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Abstract: In this work, a multi-person mean-field-type game is formulated and solved that is
described by a linear jump-diffusion system of mean-field type and a quadratic cost functional
involving the second moments, the square of the expected value of the state, and the control actions
of all decision-makers. We propose a direct method to solve the game, team, and bargaining
problems. This solution approach does not require solving the Bellman–Kolmogorov equations
or backward–forward stochastic differential equations of Pontryagin’s type. The proposed method
can be easily implemented by beginners and engineers who are new to the emerging field of
mean-field-type game theory. The optimal strategies for decision-makers are shown to be in a
state-and-mean-field feedback form. The optimal strategies are given explicitly as a sum of the
well-known linear state-feedback strategy for the associated deterministic linear–quadratic game
problem and a mean-field feedback term. The equilibrium cost of the decision-makers are explicitly
derived using a simple direct method. Moreover, the equilibrium cost is a weighted sum of the
initial variance and an integral of a weighted variance of the diffusion and the jump process. Finally,
the method is used to compute global optimum strategies as well as saddle point strategies and Nash
bargaining solution in state-and-mean-field feedback form.

Keywords: Nash bargaining solution; mean-field equilibrium; variance; direct method

1. Introduction

In 1952, Markowitz proposed a paradigm for dealing with risk issues concerning choices which
involve many possible financial instruments [1]. Formally, it deals with only two discrete time periods
(e.g., “now” and “3 months from now”), or equivalently, one accounting period (e.g., “3 months”).
In this scheme, the goal of an Investor is to select the portfolio of securities that will provide the best
distribution of future consumption, given their investment budget. Two measures of the prospects
provided by such a portfolio are assumed to be sufficient for evaluating its desirability: the expected
value at the end of the accounting period and the standard deviation or its square, the variance, of that
value. If the initial investment budget is positive, there will be a one-to-one relationship between
these end-of-period measures and comparable measures relating to the percentage change in value,
or return over the period. Thus, Markowitz’ approach is often framed in terms of the expected return
of a portfolio and its standard deviation of return, with the latter serving as a measure of risk. A typical
example of risk in the current market is the evolution of the prices [2,3] of the cryptocurrencies (bitcoin,
litecoin, ethereum, dash, etc). The Markowitz paradigm (also termed as mean-variance paradigm) is
often characterized as dealing with portfolio risk and (expected) return [4,5]. We address this problem
when several entities are involved. Game problems in which the state dynamics is given by a linear
stochastic system with a Brownian motion and a cost functional that is quadratic in the state and the
control are often called linear–quadratic–Gaussian (LQG) games. For the continuous time LQG game
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problem with positive coefficients, the optimal strategy is a linear state-feedback strategy which is
identical to an optimal control for the corresponding deterministic linear–quadratic game problem,
where the Brownian motion is replaced by the zero process. Moreover, the equilibrium cost only differs
from the deterministic game problem’s equilibrium cost by the integral of a function of time. For LQG
control and LQG zero-sum games, it can be shown that a simple square completion method provides
an explicit solution to the problem. It was successfully developed and applied by Duncan et al. [6–11]
in the mean-field-free case. Interestingly, the method can be used beyond the class of LQG framework.
Moreover, Duncan et al. extended the direct method to more general noises, including fractional
Brownian noises and some non-quadratic cost functionals on spheres, torus, and more general spaces.

The main goal of this work is to investigate whether these techniques can be used to solve mean-field-type
game problems which are non-standard problems [12]. To do so, we modify the state dynamics to
include mean-field terms which are (i) the expected value of the state, (ii) the expected value of
the control-actions, in the drift function. We also modify the instant cost and terminal cost function to
include (iii) the square of the expected values of the state and (iv) the square of the expected values
of the control action. When the state dynamics and/or the cost functional involve a mean-field term
(such as the expected value of the state and/or expected values of the control actions), the game is said
to be an LQG game of mean-field type, or MFT-LQG. We aim to study the behavior of such MFT-LQG
game problems when mean-field terms are involved. If in addition the state dynamics is driven by a
jump-diffusion process, then the problem is termed as an MFT-LQJD game problem.

For such game problems, various solution methods such as the stochastic maximum principle
(SMP) ([12]) and the dynamic programming principle (DPP) with Hamilton–Jacobi–Bellman–Isaacs
equation and Fokker–Planck–Kolmogorov equation have been proposed [12–14]. Most studies illustrated
these solution methods in the linear–quadratic game with an infinite number of decision-makers [15–21].
These works assume indistinguishability within classes, and the cost functions were assumed to be
identical or invariant per permutation of decision-makers indexes. Note that the indistinguishability
assumption is not fulfilled for many interesting problems, such as variance reduction or and risk
quantification problems, in which decision-makers have different sensitivity towards the risk. One
typical and practical example is to consider an energy-efficient multi-level building in which every
resident has its own comfort zone temperature and aims to use the Heating, ventilation, and air
conditioning (HVAC) system to be closer to its comfort temperature and to maintain it within its own
comfort zone. This problem clearly does not satisfy the indistinguishability assumption used in the
previous works on mean-field games. Therefore, it is reasonable to look at the problem beyond the
indistinguishability assumption. Here we drop these assumptions and solve the problem directly
with an arbitrary finite number of decision-makers. In the LQ-mean-field-type game problems, the
state process can be modeled by a set of linear stochastic differential equations of McKean–Vlasov,
and the preferences are formalized by quadratic cost functions with mean-field terms. These game
problems are of practical interest, and a detailed exposition of this theory can be found in [7,12,22–25].
The popularity of these game problems is due to practical considerations in signal processing, pattern
recognition, filtering, prediction, economics, and management science [26–29].

To some extent, most of the risk-neutral versions of these optimal controls are analytically and
numerically solvable [6,7,9,11,24]. On the other hand, the linear quadratic robust setting naturally
appears if the decision makers’ objective is to minimize the effect of a small perturbation and related
variance of the optimally controlled nonlinear process. By solving a linear–quadratic game problem
of mean-field type, and using the implied optimal control actions, decision-makers can significantly
reduce the variance (and the cost) incurred by this perturbation. The variance reduction and minimax
problems have very interesting applications in risk quantification problems under adversarial attacks
and in security issues in interdependent infrastructures and networks [27,30–33]. Table 1 summarizes
some recent developments in MF-LQ-related games.
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Table 1. Some recent developments on mean-field-type linear–quadratic–Gaussian (MF-LQG)-related
games.

Feature State of-the-Art This Work
Jump yes

Diffusion [15,16] yes
Mean-Field Type [12,31,32] yes

One decision-maker [12] yes
Two or more decision-makers [31,32] yes

State-MF [12] yes
Control-Action-MF yes

Bargaining yes
Anonymity [15,16] relaxed

Indistinguishability [15,16] relaxed

In this work, we propose a simple argument that gives the best-response strategy and the Nash
equilibrium cost for a class of MFT-LQJD games without the use of the well-known solution methods
(SMP and DPP). We apply the square completion method in the risk-neutral mean-field-type game
problems. It is shown that this method is well-suited to MF-LQJD games, as well as to variance
reduction performance functionals. Applying the solution methodology related to the DPP or the
SMP requires an involved (stochastic) analysis and convexity arguments to generate necessary and
sufficient optimality criteria. We avoid all of this with this method.

