larger than possible if they simply made
a random choice independent of history of the game. This is one of the simplest models of learning
and adaptation by agents, that shows the complex emergent phenomena of self-organization, and
coevolution in a system of many interacting agents, and has attracted much interest. The model can
be solved exactly in the limit of large number of agents and large times, although this requires rather
sophisticated mathematical techniques, e.g., functional integrals, and the replica method. There are
nice reviews of the existing work on MG [2,3], and monographs [4,5].

However, to understand the effect of bounded rationality of the agents, it is imperative to compare
this with the case where the rules of the game are same as before, but agents are rational. This led
Sasidevan and Dhar to introduce a variation of the standard MG, called the Co-action Minority game
(CAMG) in which the allowed moves, the stipulation about no direct communication between agents,
and the payoffs for different outcomes are kept unchanged, but the agents are assumed to be fully
rational, and their choice of possible strategies is not constrained in any way [6]. Studying the
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difference of its steady state from that of the standard Challet–Zhang Minority Game (CZMG)
underscores the role of bounded rationality in the latter.

In the CAMG, the agents can use mixed strategies, and try to optimize their payoff not for
the next day, but a weighted sum of their future payoffs, with higher weights for more immediate
gains. It was found that the optimal strategy depends on the time horizon of agents, and overall
efficiency of the system increases if the agents have a larger time horizon.

In this context, a natural question arises: what would rational agents do if they aim to maximize
the expectation value of their long-term gain. In this paper, we show that rational agents can actually
achieve the maximum possible payoff, by getting into a cyclic state, and discuss how they can arrive
at the coordination needed for such a state. In contrast, in CZMG, where agents have only bounded
rationality, the expected payoff per agent is lesser than than this by an amount of order a/

√
N, same

as if they chose restaurants randomly, but with a smaller coefficient a. We show that the average time
to reach the desired cyclic state satisfies a functional equation. We solve this equation exactly and show
that the time required to reach the stationary state varies linearly with N.

We note that agents can only use the limited information publicly available to achieve this
coordination. The problem becomes a coordination game [7], in the setting of an MG. In [6], it was
assumed that agents decide their action based only on the previous day’s result. Here, we drop this
assumption, and assume that agents have access to entire history of attendance record, and can also
remember the entire history of their own earlier actions.

A problem equivalent to the one studied in this paper is this: we have (2N + 1) agents playing
a minority game, where N is a positive integer. What is the strategy the agents can use to work
together to assign a unique identification number (ID) from 1 to 2N + 1 to each agent, such that each
agent knows her own ID, in least time, using only the public information of attendances in the past?
Even more generally, we can think of agents that cannot communicate directly with each other, and
each agent can only communicate with some central authority. The authority can send messages
to agents, only in the broadcast mode, where the same message is sent to all the agents.

Even with this constraint, it is clearly possible for the agents to get unique IDs. For example,
a simple strategy would be that each agent first generates a random string of some length m, and
sends it to the central authority. We choose m to be large enough that the probability of two different
agents generating the same string is small ( say, m ≈ 2 log N). Then, the central authority arranges
these bits in some ordered list (of total length mN bits), and broadcasts the list. Then, the agent can
infer his ID from the the position of her unique string in the list. However, this scheme is clearly
not optimal. What is the least number of bits that have to be broadcast to assign unique IDs to all
agents, so that each agent knows her own ID? In our problem, the agents need to coordinate using
only the information of the past attendance record, and their own past actions.

We describe a particular strategy to achieve this coordination. This strategy is quite efficient, in
that the coordination is achieved in a time that increases only linearly with the number of agents, but
we have no proof that it is the best possible. Interestingly, we find that the mean time to reach the cyclic
shows log-periodic oscillations. In addition, the amplitude of the oscillations is very small (of order
10−11). Such a small value, obtained without any fine-tuning, seems quite unexpected. The mathematical
mechanism involved may be of interest in the more general context of understanding how many natural
systems select some very small parameter-values (e.g., the inverse correlation length in self-organized
critical systems, or the cosmological constant [8]). It is also of interest in the analysis of algorithms,
where these kinds of oscillations were first encountered, and studied [9–11].

