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Abstract: This paper generalises the Hawk-Dove evolutionary game by introducing cost sharing
ratios for both players, and applies the generalised Hawk-Dove model to conflict management
in projects through investigating the stability of Nash equilibria. A model with clashing interests
between a project owner and a contractor is considered to derive their strategy adaptation given
the cost sharing ratios. As expected, the pure Nash equilibria are shown to be dominantly stable
while the mixed strategy equilibrium is observed to be unstable, across the range of considered cost
sharing ratios. In addition, simulations are conducted on the strategy adaptation and stability of the
equilibria under noisy and latent conditions. The obtained results can be used by project managers in
optimising their strategy in practice.
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1. Introduction

Project management emerged in the 1950s and expanded its applications in an increasing
number of industries. According to the guide to the Project Management Body of Knowledge
(PMBOK Guide 5th edition) [1], a project is a “temporary endeavour undertaken to create a unique
product, service, or result”. The delivery of a project usually involves a wide range of stakeholders,
among which the project owner and contractor (also known as the supplier) are arguably the most
important players.

There are two well-known challenges in the owner-contractor management [2]:

• The divergence of interests may induce conflict, which in return can lead to greater risk and
lengthened project duration.

• The participants’ behaviour is often tacit, requiring clarifications which may be obtained through
rigorous modelling.

These challenges underlie possible conflicts and disputes, which may not only cause damage to
the project owner and the contractor, but also may directly impair the outcome of projects. Having a
relatively low-cost negotiation is the most popular resolution to settle disputes in comparison with
other alternatives, such as partnering, arbitration, and dispute review boards [3]. Therefore, modelling
negotiation as a way to settle conflicts between the project owner and the contractor has attracted
research interest. While earlier studies concentrate on developing a framework or tactic for the
negotiating parties, the more contemporary research incorporates game theory to obtain the optimal
outcome. Game theory may offer solutions to the problem by providing quantitative models of conflict
and co-operation between intelligent, rational decision-makers [4]. It also suggests insights on how
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one’s decision will influence that of another and thus can be used to resolve conflicts and optimise
risk handling between stakeholders in project management. By using game theory, project managers
could reduce the chances of conflicts and gain better control in managing the owner-contractor
liaison [5]. A number of studies have employed game theory in specific project settings in recent
years, by focusing on the negotiation between the government and the private funding parties in
Public-Private Partnership projects [6–8], and/or over some particular types of contracts, such as
the BOT (Build-Operate-Transfer) contracts [9,10]. However, project management is known to be a
broad discipline and the practitioners are keen to obtain a holistic and pluralistic understanding of
stakeholder engagement [2]. It is therefore of interest to establish game theory as a means to provide a
generalised negotiation model that can fit into different project environments.

This paper investigates the feasibility of utilising the evolutionary game theory in project
management by setting up a representative model of a conflict between the owner and the
contractor. The game is set in the context of the classical Hawk-Dove game, and the stability
of Nash equilibria is studied through both analytical derivations and computational simulations.
In doing so, the well-known Hawk-Dove evolutionary game is generalised by introducing cost sharing
ratios for both players. Follow-up analysis is conducted by analysing the adaptation of optimal
strategies and stability of the resultant equilibria under noisy and latent conditions which are typical
in practical scenarios.

2. Evolutionary Game Theory: Generalised Hawk-Dove Model

The Hawk-Dove game originally developed by Maynard Smith [11] is one of the well-recognised
standard paradigms of evolutionary game theory. It draws inspiration from the biology and models
two players, hawk and dove, engaging in a single symmetric contest over a resource [12]. The payoff
matrix for the Hawk-Dove game includes the value of the contested resource v, and the cost of an
escalated fight c (Table 1). It is almost always assumed that the value of the resource is less than the
cost of a fight, i.e., c > v > 0 [11]. The cost of fight only incurs if a hawk confronts another hawk,

producing the resultant payoff for each player as
v − c

2
. When a dove meets another dove, however,

no fight will engage and they share the resource equally, each with payoff
v
2

. The payoffs for a hawk
encountering a dove reflect the discrepancy of the fighting ability for the two species so that the hawk
receives the resource v in full while the dove has nothing.

Table 1. Classical (canonical) Hawk-Dove game.