1.1. Contribution of This Article

Our contribution can be summarized as follows. We formulate and solve a mean-field-type
game described by a linear jump-diffusion dynamics and a mean-field-dependent quadratic or
robust-quadratic cost functional for each generic decision-maker. The optimal strategies for the
decision-makers are given semi-explicitly using a simple and direct method based on square
completion, suggested by Duncan et al. (e.g., [7–9]) for the mean-field-free case. This approach
does not use the well-known solution methods such as the stochastic maximum principle
and the dynamic programming principle with Hamilton–Jacobi–Bellman–Isaacs equation and
Fokker–Planck–Kolmogorov equation. It does not require extended backward–forward integro-partial
differential equations (IPDEs) to solve the problem. In the risk-neutral linear–quadratic mean-field-type
game, we show that there is generally a best response strategy to the mean of the state, and provide a
sufficient condition of existence of mean-field Nash equilibrium. We also provide a global optimum
solution to the problem in the case of full cooperation between the decision-makers. This approach
gives a basic insight into the solution by providing a simple explanation for the additional term in the
robust Riccati equation, compared to the risk-neutral Riccati equation. Sufficient conditions for the
existence and uniqueness of mean-field equilibria are obtained when the horizon lengths are small
enough and the Riccati coefficient parameters are positive. The method (see Figure 1) is then extended
to the linear–quadratic robust mean-field-type games under disturbance, formulated as a minimax
mean-field-type game.

Only a very limited amount of prior work seems to have been done on the MF-LQJD
mean-field-type game problems. As indicated in Table 1, the jump term brings a new feature to
the existing literature, and to the best of our knowledge, it is the first work that introduces and
provides a bargaining solution [34] in mean-field-type games using a direct method.

The last section of this article is devoted to the validation of the novel equations derived in this
article using other approaches. We confirm the validity of the optimal feedback strategies. In the
Appendix we provide a basic example illustrating the sub-optimality of the mean-field game approach
(which consists of freezing the mean-field term) compared with the mean-field-type game approach
(in which an individual decision-maker can significantly influence the mean-field term).
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Figure 1. Methods developed in this work. Cooperative vs. noncooperative. Adversarial/robust vs.
nonzero-sum mean-field-type games.

1.2. Structure

A brief outline of the article follows. The next section introduces the non-cooperative
mean-field-type game problem and provides its solution. Then, the fully-cooperative game and
the bargaining problems and their solutions are presented. The last part of the article is devoted to
adversarial problems of mean-field type.

Notation and Preliminaries

Let T > 0 be a fixed time horizon and (Ω,F ,FB,N ,P) be a given filtered probability space on which
a one-dimensional standard Brownian motion B = {B(t)}t≥0 is given, Ñ(dt, dθ) = N(dt, dθ)− ν(dθ)dt
is a centered jump process with Lévy measure ν defined over Θ. The filtration F = {F B,N

t , 0 ≤ t ≤ T}
is the natural filtration generated by the union {B, N} augmented by P−null sets of F . The processes
B and N are mutually independent. In practice, B is used to capture smaller disturbance and N is used
for larger jumps of the system.

We introduce the following notation:

• Let k ≥ 1. Lk(0, T;R) be the set of functions f : [0, T]→ R such that
∫ T

0 | f (t)|
kdt < ∞.

• Lk
F(0, T;R) is the set of F-adapted R-valued processes X(·) such that E

[∫ T
0 |X(t)|kdt

]
< ∞.

• X̄(t) = E[X(t)] denotes the expected value of the random variable X(t).

An admissible control strategy ui of decision-maker i is an F-adapted and square-integrable
process with values in a non-empty subset Ui of R. We denote the set of all admissible controls by Ui:

Ui = {ui(·) ∈ L2
F(0, T;R); ui(.) ∈ Ui a.e. t ∈ [0, T], P− a.s.}.

2. Non-Cooperative Problem

Consider n risk-neutral decision-makers (n ≥ 2) and let Li(u1, . . . , un) be the objective functional
of decision-maker i, given by

Li(u1, . . . , un) =
1
2 qi(T)x2(T) + 1

2 q̄i(T)[Ex(T)]2

+ 1
2

∫ T
0

{
qi(t)x2(t) + q̄i(t)(E[x(t)])2 + ri(t)u2

i (t) + r̄i(t)[Eui(t)]2
}

dt.
(1)

Then, the best-response of decision-maker i to the process (u−i, E[x]) := (u1, . . . , ui−1, ui+1, . . . , un, E[x])
solves the following risk-neutral linear–quadratic mean-field-type control problem



Games 2018, xx, 7 5 of 18



infui(·)∈Ui
E [Li(u1, . . . , un)] ,

subject to
dx(t) =

{
a(t)x(t) + ā(t)E[x(t)] + ∑n

i=1 bi(t)ui(t) + ∑n
i=1 b̄iūi(t)

}
dt

+σ(t)dB(t)+
∫

Θ µ(t, θ)Ñ(dt, dθ),
x(0) := x0,

(2)

where Ex2(0) < +∞, qi(t) ≥ 0, qi(t) + q̄i(t) ≥ 0, ri(t) > 0, ri(t) + r̄i(t) ≥ 0, and a(t), ā(t), bi(t), σ(t)
are real-valued functions, and where E[x(t)] is the expected value of the state created by all
decision-makers under the control action profile (u1, . . . , un) ∈ ∏n

j=1 Uj. The method below can handle
time-varying coefficients. For simplicity, we impose an integrability condition on these coefficient
functions over [0, T]:∫ T

0

[
|a(t)|+ |ā(t)|+ |b(t)|+ |b̄(t)|+ σ2(t) +

∫
Θ(|µ(t, θ)|+ µ2(t, θ))ν(dθ)

]
dt < +∞. (3)

Under condition (3), the state dynamics of (2) has a solution for each u = (u1, . . . , un) ∈ ∏n
j=1 Uj.

Note that we do not impose boundedness or Lipschitz conditions (because quadratic functionals are
not necessarily Lipschitz).

Definition 1 (BRi: Best Response of decision-maker i). Any strategy u∗i (·) ∈ Ui satisfying the infimum
in (2) is called a risk-neutral best-response strategy of decision-maker i to the other decision-makers strategy
u−i ∈ ∏j 6=i Uj. The set of best-response strategies of i is denoted by BRi : ∏j 6=i Uj → 2Ui , where 2Ui denotes
the set of subsets of Ui.

Note that if bi = 0 = ri, there are multiple optimizers of the best-response problem.

Definition 2 (Mean-Field Nash Equilibrium). Any strategy profile (u∗i , . . . , u∗n) ∈ ∏i Ui such that
u∗i ∈ BRi(u∗−i) for every i and x̄∗ = E[x∗] is called a Nash equilibrium of the LQ-MFJD game above.

The risk-neutral mean-field-type Nash equilibrium problem we are concerned with is to find and
characterize the processes (x∗, u∗, E[x∗], E[u∗]) such that for every decision-maker i, u∗i is an optimizer
of the best response problem (2) and the expected value of the resulting common state E[x∗] created
by all the decision-makers coincides with x̄. This means that an equilibrium is a fixed-point of the
best response correspondence BR = (BR1, . . . , BRn), where BRi : ∏j 6=i Uj → 2Ui is the best-response
correspondence of decision-maker i.