This paper is organized as follows. In Section 2, we define the model precisely. In Section 3,
we discuss the complication due to possibility of coalition formation in the game, but argue that
rational agents who, by definition, optimize their personal long-time average payoff, will aim to reach
a periodic state. In Section 4, we describe a coordination strategy that will reach the cyclic state, using
only the publicly available attendance information. In Section 5, we study the average time required
to reach the periodic state, as a function of the number of agents. We show that the generating function
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for the average times satisfies a functional equation in one variable. We solve this equation exactly,
and find that the expected time, when the number of agents is 2N + 1, asymptotically increases as
N/(ln 2) for large N, and shows log-periodic oscillations, but of a very small amplitude of order 10−11.
In the final Section 6, we summarize our results, and mention another model of resource allocation,
called the Kolkata Paise Restaurant problem, where the optimal state is also periodic. We also discuss
the relation of this study to other problems showing log-periodic oscillations.

2. Definition of the Model

We consider a set of (2N + 1) agents, who choose between two options (say choosing one of
the two restaurants A or B for dinner) every day. The assumption of total number of players being odd
is a simplifying assumption, standard in MG literature, as then we need not specify additional rules
about the payoffs in case of a tie. Every day, agents in the restaurant with smaller attendance (i.e., less
than or equal to N) get a payoff of 1, while the rest get nothing. In choosing which restaurant to go to,
the agents can not communicate with each other directly, and the only information available to them is
the number of agents (2N + 1), and the entire history of the number of people who chose a in the past.
This public information is naturally the same for all agents. In addition, an agent can remember her
own history of choices in the past, which constitutes her private information.

In the original formulation of the MG, as defined by Challet and Zhang, (hereafter referred
to as the CZMG), the agents are adaptive, and try to maximize their expected payoff, for the next day.
Each agent chooses the restaurant, based on one of the strategies from a small set of strategies available
to him. In the CZMG, the agents assign performance-based scores to the strategies available to them,
and use the one with the highest score. While this is perhaps a reasonable first model of the behavior
of agents in some real world situations, it is not particularly efficient [12], and we would like to explore
other possible strategies of agents, to see if they can perform better.

In CAMG, the agents are rational, and are allowed to use mixed strategies, and decide the weights
of different options rationally themselves. In addition, unlike CZMG, where each agent tries
to maximize her expected payoff the next day, here the agents optimize the average discounted
payoff per day W̄, defined as

W̄ = (1− α)
∞

∑
r=1

αrWr, (1)

where Wr is the expected payoff on the r-th future day, and α < 1 is called the discount parameter. In [6],
it is shown that the choice of optimal strategy by agents depends on α, and changes discontinuously as
α is varied continuously. In particular, in this paper, we consider the special case where α tends to 1,
which corresponds to the the limit where each agent tries to maximize the long-time average of her
expected payoff per day.

3. Optimality of the Cyclic State

In the Minority Game, by definition, the maximum number of winning agents on any particular
day is less than or equal to N. Thus, if the expected payoff per day, averaged over all agents, is P̄, we
have the obvious inequality

P̄ ≤ N
2N + 1

. (2)

It is easy to construct a situation where this inequality is saturated: Consider the case where each
agent visits the restaurant A for N consecutive days, and then goes to B for the next (N + 1) days, and
they coordinate their periodic schedules such that on any particular day, there are exactly N people in
the restaurant A (this is clearly possible). Then, in such a state, each person’s time-averaged expected
payoff per day is N/(2N + 1).

From the symmetry between the agents in the definition of the model, all agents start with same
information, and have the same time horizon. Then, clearly, the expected long-time average payoff
per day will be the same for each agent. However, in the rules of the Minority Game defined above,
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there is a possibility of coalition formation, where, if some agents successfully reach an understanding,
called here a coalition, then they may achieve an average payoff greater than N/(2N + 1), while other
agents, not part of the coalition, receive an average payoff strictly less than N/(2N + 1).

This may be seen most easily when N = 1. Here, there are exactly three agents, called X, Y
and Z. Then, X and Y may reach an agreement that X uses a periodic pattern, say BAABA, and Y uses
a complimentary pattern ABBAB. Then, whatever choice Z makes, he will always be in the majority.
Then, his average payoff is zero, and the combined payoff of X and Y is 1 per day. If Z makes his choice
at random, the average payoff of X (or, equivalently Y) is 1/2 > P̄ = 1/3.

How can X and Y reach such an understanding, without any direct communication? In general,
this may happen by accident. For example, if agents are choosing at random, X and Y may notice
that, in the recent past, they win more often if they choose the specific periodic patterns. Then, X and
Y have reason to stay with these choices, and they have managed to form a coalition, without any
direct communication. We note that the coalition is formed, without the partners knowing each
others’ identities!

If somehow, in our game, X and Y manage to form a coalition, clearly, Z is at a disadvantage.
If this happens, Z could try to retaliate by choosing a periodic string of same period. Then, his payoff
remains zero, but it is possible that the payoff of X or Y becomes less than 1/3. Clearly, then, it would
become disadvantageous for that agent to stay in the coalition. Unfortunately, Z has no way to infer
this period from the available information, and can only make a guess, and see if it works.

A selfish agent X will prefer to get into a coalition, as then his expected payoff would be greater
than 1/3. However, he cannot be sure to form such a coalition, and there is a non-zero probability of
him being the person outside the coalition formed with zero payoff. By symmetry between the agents,
this probability is 1/3.

Under these circumstances, would an agent prefer to look for an uncertain coalition, where he
may be punished, or the partner could defect anytime, or would he prefer a coordinated equitable
cyclic state where everyone gets an guaranteed average payoff of 1/3? Clearly, one cannot reach any
conclusion about the psychological preferences of agents from the definition of the model given so far.
This requires a further specification. In the following, we will assume that rational agents, by definition,
want to maximize their expected pay-off, and hence will prefer the cyclic state with a certainty of getting a payoff
of N every (2N + 1) days, to the uncertain coalition state. We note that, in a cyclic state, any single agent
has no incentive to deviate from the common strategy, if all others are following it.

We note that the higher payoffs possible in the coalition state for an agent are offset by the higher
probability of doing worse. From the inequality in Equation (2), any other strategy can, at best, equal
the average long-term payoff obtained in a cyclic state. Thus, rational agents will prefer the cyclic state
over others.

4. A Coordination Strategy to Reach the Periodic State

As explained above, rational agents will prefer to get into a cyclic state. The simplest cyclic state
is of period (2N + 1). Of course, there are many cyclic states possible, and the strategy should enable
the agents to coordinate their behavior to strive towards the same cyclic state. In addition, to maximize
their expected payoffs, the agents will like to reach this cyclic state, in as short a time as possible.

To reach this coordination, all agents have to follow some common strategy. The existence of
a common “common-sense” strategy that all agents follow does not contradict the assumption of no
prior or direct communication between agents in the game. This may be seen most simply in a much
simpler coordination problem: consider the “Full-house Game”, where the payoff is 1 for all, only if
all people are in the same restaurant. Else, everybody gets 0. Then, there is no conflict of interests
between agents, but complete coordination between their actions is still required. For this trivial game,
there is an obvious common-sense strategy: on the first day, people choose the restaurant at random.
Then, on second day, every one goes to the restaurant that had more people, and stays with the same
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choice for all subsequent days. Then, after the first day, every agent wins every day. However, note
that if all agents do not follow the strategy, it will not work.

In fact, clearly, no strategy for coordination can work, if all agents do not follow it. Thus,
the question is: if the agents can infer the strategy, will others follow? Only if they can do this
consistently, coordination can be achieved.

As is well-known, in choosing among equal states, otherwise extraneous considerations can
become important for reaching a consensus. For example, in choosing land boundary between two
countries, one may pick some geographical feature such as a ridge, or a river. For the example of
Full-house Game above, another possible, equally effective, strategy is that all agents switch their
choice, every day after the second day. Which of these two should be adopted by the agents? In this
case, the agents can reasonably, and consistently, argue that the first strategy is “simpler”, and hence
more likely to be selected by all.