We rewrite the expected objective functional and the state coefficients in terms of x− x̄ and x̄ :

ELi =
1
2 [qi(T)E(x(T)− x̄(T))2 + [qi(T) + q̄i(T)]x̄2(T)
+E

∫ T
0 qi(x− x̄)2 + [qi + q̄i]x̄2 + ri(ui − ūi)

2 + (ri + r̄i)[ūi]
2dt],

dx =
{

a(x− x̄) + (a + ā)x̄ + ∑n
i=1 bi(ui − ūi) + ∑n

i=1(bi + b̄i)ūi
}

dt
+σdB(t)+

∫
Θ µ(t, θ)Ñ(dt, dθ).

(4)

Note that the expected value of the first term in the integral in Li can be seen as a weighted
variance var of the state, since q̄i(t)E[(x(t)− E[x(t)])2] = q̄i(t)var(x(t)). Taking the expectation of the
state dynamics, one arrives at the deterministic linear dynamics

d
dt Ex = ˙̄x = (a + ā)x̄ + ∑n

i=1(bi + b̄i)ūi,
x̄(0) = Ex(0).

(5)

The direct method consists of writing a generic structure of the cost functional, with unknown
deterministic functions to be identified. Inspired from the structure of the terminal cost function,
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we try a generic solution in a quadratic form. Let fi(t, x) = 1
2 αi(t)(x− x̄)2 + 1

2 βi(t)x̄2+γi(t)x̄ + δi(t),
where α, β, γ, δ are deterministic functions of time, such that

fi(T, x(T)) =
1
2
{qi(T)E(x(T)− x̄(T))2 + [qi(T) + q̄i(T)]x̄2(T)}.

At the final time T, one can identify αi(T) = qi(T), βi(T) = qi(T) + q̄i(T), γi(T) = δi(T) = 0.
Recall that Itô’s formula for the jump-diffusion process is

fi(T, x(T)) = fi(0, x(0))
+
∫ T

0 [ fi,t + fi,xD + fi,xx
σ2

2 ]dt
+
∫ T

0 σ fi,xdB
+
∫ T

0

∫
Θ[ fi(t, x + µ(t, θ))− fi(t, x)− fi,xµ(t, θ)]ν(dθ)dt

+
∫ T

0

∫
Θ[ fi(t−, x + µ(t−, θ))− fi(t−, x)]Ñ(dt, dθ),

(6)

where D is the drift term D := a(x− x̄) + (a + ā)x̄ + ∑n
i=1 bi(ui − ūi) + ∑n

i=1(bi + b̄i)ūi. We compute
the derivative terms:

˙̄x = (a + ā)x̄ + ∑n
i=1(bi + b̄i)ūi,

fi,t =
1
2 α̇i(x− x̄)2 + 1

2 β̇i x̄2 + γ̇i x̄ + δ̇i − αi(x− x̄) ˙̄x + βi x̄ ˙̄x + γi ˙̄x,
fi,x = α̇i(x− x̄),
fi,xx = αi,
fi(t, x + µ)− fi(t, x)− fi,xµ

= 1
2 αi(x + µ− x̄)2 − 1

2 αi(x− x̄)2 − αi(x− x̄)µ = 1
2 αiµ

2.

(7)

Using (7) in (6) and taking the expectation yields

E[ fi(T, x(T))− fi(0, x(0))]
= 1

2 E
∫ T

0 α̇i(x− x̄)2 + β̇i x̄2dt
+ 1

2 E
∫ T

0 2βi[(a + ā)x̄2 + ∑n
j=1(bj + b̄j)ūj x̄]dt

+ 1
2 E
∫ T

0

{
2aαi(x− x̄)2 + 2αi ∑n

j=1 bj(uj − ūj)(x− x̄)
}

dt

+ 1
2

∫ T
0 [σ2+

∫
Θ µ2(t, θ)ν(dθ)]αidt

+E
∫ T

0 γ̇i x̄ + γi[(a + ā)x̄ + ∑n
j=1(bj + b̄j)ūj]dt +

∫ T
0 δ̇idt,

(8)

where we have used the following equalities:
E[αi(x− x̄) ˙̄x] = 0,
E
∫ T

0 σ fi,xdB = 0,
E
∫ T

0

∫
Θ[ fi(t, x + µ(t, θ))− fi(t, x)]Ñ(dt, dθ) = 0.

(9)

We compute the gap between E[Li] and E[ fi(0, x(0))] as

E[Li − fi(0, x(0))]
= 1

2 (qi(T)− αi(T))E(x(T)− x̄(T))2

+ 1
2 [qi(T) + q̄i(T)− βi(T)]x̄2(T)

+ 1
2 E
∫ T

0 qi(x− x̄)2 + [qi + q̄i]x̄2(t)dt
+ 1

2 E
∫ T

0 ri(ui − ūi(t))2 + (ri + r̄i)[ūi]
2dt]

+ 1
2 E
∫ T

0 α̇i(x− x̄)2 + β̇i x̄2 + 2βi(a + ā)x̄2dt
+ 1

2 E
∫ T

0 2βi(bi + b̄i)ūi x̄dt
+ 1

2 E
∫ T

0 2βi ∑n
j 6=i(bj + b̄j)ūj x̄dt

+ 1
2 E
∫ T

0

{
2aαi(x− x̄)2 + 2αibi(ui − ūi)(x− x̄) + 2αi ∑j 6=i bj(uj − ūj)(x− x̄)

}
dt

+ 1
2

∫ T
0 [σ2+

∫
Θ µ2(t, θ)ν(dθ)]αidt

+ 1
2 E
∫ T

0 2γ̇i x̄ + 2γi[(a + ā)x̄ + ∑n
j=1(bj + b̄j)ūj]dt

+ 1
2

∫ T
0 2δ̇idt.

(10)
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2.1. Best Response to Open-Loop Strategies

In this subsection, we compute the best-response of decision-maker i to open-loop strategies
(uj)j 6=i. The information structure for the others players is limited to time and initial point; i.e.,
the mappings (uj)j 6=i are measurable functions of time (and do not depend on x) and initial point x0.

E[Li − fi(0, x(0))]
= 1

2 [(qi(T)− αi(T))E(x(T)− x̄(T))2

+ 1
2 [qi(T) + q̄i(T)− βi(T)]x̄2(T)

+ 1
2 E
∫ T

0 {α̇i + 2aαi −
b2

i
ri

α2
i + qi}(x(t)− x̄(t))2

+ 1
2 E
∫ T

0 [β̇i + 2βi(a + ā)− (bi+b̄i)
2

ri+r̄i
β2

i + qi + q̄i]x̄2dt

+ 1
2 E
∫ T

0 ri[ui − ūi +
bi
ri

αi(x− x̄)]2dt

+ 1
2 E
∫ T

0 (ri + r̄i)[ūi +
(bi+b̄i)
ri+r̄i

(βi x̄ + γi)]
2dt

+ 1
2 E
∫ T

0

{
2γ̇i + 2γi(a + ā)− (bi+b̄i)

2

ri+r̄i
2βiγi + 2βi ∑j 6=i(bj + b̄j)ūj

}
x̄dt

+ 1
2 E
∫ T

0 −
(bi+b̄i)

2

ri+r̄i
γ2

i + 2γi ∑j 6=i(bj + b̄j)ūjdt

+ 1
2

∫ T
0 [σ2+

∫
Θ µ2(t, θ)ν(dθ)]αidt

+ 1
2

∫ T
0 2δ̇i dt,

(11)

where

(ri + r̄i)[ūi]
2 + 2βi ∑n

j=1(bj + b̄j)ūj x̄ + 2γi ∑n
j=1(bj + b̄j)ūj

= (ri + r̄i)[ūi]
2 + 2ūi(bi + b̄i)(βix + γ̄i) + 2βi ∑j 6=i(bj + b̄j)ūj x̄ + 2γi ∑j 6=i(bj + b̄j)ūj

= (ri + r̄i)[ūi +
(bi+b̄i)
ri+r̄i

(βi x̄ + γi)]
2 − (bi+b̄i)

2

ri+r̄i
{β2

i x̄2 + 2βiγi x̄ + γ̄2
i }

+2βi ∑j 6=i(bj + b̄j)ūj x̄ + 2γi ∑j 6=i(bj + b̄j)ūj.