These same considerations apply to the strategy we discuss below. In trying to decide what
strategy other agents will follow, we argue that rational agents will assume that all agents will choose
a strategy that is most efficient, and, if there are several strategies that pass this criterion, they will
choose the simplest out of them. We try to convince the reader that our proposed strategy meets these
criteria, and hence would be selected by future players of the game. We give an example below of
a strategy that would also work, but is less efficient, and less simple. While we can not prove that our
proposal is the simplest possible, it is the simplest amongst the ones we could think of, and no other
strategy is known to be more efficient.

Let us first describe the overall structure of the strategy. On any day, the agent knows the history
of attendances so far, and based on this either decides to stay with the same choice as previous day,
or changes her choice with a shift probability, using a personal random number generator. The shift
probability is specified by the strategy, and depends on the history of the game so far. The strategy
consists of two stages. We start at day t = 0 with (2N + 1) agents. At the end of the the first stage,
the agents have divided themselves into two groups: the first consisting of exactly N agents, and
the second having the remaining (N + 1) agents, and each agent knows to which group she belongs.
In this algorithm, agents in the first group assign the same ID 0 to themselves. In the second stage,
the remaining agents, by their coordinated actions, distribute unique IDs, labeled 1 to N + 1 amongst
themselves. At the end of the second stage, each agent knows his own ID, and also knows when all
assignments are complete.

After this, setting up a cyclic state is straight forward, but still requires coordination. We will
make a specific choice of this cycle. This particular choice seems natural (in the sense discussed above),
and is as follows: all agents with ID 0, on all days, choose option A. An agent with non-zero ID r will
choose option B on all days, except the day t = 2r− 1[mod(2N + 1)], when she chooses option A.

Clearly, this produces a cyclic state with period (2N + 1). Let the days be marked cyclically as
1, 2, 3 . . . (2N + 1), starting with the day after assignments of IDs is complete. The agents with ID
0 are the winning minority on Days 2, 4, 6 . . . On any odd day, exactly N out of the (N + 1) agents
with non-zero ID have choice B, and are the winning minority, and the person left out is different on
different odd days.

This specific choice is also assumed to known to, and selected by all agents. In our case, simplicity
of the algorithm to get there, and quickness in reaching the desired state are guiding criteria that lead
to this choice. What distinguishes this particular cyclic state from others possible are two special
features: one is that, on any given day, exactly one, or at most two, persons shift their choice of
the restaurant, and this minimizes the number of moves made. This choice has another distinguishing
feature: not only each agent wins on exactly N days, out of (2N + 1) days. In fact, any agents wins at
least m− 1 times, and at most m times, in any consecutive period of 2m days, for all positive integers m.
We do not have a proof that this particular state is uniquely selected by these criteria, but it is the best
among several we could think of.
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Now, we specify the algorithm in the first stage. At the start of the algorithm, on day t = 0,
all agents are in the same state. We may say that all agents were in the same restaurant on the previous
day. Then, each agents chooses the restaurant to go to the next day randomly: the agent generates
a random number from her personal random number generator, and chooses option A iff the random
number is ≤1/2, and else chooses option B. At the end of Day 1, it is announced publicly how many
people went to A, and how many to B. Let the number of people going to the minority restaurant be
(N − ∆), and then, clearly, the remaining (N + 1 + ∆) went to the majority restaurant.

If ∆ = 0, the first stage ends. Else, for ∆ 6= 0, the people in the minority restaurant stay back in
the same restaurant, but each agent in the majority restaurant shift with a probability ∆/(N + ∆ + 1).
Then, on next day, there will be some more people moving into the minority restaurant. Let the number
of people in the new minority restaurant be N − ∆′. This number ∆′ is a random variable. If it takes
the value 0, the algorithm ends. Else, the same procedure is repeated. The agents iterate the procedure
until they achieve an exact (N, N + 1) split between the restaurants. The N agents in the minority
restaurant are assigned the ID 0, and stay in the same restaurant for all subsequent times, until
the completion of the ID assignments, and, later, in the cyclic state.

Now, we specify the strategy in the second stage. This is also a recursive algorithm. Suppose at
any one call of the algorithm, some, R agents have to be assigned IDs from a list of R items. On the first
day, these agents jump at random, while others stay with the same choice as before. Thus, this group
breaks into two approximately equal subgroups, say of sizes r1 and r2, with r1 + r2 = R. Then,
the algorithm recursively assigns to the smaller set of r1 agents the first r1 items from the list, and then
the remaining r2 items to the second set.