(12)

The best response of decision-maker i to the open-loop strategies (uj)j 6=i is ui = ūi − bi
ri

αi(x− x̄),

and its expected value is ūi = − (bi+b̄i)
ri+r̄i

(βi x̄ + γi), where αi, βi, γi are deterministic functions of time t.
Clearly, the best response to open-loop strategies is in state-and-mean-field feedback form. Here the
mean-field feedback terms are the expected value of the state E[x(t)] and the expected value of the
control action E[ui(t)].

Therefore, we examine optimal strategies in state-and-mean-field feedback form in the next section.

2.2. Feedback Strategies

The information structure for feedback solution is as follows. The model and the objective
functions are assumed to be common knowledge. We assume that the state is of perfect observation.
We will show below that the mean-field term is computable (via the initial mean state and the model).
If the other decision-makers play their optimal state-and-mean-field feedback strategies, then the
functions γ1, . . . , γn are identically zero at any given time. We compute again E[Li − fi(0, x(0))] and
complete the squares using the elements of {x− x̄, x̄}.

E[Li − fi(0, x(0))]
= 1

2 (qi(T)− αi(T))E(x(T)− x̄(T))2

+ 1
2 [qi(T) + q̄i(T)− βi(T)]x̄2(T)

+ 1
2 E
∫ T

0 [α̇i + 2aαi −
b2

i
ri

α2
i − 2αi ∑n

j 6=i
b2

j
rj

αj + qi](x− x̄)2

+ 1
2 E
∫ T

0

{
β̇i + 2βi(a + ā)− β2

i
(bi+b̄i)

2

ri+r̄i
− 2βi ∑n

j 6=i
(bj+b̄j)

2

rj+r̄j
β j + qi + q̄i

}
x̄2dt

+ 1
2 E
∫ T

0 ri[ui − ūi +
bi
ri

αi(x− x̄)]2dt

+ 1
2 E
∫ T

0 (ri + r̄i)[ūi + βi
(bi+b̄i)
ri+r̄i

x̄]2dt

+ 1
2 E
∫ T

0 [σ2+
∫

Θ µ2(t, θ)ν(dθ)] αidt,

(13)
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where we have used the following square completions:

ri(ui − ūi)
2 + 2αi ∑n

j=1 bj(uj − ūj)(x− x̄)

= ri[ui − ūi +
bi
ri

αi(x− x̄)]2 − b2
i

ri
α2

i (x− x̄)2 + 2αi ∑j 6=i bj(uj − ūj)(x− x̄), and
(ri + r̄i)[ūi]

2 + 2βi ∑n
j=1(bj + b̄j)ūj x̄

= (ri + r̄i)[ūi + βi
(bi+b̄i)
ri+r̄i

x̄]2 − β2
i
(bi+b̄i)

2

ri+r̄i
x̄2 + 2βi ∑j 6=i(bj + b̄j)ūj x̄.

(14)

It follows that

infui∈Ui E[Li] =
1
2 αi(0)var(x(0)) + 1

2 βi(0)[Ex(0)]2 + 1
2

∫ T
0 [σ2+

∫
Θ µ2(t, θ)ν(dθ)] αidt,

u∗i = − bi
ri

αi(x− x̄)− βi
(bi+b̄i)
ri+r̄i

x̄,

α̇i + 2aαi −
b2

i
ri

α2
i − 2αi ∑j 6=i

b2
j

rj
αj + qi = 0,

αi(T) = qi(T),

β̇i + 2βi(a + ā)− β2
i
(bi+b̄i)

2

ri+r̄i
− 2βi ∑j 6=i

(bj+b̄j)
2

rj+r̄j
β j + qi + q̄i = 0,

βi(T) = qi(T) + q̄i(T).

x̄(t) = x̄(0)e
∫ t

0 {(a+ā)−∑n
i=1 βi

(bi+b̄i)
2

ri+r̄i
}dt′

(15)

provides a mean-field Nash equilibrium in feedback strategies.
These Riccati equations are different from those of open-loop control strategies. The coefficient

of the coupling terms βiβ j, αiαj are different, reflecting the coupling through the state and the mean
state. Notice that the optimal strategy is in state-and-mean-field feedback form, which is different
from the standard LQG game solution. As ā, b̄, r̄, q̄ vanish in (15), one gets the Nash equilibrium of
the corresponding stochastic differential game in closed-loop strategies with αi = βi, and ui becomes
mean-field-free. When the diffusion coefficient σ and the jump rate µ vanish, one obtains the noiseless
deterministic game problem, and the optimal strategy solution will be given by the equation in βi
because x− x̄ = 0 in the deterministic case.

How to feedback the mean-field term E[x(t)]? Here the mean-field term can be explicitly
computed if the initial mean state x̄(0) is given and the model known:

E[x(t)] = x̄(t) = x̄(0)e
∫ t

0 {(a+ā)−∑n
i=1 βi

(bi+b̄i)
2

ri+r̄i
}dt′ .

3. Fully-Cooperative Solutions

In this section, we examine the global optimum and Nash bargaining solution [34] of the game.

3.1. Global Optimum

We now consider the fully cooperative scenario where all the decision-makers decide jointly to
optimize a single global objective L0 := ∑i Li given by

inf(u1,...,un) E ∑i Li,

dx =
{

a(x− x̄) + (a + ā)x̄ + ∑n
i=1 bi(ui − ūi) + ∑n

i=1(bi + b̄i)ūi
}

dt
+σdB(t) +

∫
Θ µ(t, θ)Ñ(dt, dθ),

x(0) = x0.

(16)

Following the same methodology as above with q0 = ∑i qi, q̄0 = ∑i q̄i and f0(t, x) = 1
2 α0(t)(x−

x̄)2 + 1
2 β0(t)x̄2, we obtain:
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inf(u1,...,un) E ∑i[Li]

= 1
2 α0(0)var(x(0)) + 1

2 β0(0)[Ex(0)]2 + 1
2

∫ T
0 [σ2(t)+

∫
Θ µ2(t, θ)ν(dθ)] α0(t)dt,

u∗i = − bi
ri

α0(x− x̄)− β0
(bi+b̄i)
ri+r̄i

x̄,

α̇0 + 2aα0 − α2
0 ∑i

b2
i

ri
+ q0 = 0,

α0(T) = q0(T) = ∑n
i=1 qi(T),

β̇0 + 2β0(a + ā)− β2
0 ∑n

i=1
(bi+b̄i)

2

ri+r̄i
+ q0 + q̄0 = 0,

β0(T) = ∑n
i=1 qi(T) + q̄i(T).

x̄(t) = x̄(0)e
∫ t

0 {(a+ā)−β0 ∑n
i=1

(bi+b̄i)
2

ri+r̄i
}dt′ .