Now, we specify the strategy in more detail. Suppose at any one call of the algorithm, some, say
N + R agents, have been already assigned IDs: N agents have ID 0, and R of them have been assigned
IDs from 1 to R, and there is an identified set of r agents who are to be assigned the next available set
of IDs, from R + 1 to R + r. All these agents are in the same restaurant, and know that they will now
be assigned IDs, and the set of IDs to be assigned is also public knowledge. The remaining (N + 1− R)
agents also know that they will not to be assigned IDs in this call of algorithm (have already been
assigned, or have to wait further). This group remains with their current choice until all the r agents
have been assigned IDs. At the beginning of the execution of the algorithm, R = 0, r = N + 1, and
the available IDs are 1 to (N + 1).

The algorithm for the second stage is defined recursively as follows:

• If r = 1, clearly, the only agent is assigned the available ID, and he knows his ID, and
the algorithm ends.

• If r > 1, the agents that are not to be assigned IDs in this round continue with the same choice
as previous day, until the end of the algorithm. The agents use their personal random number
generators to break this set of r agents into two smaller roughly equal sets, of sizes j1 and r− j1,
where j1 is a random variable. Now, the algorithm recursively assigns to the first set the IDs
from R + 1 to R + j1, and then the remaining IDs from R + j1 + 1 to R + r to the second set, and
the algorithm ends.

The break-up of the r-set into two parts is achieved as follows: each of the r agents flips a coin,
and shift to the other restaurant with probability 1/2. The number of agents that actually shift is
a random variable, call it j. From the attendance record next day, the value of j becomes known to all
agents. Now, the set of r to-be-assigned agents has been divided into two smaller sets: one consisting
of j agents, in one restaurant, and the remaining of r− j agents, in the other restaurant. If j 6= r/2,
the smaller set is called the first set, and the larger set the second set, and we put j1 = Min(j, r− j).
If j = r/2, both sets are equal size, and then, the set of agents that shifted is called the first set, and
the others the second set.

As all agents monitor the attendance record, on any day, each agent knows how many IDs have
been assigned so far, to which set she belongs, at what stage the algorithm is, and what she should do
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next day (stay with her existing choice, or shift with probability 1/2). In addition, every agent knows
her own ID at the end of the algorithm.

Let us consider an example for the case of say, 2N + 1 = 11 agents in Figure 1. The agents are
identified by the lower case letters a, b, c, d...k. For example, at the end of the first stage, the agents
have achieved the 5:6 split. Suppose agents b, c, g, j, k are in restaurant A and the rest in B. Then,
the agents in A are assigned ID 0, and know it. On the second day, Each of a, d, e, f , h, i tosses a coin
to decide to switch to the other restaurant or not. For example, a, e, h get heads, and actually switch.
At the end day, all agents know that three agents actually switched, and hence a, e, h will be assigned
one of the IDs from the set {1, 2, 3}, and d, f , i from the set {4, 5, 6}. Then, on Day 3, a, e and h toss
a coin. For example, a gets head, and actually switches. Then, at the end of the day, it is known that a
is assigned the ID 1. The next day, only e and h flip a coin, and rest stay with the previous days choice.
If e actually jumps, then, at the end of day, everybody knows that IDs 2 and 3 have been assigned, and
e knows that his is 2, and h knows that her ID is 3. The next day, d, f and i toss coins, and the rest stay
with their previous day’s choice, and so on.