(17)

When the coefficients are constant (in time), α0, β0 are explicitly given by

S := ∑i
b2

i
ri

,

α0(t) = a
S +

√
q0
S + a2

S2

−1 +
q0(T)− a

S +

√
q0
S + a2

S2

Γ

 ,

Γ := 1
2 (q0(T)− a

S +
√

q0
S + a2

S2 )− 1
2 (q0(T)− a

S −
√

q0
S + a2

S2 )e
−2(T−t)

√
q0
S + a2

S2 ,

S̃ := ∑n
i=1

(bi+b̄i)
2

ri+r̄i
,

β0(t) = a+ā
S̃

+
√

q0+q̄0
S̃

+ a2

S̃2

−1 +
q0(T)+q̄0(T)− a+ā

S̃
+

√
q0+q̄0

S̃
+ (a+ā)2

S̃2

Γ̃

 ,

Γ̃ := 1
2 (q0(T) + q̄0(T)− a+ā

S̃
+
√

q0+q̄0
S̃

+ (a+ā)2

S̃2 )

− 1
2 (q0(T) + q̄0(T)− a+ā

S̃
−
√

q0+q̄0
S̃

+ (a+ā)2

S̃2 )× e
−2(T−t)

√
q0+q̄0

S̃
+ (a+ā)2

S̃2 .

(18)

The global optimum cost in the fully-cooperative case is

L0 = 1
2 α0(0)var(x(0)) + 1

2 β0(0)[Ex(0)]2 + 1
2

∫ T
0 [σ2(t)+

∫
Θ µ2(t, θ)ν(dθ)] α0(t)dt, (19)

and is less than the total cost at the Nash equilibrium, which is

1
2 (∑

n
i=1 αi(0)) var(x(0)) + 1

2 (∑
n
i=1 βi(0)) (x̄(0))2 + 1

2

∫ T
0 [σ2(t)+

∫
Θ µ2(t, θ)ν(dθ)] ∑n

i=1 αi(t)dt. (20)

This loss of efficiency of Nash equilibria was analyzed in [35], and is often termed as the price
of anarchy [36,37].

3.2. Nash Bargaining Solution

Mean-field-type bargaining theory deals with the situation in which decision-makers can
realize—through cooperation—other better outcomes than the one which becomes effective when
they do not cooperate. This non-cooperative outcome is called the threatpoint LNE = (LNE

1 , . . . , LNE
n ).

The question is which outcome might the decision-makers possibly agree to. Let V be the set of
feasible outcomes of the benefit of bargaining [34]. We assume that if the agents unanimously agree
on a point v = (v1, . . . , vn) ∈ V , they obtain v. Otherwise, they obtain LNE = (LNE

1 , . . . , LNE
n ). This

presupposes that each decision-maker can enforce the threatpoint when he does not agree with a
proposal. Generically, what decision-maker i can guarantee is infui supu−i

Li, which is non-admissible
in the quadratic setting. The outcome v the decision-makers will finally agree on is called the solution
of the bargaining problem. Therefore, we have chosen the non-cooperation solution when there is
a disagreement.
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The Nash bargaining solution selects for a given set V the point at which the product of gains
from LNE is maximal.

NBS(V , LNE) = arg max
v∈V
{∏

i∈N
[LNE

i − vi]} (21)

Since the function v 7→ ∏k∈N vk is non-convex, Problem (21) is non-convex. Here we exploit
the convexity of the functional u 7→ 〈w, L(u)〉 for any given w = (w1, . . . , wn) ∈ Rn

++ such that
∑n

i=1 wi = 1 to reach any point in the Pareto frontier of the game. The maximization (in w) of the
product P := ∏n

i=1 [L
NE
i − Li(û(w))] yields

n

∑
i=1

∂

∂wj
Li(û(w)).{∏

j 6=i
[LNE

j − Lj(û(w))]} = c.

This is equivalent to
n

∑
i=1

P
LNE

i − Li(û(w))

∂

∂wj
Li(û(w)) = c.

We set yi :=
P

LNE
i −Li(û(w))

∑n
k=1

(
P

LNE
k −Lk(û(w))

) . Then, it follows that

n

∑
i=1

yi
∂

∂wj
Li(û(w)) =

c

∑n
i=1

(
P

LNE
i −Li(û(w))

) .

Moreover, yi ≥ 0, ∑n
i=1 yi = 1.

Assume the matrix ( ∂
∂wj

Li(û(w)))(i,j)∈N 2 has at least rank n − 1. Then, the Nash bargaining

solution is explicitly given by v = (L1(û(w∗)), . . . , Ln(û(w∗))), with the weight

w∗i =
∏j 6=i[LNE

j − Lj(û(w∗))]

∑n
k=1 ∏j 6=k[LNE

j − Lj(û(w∗))]
= yi(w∗),

where the optimal bargaining strategy profile is û(w) ∈ arg minu{〈w, L(u)〉}. It remains to compute
the functional û(w) = (û1(w), . . . , ûn(w)).

inf(u1,...,un) E ∑i wiLi,
dx =

{
a(x− x̄) + (a + ā)x̄ + ∑n

i=1 bi(ui − ūi) + ∑n
i=1(bi + b̄i)ūi

}
dt

+σdB +
∫

Θ µ(t, θ)Ñ(dt, dθ).
x(0) = x0,

(22)

Following the same methodology as above, we obtain:

inf(u1,...,un) E ∑i wiLi =
1
2 α0(0)var(x(0)) + 1

2 β0(0)[x̄(0)]2 +
∫ T

0 [σ2+
∫

Θ µ2(t, θ)ν(dθ)] α0
2 dt,

ûi(w) = − bi
wiri

α0(x− x̄)− (bi+b̄i)
wi(ri+r̄i)

(β0 x̄),

α̇0 + 2aα0 − α2
0 ∑i

b2
i

wiri
+ ∑i wiqi = 0,

α0(T) = ∑i wiqi(T),

β̇0 + 2β0(a + ā)− β2
0 ∑i

(bi+b̄i)
2

wi(ri+r̄i)
+ ∑i wi(qi + q̄i) = 0,

β0(T) = ∑i wi(qi + q̄i(T)),

x̄(t) = x̄(0)e
∫ t

0 [a+ā−β0 ∑n
i=1

(bi+b̄i)
2

wi(ri+r̄i)
]dt′

,
x̄(0) ∈ R.

(23)
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4. LQ Robust Mean-Field-Type Games

We now consider a robust mean-field-type game with two decision-makers. Decision-maker
1 minimizes with respect to u1 and Decision-maker 2 maximizes with respect to u2. The minimax
problem of mean-field type is given by

infu1 supu2
E[L(u1, u2)],

dx = {a(t)(x(t)− x̄(t)) + (a(t) + ā(t))x̄(t)
+∑2

i=1 bi(t)(ui(t)− ūi(t)) + ∑2
i=1(bi(t) + b̄i(t))ūi(t)

}
dt

+σ(t)dB(t) +
∫

Θ µ(t, θ)Ñ(t, dθ),
x(0) = x0 ∈ L2(R),

(24)

where the objective functional is

L(u1, u2) =
1
2 [q(T)(x(T)− x̄(T))2 + [q(T) + q̄(T)]x̄2(T)

+
∫ T

0 q(t)(x(t)− x̄(t))2 + [q(t) + q̄(t)]x̄2(t)dt
+
∫ T

0 r1(t)(u1(t)− ū1(t))2 + (r1(t) + r̄1(t))[ū1(t)]2dt
+
∫ T

0 r2(t)(u2(t)− ū2(t))2 + (r2(t) + r̄2(t))[ū2(t)]2dt].