3

3

4       1     2      5

Switch stochastically 
to get N:N+1split

Switch with
Probability 
1/2

Switch with
Probability 
1/2

Switch with
Probability 
1/2

Switch with
Probability 
1/2

Switch with
Probability 
1/2

Unranked Agents
Agents with rank 0
Agents with rank >= 1
Unassigned agents who will toss a coin next day
Unassigned agents who will not toss

a   b  c  d   e   f  g  h   i j  k

c  b   g  j     k
a  d   e   f   h   i

a    e   h d    f    ic  b  g   j    k

c  b   g   j   k
e   h d    f    i a

c   b  g  j    k

d    f    i

21

a ehc   b  g  j    k

h     d   f i

i a     e      fc   b  g  j    k

0  0  0  0    0

0  0  0  0    0

0  0  0  0    0

0  0  0  0    0

0  0  0  0    0

0  0  0  0    0

1

4

Restaurant A Restaurant B

21

a e

h   d

3   6

Figure 1. Ranking of N = 11 agents using the proposed algorithm. The numerals above the agents
indicates their assigned IDs.
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5. Expected Time to Reach the Cyclic State

Firstly, we argue that the time required to complete the first stage, and assign rank zero to exactly
N agents is of order log log N. When the agents jump with probability 1/2 on the first day, the expected
number of agents in the first restaurant is (2N + 1)/2, and standard deviation of this number isO(

√
N).

Let us say that the number of people in the majority restaurant on any given day is (N + ∆ + 1).
As the probability of jump is ∆/(N + ∆ + 1), with N � ∆, the actual number of people jumping
is a random variable, the distribution being approximately Poisson, with mean ∆, and standard
deviation approximately ∆1/2. Thus, we see that, on each day, the logarithm of deviation decreases
to approximately half its value on previous day, until it becomes O(1), and, after that, the expected
time to reach N : (N + 1) split is finite. Thus, the total time to complete the first stage is log log N, and
may be neglected, for large N [13].

Now, we consider the time required for the second stage of the algorithm. Let the average time
required to assign unique IDs in the second stage of the algorithm to a set of n agents be Tn. Then,
clearly, we have

T0 = T1 = 0. (3)

We now show that T2 = 2. Note that, at the start of algorithm, both agents are in the same
restaurant. Then, with probability 1/2, when both jump, they will end up in different restaurants, and
the assignment is done. Else, with probability 1/2, both agents are in the same restaurant, and the state
is the same as before. Hence, we must have

T2 = 1 + (1/2)T2, (4)

which implies that T2 = 2.
This argument is easily extended to higher values n. At the start, all n agents are in the same

restaurant. Then, as each agent chooses to shift with probability 1/2, the probability that exactly r
people shift is (n

r)2
−n. However, then, the expected time for completion is Tr + Tn−r. Taking into

account the one extra day, we see that Tn satisfies the linear equation

Tn = 1 +
n

∑
r=0

Prob(r) [Tr + Tn−r] , for n ≥ 2. (5)

Since Prob(r) = Prob(n− r), this equation may be simplified to

Tn = 1 + 2
n

∑
r=0

Prob(r)Tr, for n ≥ 2. (6)

This is a linear equation that relates Tn to values of Tr, with r < n. We can thus determine all
the Tn recursively. For example, we get T3 = 10/3, and T4 = 100/21. The resulting values of Tn, for
n ≤ 30 were determined numerically, using a simple computer program, and are shown in Figure 2.
We see that Tn increases approximately as 1.4449n.

Define the generating function

T(x) =
∞

∑
r=1

Trxr, (7)

we see that T(x) satisfies the equation

T(x) =
x2

(1− x)
+

∞

∑
n=2

n

∑
r=0

Prob(r)Trxn. (8)

We write n = r + s, then the summation over s runs from 0 to +∞, independent of the value of r,
and, noting that Prob(r) = (n

r)2
−n, this can be done explicitly
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∞

∑
s=0

(
r + s

r

)
xs2−s = (1− x/2)−r−1 (9)

Then, Equation (8) becomes

T(x) =
x2

(1− x/2)
+

4
(2− x)

T(
x

2− x
) (10)

Figure 2. Numerically determined exact values of Tn for n ≤ 30. The equation of the approximate
linear fit here is y = 1.4449x− 1.0451.

As a check, for small x, T(x) is approximately 2x2, which is consistent with above. For x near 1,
we get T(x = 1− ε) ≈ 4T(x = 1− 2ε), which implies that T(1− ε) diverges as ε−2, for small ε.
This then implies that Tn varies linearly with n, for large n. To be more precise, we can find finite
constants K1 and K2 such that K1n ≤ Tn ≤ K2n.