(25)

The risk-neutral robust mean-field-type equilibrium problem we are concerned with is to
characterize the processes (x∗, u∗1 , u∗2 , E[x∗]) such that for every decision-maker, ū∗1 is the minimizer
and u∗2 is the maximum of the best response problem (24), and the expected value of the resulting
common state created by all the decision-makers is x̄∗(t) = E[x∗(t)].

Below, we solve Problem (24) for r1(t) > 0, r̄1(t) > 0, r2(t) < 0, r̄2(t) < 0.

E[ f (T, x(T))− f (0, x(0))]
= 1

2 E
∫ T

0 {α̇ + 2aα}(x− x̄)2dt + {β̇ + 2(a + ā)β}x̄2dt
+ 1

2 E
∫ T

0 2α ∑2
i=1 bi(ui − ūi)(x− x̄)dt

+ 1
2 E
∫ T

0 2β ∑2
i=1(bi + b̄i)ūi x̄dt

+ 1
2

∫ T
0 [σ2+

∫
Θ µ2(t, θ)ν(dθ)] αdt

(26)

E[L− f (0, x(0))]
= 1

2 [(q(T)− α(T))]E(x(T)− x̄(T))2

+ 1
2 [q(T) + q̄(T)− β(T)]x̄2(T)

+ 1
2 E
∫ T

0 {α̇ + 2aα− (
b2

1
r1
+

b2
2

r2
)α2 + q}(x− x̄)2dt

+ 1
2 E
∫ T

0

{
β̇ + 2(a + ā)β

−( (b1+b̄1)
2

r1+r̄1
+ (b2+b̄2)

2

r2+r̄2
)β2 + q + q̄

}
x̄2dt

+ 1
2 E
∫ T

0 r1[u1 − ū1 +
b1
r1

α(x− x̄)]2 dt

+ 1
2 E
∫ T

0 (r1 + r̄1)[ū1 +
(b1+b̄1)
r1+r̄1

βx̄]2 dt

+ 1
2 E
∫ T

0 r2[u2 − ū2 +
b2
r2

α(x− x̄)]2dt

+ 1
2 E
∫ T

0 (r2 + r̄2)[ū2 +
(b2+b̄2)
r2+r̄2

βx̄]2dt

+ 1
2

∫ T
0 [σ2+

∫
Θ µ2(t, θ)ν(dθ)] αdt,

(27)
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where we have used the following square completions:

r1(u1 − ū1)
2 + (r1 + r̄1)[ū1]

2

+2αb1(u1 − ū1)(x− x̄) + 2β(b1 + b̄1)ū1 x̄

= r1[u1 − ū1 +
b1
r1

α(x− x̄)]2 − b2
1

r1
α2(x− x̄)2

+(r1 + r̄1)[ū1 +
(b1+b̄1)
r1+r̄1

βx̄]2 − (b1+b̄1)
2

r1+r̄1
β2 x̄2,

r2(u2 − ū2)
2 + (r2 + r̄2)[ū2]

2

+2αb2(u2 − ū2)(x− x̄) + 2β(b2 + b̄2)ū2 x̄

= r2[u2 − ū2 +
b2
r2

α(x− x̄)]2 − b2
2

r2
α2(x− x̄)2

+(r2 + r̄2)[ū2 +
(b2+b̄2)
r2+r̄2

βx̄]2 − (b2+b̄2)
2

r2+r̄2
β2 x̄2.

(28)

It follows that the equilibrium solution is

infu1 supu2
E[L(u1, u2)] =

1
2 α(0)var(x(0)) + 1

2 β(0)[E(x(0))]2 + 1
2

∫ T
0 [σ2(t)+

∫
Θ µ2(t, θ)ν(dθ)] α(t)dt,

u∗1 = − b1
r1

α(x− x̄)− (b1+b̄1)
r1+r̄1

βx̄,

u∗2 = − b2
r2

α(x− x̄)− (b2+b̄2)
r2+r̄2

βx̄,

α̇ + 2aα− (
b2

1
r1
+

b2
2

r2
)α2 + q = 0,

α(T) = q(T),

β̇ + 2(a + ā)β− ( (b1+b̄1)
2

r1+r̄1
+ (b2+b̄2)

2

r2+r̄2
)β2 + q + q̄ = 0,

β(T) = q(T) + q̄(T),

x̄(t) = x̄(0)e
∫ t

0 {(a+ā)−β ∑2
i=1

(bi+b̄i)
2

ri+r̄i
}dt′ .

(29)

When r1 > 0, r̄1 ≥ 0, r2 < 0, r̄2 ≥ 0, S2 = ∑2
i=1

b2
i

ri
> 0 and S̃2 = ∑2

i=1
(bi+b̄i)

2

ri+r̄i
> 0, the functions

α, β are explicitly given by

α(t) = a
S2

+

√
q0
S2

+ a2

S2
2

−1 +
q0(T)− a

S2
+
√

q0
S2

+ a2

S2
2

Γ

 ,

Γ := 1
2 (q0(T)− a

S2
+

√
q0
S2

+ a2

S2
2
)− 1

2 (q0(T)− a
S2
−
√

q0
S2

+ a2

S2
2
)e
−2(T−t)

√
q0
S2

+ a2

S2
2 ,

β(t) = a+ā
S̃2

+

√
q0+q̄0

S̃2
+ a2

S̃2
2

−1 +
q0(T)+q̄0(T)− a+ā

S̃2
+

√
q0+q̄0

S̃2
+ (a+ā)2

S̃2
2

Γ̃

 ,

Γ̃ := 1
2 (q0(T) + q̄0(T)− a+ā

S̃2
+

√
q0+q̄0

S̃2
+ (a+ā)2

S̃2
2

)

− 1
2 (q0(T) + q̄0(T)− a+ā

S̃2
−
√

q0+q̄0
S̃2

+ (a+ā)2

S̃2
2

)× e
−2(T−t)

√
q0+q̄0

S̃2
+ (a+ā)2

S̃2
2 .

(30)

Notice that under the conditions r1(t) > 0, r̄1(t) > 0, r2(t) < 0, r̄2(t) < 0, S2(t) > 0, S̃2(t) > 0,
the minimax solution is also a maximin solution: there is a saddle point, and the saddle point is (u∗1 , u∗2).
It solves

E[L(u∗1 , u2)] ≤ E[L(u∗1 , u∗2)] ≤ E[L(u1, u∗2)],
∀(u1, u2) ∈ U1 ×U2.

(31)

The value of the game is

E[L(u∗1 , u∗2)] =
1
2 α(0)var(x(0)) + 1

2 β(0)[Ex(0)]2 + 1
2

∫ T
0 [σ2+

∫
Θ µ2(t, θ)ν(dθ)] α(t)dt. (32)
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5. Checking Our Results

In this section, we verify the validity of our results above using a Bellman system. Due to the
non-Markovian nature of x, one needs to build an augmented state. A candidate augmented state is
the measure m, since one can write the objective functionals in terms of the measure m(dx). This leads
to a dynamic programming principle in infinite dimensions. Below, we use functional derivatives with
respect to m(dx). The Bellman equilibrium system (in infinite dimension) is

V̂i,t(t, m) +
∫

x
Hi(x, m, V̂i,m, V̂i,xm, V̂i,xxm)m(dx) = 0, (33)

where the terminal equilibrium payoff functional at time T is

V̂i(T, m) = 1
2 q(T)

∫
y(y− m̄)2 m(dy) + 1

2 [q(T) + q̄(T)]
[∫

y y m(dy)
]2

, (34)

and the integrand Hamiltonian is

Hi(x, m, V̂i,m, V̂i,xm, V̂i,xmm)

= infui

{
1
2 qi(x− x̄)2 + 1

2 [qi + q̄i]x̄2 + 1
2 ri(ui − ūi)

2 + 1
2 (ri + r̄i)[ūi]

2

+[a(x− x̄) + (a + ā)x̄ + ∑n
i=1 bi(ui − ūi) + ∑n

i=1(bi + b̄i)ūi]V̂i,xm
}

+ σ2

2 V̂i,xxm +
∫

Θ[V̂i,m(t−, x + µ)− V̂i,m − µV̂i,xm]ν(dθ).

(35)

It is important to notice that the last term in the integrand Hamiltonian
∫

Θ[V̂i,m(t, x + µ)− V̂i,m −
µV̂i,xm]ν(dθ) is coming from the jump process involved in the state dynamics. From this Hamiltonian.
we deduce that, generically, the optimal strategy is state-and-mean-field feedback form, as the RHS
of (35) is. We now solve explicitly McKean–Vlasov integro-partial differential equation above. Inspired
by the structure of the final payoff V̂i(T, m), we choose a guess functional in the following form:

V̂i(t, m) = αi
2

∫
y(y− m̄)2 m(dy) + βi

2

[∫
y y m(dy)

]2
+ δi. (36)

The reader may ask why the term γ̃i[(x − m̄) ]
[∫

y y m(dy)
]

is missing in the guess functional.
This is because we are looking for the expected value optimization (risk-neutral case), and its expected
value is zero. The term γi

[∫
y y m(dy)

]
does not appear because there is no constant shift in the drift

and no cross-terms in the loss function.
We now utilize the functional directional derivative. Consider another measure m̃ ∈ L2 and

compute V̂i(t, m + εm̃).

V̂i(t, m + εm̃) = αi
2

∫
y(y− m̄− ε ¯̃m)2 m(dy) + εαi

2

∫
y(y− m̄− ε ¯̃m)2 m̃(dy)

+ βi
2

[∫
y y m(dy) + ε

∫
y y m̃(dy)

]2
+ δi.

(37)

Differentiating the latter term with respect to ε yields

d
dε V̂i(t, m + εm̃)

= −2αi ¯̃m(t)
2

∫
y(y− m̄− ε ¯̃m) m(t, dy)

− 2ε2αi ¯̃m
2

∫
y(y− m̄− ε ¯̃m) m̃(t, dy)

+ αi
2

∫
y(y− m̄− ε ¯̃m)2 m̃(dy)

+ 2βi ¯̃m
2

[∫
y y m(dy) + ε

∫
y y m̃(dy)

]
= −2αi ¯̃m

2

∫
y(y− m̄) m(dy)

+ αi
2

∫
y(y− m̄− ε ¯̃m(t))2 m̃(dy)

+ 2βi ¯̃m
2

[∫
y y m(dy)

]
= αi

2

∫
y(y− m̄− ε ¯̃m)2 m̃(dy) + 2βi ¯̃m

2

[∫
y y m(dy)

]
.

(38)
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We deduce the following equalities:

V̂i,m[t, m̃](x) = αi
2

[
x−

∫
y y m(dy)

]2
+ βix

[∫
y y m(dy)

]
,

V̂i,xm[t, m](x) = αi

[
x−

∫
y y m(dy)

]
+ βi

[∫
y y m(dy)

]
,

V̂i,xxm[t, m](x) = αi,
V̂i,m(t, x + µ)− V̂i,m − µV̂i,xm = 1

2 αiµ
2;

(39)

1
2 ri(ui − ūi)

2 + 1
2 (ri + r̄i)[ūi]

2 + [∑n
i=1 bi(ui − ūi) + ∑n

j=1(bj + b̄j)ūi]V̂i,xm

= 1
2 ri(ui − ūi)

2 + 1
2 (ri + r̄i)[ūi]

2 + [∑n
i=1 bi(ui − ūi)]

{
V̂i,xm − EV̂i,xm + EV̂i,xm

}
+[∑n

j=1(bj + b̄j)ūj]
{

V̂i,xm − EV̂i,xm + EV̂i,xm
}

= 1
2 ri(ui − ūi)

2 + 1
2 (ri + r̄i)[ūi]

2 +
{

V̂i,xm − EV̂i,xm
}

∑n
j=1 bj(uj − ūj)

+[EV̂i,xm]∑n
j=1 bj(uj − ūj) +

{
V̂i,xm − EV̂i,xm

}
∑n

j=1(bj + b̄j)ūj

+[EV̂i,xm]∑n
j=1(bj + b̄j)ūj,

(40)

where we have used the following orthogonal decomposition:

V̂i,xm = V̂i,xm − EV̂i,xm + EV̂i,xm.

Noting that the expected value of the following term

[EV̂i,xm]∑n
j=1 bj(uj − ūj) +

{
V̂i,xm − EV̂i,xm

}
∑n

j=1(bj + b̄j)ūj (41)

is zero, the optimization yields the optimization of

1
2 ri(ui − ūi)

2 + 1
2 (ri + r̄i)[ūi]

2 +
{

V̂i,xm − EV̂i,xm
}

∑n
j=1 bj(uj − ūj)

+[EV̂i,xm]∑n
j=1(bj + b̄j)ūj.

(42)

Thus, the equilibrium strategy of decision-maker i is

u∗i = ūi − bi
ri

{
V̂i,xm − EV̂i,xm

}
= ūi − bi

ri
αi

[
x−

∫
y y m(t, dy)

]
= − bi+b̄i

ri+r̄i
βi

[∫
y y m(t, dy)

]
− bi

ri
αi

[
x−

∫
y y m(t, dy)

]
,

ū∗i = − bi+b̄i
ri+r̄i

E[V̂i,xm] = − bi+b̄i
ri+r̄i

βi

[∫
y y m(t, dy)

]
,

(43)

which are exactly the expressions of the optimal strategies obtained in (15). Based on the latter expressions,
we refine our statement. The optimal strategy is state-and-(mean of) mean-field feedback form.

We now solve explicitly the McKean–Vlasov integro-partial differential equation above.