We can simplify Equation (10) by making a change of variables x = 1/(y + 1). Then, in terms of
the new variable y, we write

T(x =
1

1 + y
) =

1 + y
y2 H̃(y). (11)

the equation for H̃(y) is seen to be

H̃(y) =
y

(1 + y)2 + H̃(2y) (12)

This equation is easily solved by iteration, giving

H̃(y) =
∞

∑
s=0

y2s

(2sy + 1)2 . (13)
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The asymptotic behavior of this function for y near 0 determines the behavior of H(x), for x
near 1. For very small y, we can extend the lower limit of summation in Equation (13) to −∞. Then,
the function H̃(y) tends to H∗(y), which is defined by:

H∗(y) =
+∞

∑
s=−∞

y2s

(2sy + 1)2 . (14)

The function H∗(y) is clearly a log-periodic function of log2(y) of period 1. A plot of this function
is shown in Figure 3. We see that H∗(y) is nearly a constant, with value a ≈ 1.4426950409, but it has
small oscillations of amplitude of order 10−10.

-8e-11

-6e-11

-4e-11

-2e-11

 0

 2e-11

 4e-11

 6e-11

 8e-11

 0  0.5  1  1.5  2  2.5  3  3.5  4

Figure 3. Log-periodic oscillations in the function H∗(y) as a function of log2 y, determined by
numerically summing the series in Equation (14), about the mean value 1.44269504089. Note the small
amplitude of the oscillations.

We note that H∗(y) remains bounded for all y, and hence G(x = 1
1+y ) varies as 1/y2 for y → 0.

This implies that Tn varies linearly with n for large n. In addition, log-periodic oscillations of Tn with n
correspond to log-periodic oscillations of H̃(y) with Y. Write

Tn ≈ a n [1 + α cos(2π log2 n)] (15)

Then,

G(x) = a x
d

dx

[
∞

∑
n=0

xn(1 + α Re ei2π log2 n)

]
(16)

Using ∑n xnnz ∼ (1− x)−z−1, we see that this gives

G(x) ∼ a
(1− x)2 + α Re

 1

(1− x)2+ 2πi
log 2


=

1
(1− x)2

[
1 + α cos log2(

1
1− x

)

]
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Define

g(x) =
exp(x)

[1 + exp(x)]2
. (17)

Then, we have

H(y) =
+∞

∑
n=−∞

g(n log 2 + log y) (18)

Using Poisson summation formula, we have

+∞

∑
n=−∞

g(nP + t) =
1
P

+∞

∑
k=−∞

g̃(k/P) exp(2πikt/P) (19)

where g̃(k) is the Fourier transform of g(x) defined as

g̃(k) =
∫ +∞

−∞
dx

exp(x)
[1 + exp(x)]2

exp(2πikx) (20)

It is easy to see that g̃(0) = 1, which shows that a = 1/ ln 2. In Equation (20), we note that
the integrand has simple poles in the complex-x plane at x = (2n + 1)πi, for all integers n. For n = 0,
we may close the contour from above. The residue at the poles x = ±iπ is −(1 + 2πi

ln 2 ) exp(− 2π2

ln 2 ),

which gives g̃(1) = 8π2

ln 2 exp(− 2π2

ln 2 ), and α = a g̃(1) = 7.05× 10−11, which matches the numerically
observed value of amplitude of the oscillations (Figure 2).

6. Summary and Concluding Remarks

In this paper, we have studied a version of the Minority game, where the (2N + 1) agents try
to coordinate their actions to get into a periodic state of period (2N + 1), in which every agent has
the same long-time average payoff, and the global efficiency of the system is the maximum possible.
We have proposed an algorithm that can achieve this aim in a time of order O(N). We were able
to determine the average running time of this algorithm exactly. As the time required to coordinate
is of order N, the agents should have time horizon of at least order N, so that the cost of reaching
the coordinated state is off-set by the slightly higher payoffs later.

As explained in the Introduction, we have assumed that the agents are rational, with unlimited
memory, and use their full knowledge of efficiency of different strategies to decide what to do next.
This is of course not realizable in practice. This work only provides the benchmark for measuring
the performance of imperfect agents.