H̃i(x, m, V̂i,m, V̂i,xm, V̂i,xmm)

= 1
2 qi(x− x̄)2 + 1

2 [qi + q̄i]x̄2

+a(x− x̄)(V̂i,xm − EV̂i,xm) + (a + ā)x̄EV̂i,xm

+ σ2

2 V̂i,xxm +
∫

Θ[V̂i,m(t, x + µ)− V̂i,m − µV̂i,xm]ν(dθ)

+ infui

{
1
2 ri(ui − ūi)

2 + 1
2 (ri + r̄i)[ūi]

2 + [V̂i,xm − EV̂i,xm]∑n
j=1 bj(uj − ūj) + [EV̂i,xm]∑n

j=1(bj + b̄j)ūj

}
= 1

2 qi(x− x̄)2 + 1
2 [qi + q̄i]x̄2 + 1

2 2aαi(x− x̄)2 + 1
2 2(a + ā)βi x̄2 + σ2

2 αi +
∫

Θ
1
2 µ2(t, θ)αiν(dθ)

+ 1
2

b2
i

ri
α2

i (x− x̄)2 + 1
2
(bi+b̄i)

2

ri+r̄i
β2

i x̄2 − αi(x− x̄)2 ∑n
j=1

b2
j

rj
αj − βi x̄2 ∑n

j=1
(bj+b̄j)

2

(rj+r̄j)
β j

= 1
2{2aαi − 2αi ∑n

j=1
b2

j
rj

αj +
b2

i
ri

α2
i + qi}(x− x̄)2

+ 1
2

{
2(a + ā)βi − 2βi ∑n

j=1
(bj+b̄j)

2

(rj+r̄j)
β j +

(bi+b̄i)
2

ri+r̄i
β2

i + qi + q̄i

}
x̄2

+ 1
2 αi[σ

2 +
∫

Θ µ(t, θ)ν(dθ)].

(44)
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Using the time derivative of V̂i(t, m),

V̂i,t =
α̇i
2

∫
y(y− m̄)2 m(dy) + β̇i

2

[∫
y y m(dy)

]2
+ δ̇i, (45)

and identifying the coefficients, we arrive at

α̇i + 2aαi − 2αi ∑n
j=1

b2
j

rj
αj +

b2
i

ri
α2

i + qi = 0,

αi(T) = qi(T),

β̇i + 2(a + ā)βi − 2βi ∑n
j=1

(bj+b̄j)
2

(rj+r̄j)
β j +

(bi+b̄i)
2

ri+r̄i
β2

i + qi + q̄i = 0,

βi(T) = qi(T) + q̄i(T),
δ̇i +

1
2 αi[σ

2 +
∫

Θ µ(t, θ)ν(dθ)] = 0,
δi(T) = 0.

(46)

We retrieve the expressions in (15), confirming the validity of our approach.

6. Conclusions

In this article, we have shown that a mean-field equilibrium can be determined in a semi-explicit
way for the linear–quadratic game problem where the Brownian motion is replaced by a jump-diffusion
process in which the drift is of mean-field type. The method does not require the sophisticated
non-elementary extension (33) to backward–forward systems. It does not need IPDEs (33). It does not
need SMPs. It is basic and applies the expectation of Itô’s formula. The use of this simple method
may open the accessibility of the tool to a broader audience including beginners and engineers to
this emerging field of mean-field-type game theory. In our future work, we would like to investigate
the extension of the method to include common noise, action-and-state-dependent jump-diffusion
coefficients, matrix forms, operator forms, jump-fractional noise, and risk-sensitivity, among other
interesting aspects [38,39]. Additionally, it would be interesting to investigate the non-quadratic
mean-field-dependent setting, as Duncan et al. [24] have extended the direct method to some
non-quadratic cost functionals on spheres, torus, and more general spaces. We also would like
to investigate how the explicit solution provided in this article can be used to improve numerical
methods in mean-field-type game theory.
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Appendix A

Difference with the Mean-Field Game Approach

We would like to highlight that the variance reduction problem is fundamentally different from
the classical risk-neutral mean-field game approach. In the classical mean-field game literature, the
mean-field term is frozen, as it is assumed to be resulting from an infinite number of decision-makers.
However, when one wants to reduce the variance on own-state, one cannot freeze the mean state as it is
resulting from own-control. A change in the individual action of a deviant decision-maker changes its
own-state and therefore it changes its own mean state. To illustrate the difference between mean-field
games and mean-field-type games approaches, we consider a basic example below. Through a simple
example, we show that for a wide range of parameters, the mean-field game approach is sub-optimal
and leads a much higher risk than the mean-field-type game approach.
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Let q > 0, q̄ > 0 and consider the following mean-field game problem:

(m f g)



infui(·)∈Ui
E
[
qx2

i (T) + q̄m2(T) +
∫ T

0 u2
i dt
]

,

subject to
dxi(t) = ui(t)dt + xi(t)dBi(t),
xi(0) ∈ R,
m(t) = lim infn→+∞

1
n ∑n

k=1 xk(t).

(A1)

In the problem (mfg), the pair (ui, xi) of an individual decision-maker alone does not affect the
limiting mean state m in (A1). The solution of the mean-field game problem is

(m f g)


um f g

i (t) = −α(t)xi(t),

m(t) = m(0)e−
∫ t

0 α(s)ds

Lm f g = Eα(0)xi(0)2 + γ(0),
α̇ + α− α2 = 0, α(T) = q > 0.

(A2)

As we can see by freezing the mean-field term, the achieved cost is Lm f g = α(0)var(x(0)) +
α(0)[Ex(0)]2 + γ(0).

Now consider the following one-decision-maker (say decision-maker i) problem:

(m f tg)



infui∈Ui E
[
qx2

i (T) + q̄(x̄i)
2(T) +

∫ T
0 u2

i dt
]

,

subject to
dxi(t) = ui(t)dt + xi(t)dBi(t),
xi(0) ∈ R,
x̄i(t) = E[xi(t)].

(A3)

In the problem (mftg), the pair (ui, xi) of an individual decision-maker alone does significantly
affect the mean state x̄i in (A3):

(m f tg)



um f tg
i (t) = −α(t)(xi(t)− x̄i(t))− β(t)x̄i(t),

Eum f tg
i (t) = −β(t)x̄i(t),

x̄i(t) = x̄i(0)e−
∫ t

0 β(s)ds,
Lm f tg = α(0)var(xi(0)) + β(0)[x̄i(0)]2,
α̇ + α− α2 = 0, α(T) = q > 0,
β̇ + α− β2 = 0, β(T) = q + q̄ > 0.

(A4)

When we do not freeze the mean-field term, the achieved cost is Lm f tg. Taking the difference
between the ordinary differential equations, it is not difficult to see that α− β satisfies{

d
dt [α− β] ≤ (α− β)(α + β), t < T,
(α− β)(T) = −q̄ < 0.

(A5)

Since q < q + q̄ for q̄ > 0, it implies α(t) < β(t). We would like to compare α(0)[Ex(0)]2 + γ(0)
and β(0)[x̄(0)]2. 

Lm f g − Lm f tg
= α(0)[Ex(0)]2 + γ(0)− β(0)[x̄(0)]2

= [α(0)− β(0)][Ex(0)]2 + γ(0)

= [α(0)− β(0)][Ex(0)]2 + q̄[Ex(0)]2e−2
∫ T

0 α(s)ds

= [α(0)− β(0) + q̄e−2
∫ T

0 α(s)ds][Ex(0)]2.

(A6)
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The latter expression being positive, we deduce that for any T > 0 : Lm f g > Lm f tg. Thus, in
this example, the mean-field game approach—which consists of freezing the mean-field term—is
sub-optimal. On the other hand, the mean-field-type game approach coincides with the global
optimization problem in the one-decision-maker case. Hence, (A4) is the global optimum.

Difference with Multi-Population Mean-Field Games

The model studied here differs from (non-cooperative) multi-population (multi-class or
multi-type) mean-field games. In multi-population mean-field games, it is usually assumed that
there is an infinite number of decision-makers, each of them having their own control action. In those
models, a single decision-maker does not influence the population mean state within its class, since the
class size is assumed infinite. On the other hand, in the mean-field-type game model presented here,
there is a finite number of “true” decision-makers, and each decision-maker does have a non-negligible
effect on the mean-field terms.
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