The question of how all agents decide about which strategy they will all use is clearly important.
If we assume that all agents will use the strategy we have proposed, are we begging the question of
establishing coordination amongst them? Our answer to this question may not be not fully convincing
to all, and this issue perhaps needs further work. We have argued that the strategy we have proposed
is distinguished by its simplicity, efficiency and analytical tractability.

Let us consider an alternate algorithm X that the agents could use to establish the periodic state.
For the purpose of describing this algorithm, let us further assume that all agents have already
somehow agreed that B is always the minority restaurant, and that they should use the natural choice
of periodic sequence AABABABAB...AB of length (2N + 1), with suitable phase shifts. The aim
is to coordinate the choices of phase shifts so that the number of agents in B is exactly N on all
days. However, now, the agents try to coordinate their phase shifts by trial and error. Then, initially,
each chooses a phase shift at random, from 0 to 2N. They use their phase-shifted sequence for
2N + 1 days, and, at the end of this period, take stock of the attendance history of past (2N + 1) days.
If it is found that the restaurant A had more than N + 1 people on some day r. The agent who was
putting his phase shift starting at Day r, with a small probability, changes his phase shift to another
day, randomly selected out of the days that showed less crowding. Then, they watch the performance
over the next (2N + 1) days, and again readjust phases again, until perfect coordination is achieved.
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It is easy to see that, while this will eventually find a cyclic state, the time required is much more than
in our proposed strategy.

The problem of coordination amongst agents for optimal performance is also encountered in other
games of resource allocation. For example, in the Kolkata Paise Restaurant problem [14,15], one has
N agents, and N restaurants. The agents are all equal, and all of them agree to an agreed ranking of
the restaurants (i.e., 1 to N). It is also given that each restaurant only serves one customer per day at
a specially reduced price. Again, if the agents cannot communicate directly with each other in choosing
which restaurant to go to, and they all want to avail of the special price, and also prefer to go to higher
ranked restaurant, the optimal state where each agent can get a special price, and get to sample higher
ranked restaurants as often as others, is the one where agents can organize themselves into a periodic
state, where each agents visits restaurants ranked 1, 2, 3, and so on, on successive days, in a periodic
way, and agents stagger the phases of their cycles so that every restaurant has exactly one visitor on
each day. In this case, the problem of achieving the cyclic state may also be reduced to the problem of
assigning each of N agents with a unique ID between 1 and N.

It is also straight forward to extend this algorithm to the El Farol Bar problem, where the two
states are Go to bar, and Stay at home, and the payoff is 1 to agents who went to the bar, but only if
the attendance at the bar is ≤ r, where r is not restricted to be N. Then, the periodic state involving
least number of switches is obtained when each agent goes to bar for r consecutive days, and stays at
home for the next (2N + 1− r) days, and the agent with ID j phase-shifts the origin of his cycle by
amount j, 0 ≤ j ≤ 2N.

Another point of interest in our results is the finding of log-periodic oscillations in the average time.
Log-periodic oscillations have been seen in the analysis of several algorithms [9–11,16]. In most of these
cases, the leading behavior is a simple power-law (or logarithmic dependence), and the log-periodic
oscillations appear in the first correction to the asymptotic behavior [17]. In the problem studied here,
the oscillations are seen in the coefficient of the variation of the leading linear dependence of average
time of algorithm with number of agents.

The very small value of the amplitude of oscillations deserves some comment. Firstly, normally,
one would expect this to be of O(1), and explaining the origin of this “unnaturally small” value is
of some theoretical interest. Here, we could calculate this amplitude exactly, but we do not know of
any general argument to estimate even the order of magnitude of such amplitudes, without doing
the exact calculation.

In systems with discrete scale invariance, such as deterministic fractals, amplitudes of order
O(10−2) have been seen [18,19]. However, even in these cases, where log-periodic oscillations are
rather expected, they only form the sub-leading correction: for example, in the case of number rooted
Pn of polygons of length n on fractals, we get log Pn has a part that grows as a n + B log n, and then
there is an additive log-periodic oscillatory term of finite amplitude [18]. The log-periodic oscillations
in Tn in this paper come in a multiplicative term, and hence the amplitude will grow with n, for large n.
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