Player 1
Player 2 Hawk Dove

Hawk
(

v − c
2

,
v − c

2

)
(v, 0)

Dove (0, v)
( v

2
,

v
2

)

An evolutionarily stable strategy (ESS) is a strategy such that if all members of a population
adopt the ESS then no other strategy can replace it. The concept of ESS is the refinement of a Nash
equilibrium, a stable strategy where a player gains no benefit from changing to a different strategy.
In the classical two-player Hawk-Dove model, there are typically three Nash equilibria: two appear
as a pure strategy and one as a mixed strategy [13]. The classical Hawk-Dove game is a symmetric
contest where the cost of confrontation is equally shared; and the resultant ESS is a mixed strategy in
the sense that “the population will be genetically polymorphic or individuals will be behaviourally
variable” [14]. Later studies extended the consideration of contests to a two-stage game where the
contest repeats twice [15], and more importantly, to an asymmetric form in terms of the role dominance,
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unequal payoffs [14] and payoff relevance where differences in the value of winning were introduced
for different players [16]. The ESS in asymmetric contests usually appears to avoid an escalation
of the confrontation [14]. This conclusion also holds if the players are allowed to communicate
prior to the game, e.g., if they are allowed to threaten each other before choosing their moves [17].
The modern applications of the Hawk-Dove game include the bargaining and negotiation processes.
If the Hawk-Dove game is multi-stage while the two players play the game in order (i.e., the second
player moves after knowing the first player’s strategy), the equilibrium covers a fully cooperative case
when both players act as doves in both symmetric and asymmetric settings, together with multiple
asymmetric equilibria [18]. The interaction has also been extended to allow the players to confirm
the proposed strategy before committing to a Hawk-Dove agreement [19]. These applications in the
negotiation process, however, assume that no pre-established positions are held before bargaining.
This assumption, unfortunately, does not hold in the scenario of project conflicts because the inherent
role of the project participants is to decide their positions in the negotiation process, and so they are not
likely to cooperate willingly acting as doves. Informally, the optimal results for the players’ individual
interests emerge when two parties deliberately choose the opposite (“confrontational”) strategies [20].

The interaction between two players in a contract-based project management setting involving the
owner and the contractor are often modelled using the single-stage Hawk-Dove model with modified
asymmetric payoff matrix [21,22]. This selection of player roles is representative of resource-sharing in
project management, and this context can be easily modified to represent other stakeholders given that
the decision-making involves negotiation over some resource. Two strategies are, therefore, available in
this model for the project participants, representing the hawk (aggressive) and the dove (acquiescent),
as summarised in Table 2, mapping to the classical form. By pairing the strategies, four scenarios
are available: (A1, B1), (A1, B2), (A2, B1) and (A2, B2). The matrix elements are modified to reflect
two traits in the negotiation of the tendering process:

• The owner has a higher power and assumes the governance of the project.
• The owner pays an agreed amount to the contractor.

The project owner makes an offer at a price for some work to be carried out, represented with
a negative sign of the corresponding payoff; the project contractor, on the other hand, accepts the quote,
making gains shown with a positive sign. The project owner naturally has higher governance over the
project and therefore is not penalised for taking a strong stance opting for strategy A1 , whereas the
project contractor would incur some additional cost when he/she decides to initiate negotiation by
choosing strategy B1. The cost of negotiation, however, is most definitely not shared equally, as is the
case considered in the classical Hawk-Dove game; instead, the fraction that each player needs to bear
varies in accordance to his/her attitude towards risks.

Table 2. Hawk-Dove strategy representation in a project conflict.

Project Contractor
Project Owner Hawk A1 Dove A2

Hawk B1

(
v − c

2
,− v − c

2

)
(v,−v)

Dove B2 (v,−v)
( v

2
,− v

2

)

Noting the above mentioned two traits, the payoff matrix of the Hawk-Dove model constructed
for the project management setting is refined by:

• A hawk owner does not incur an additional cost but a hawk contractor would. The cost of
negotiation varies with the attitude of the two parties.

• Owner’s payoff is represented as a (negative) “loss” (constituting the payment amount), while
the contractor payoff, conversely, is positive and includes the received payment amount.
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In a realistic project conflict scenario, however, it should be expected that even when facing a
hawk contractor, a dove owner should pay an agreed amount subject to some additional costs. This can
be modelled, in our generalisation of the Hawk-Dove payoff matrix, by introducing a distinction
between agreed payment amounts V (owner as a hawk) and D (owner as a dove), while also including
different (cost sharing) penalty components L1 and L2.

Formally, four parameters, V1, V2, D1, D2, are used to represent initial contracted payments in
four scenarios (A1, B1), (A1, B2), (A2, B1), and (A2, B2) respectively, as shown in Table 3, extending the
study of [21]. In cases of (A1, B1) and (A2, B1), when the contractor acts as a hawk (B1), the additional
costs may be incurred, for instance, from communication and contract negotiation. These costs are
represented by L1 if the project owner also acts as a hawk, and L2 if the owner steps down as a dove.
The introduction of sharing ratios, α and β that range from 0 to 1, decides how the penalties are
distributed between the two parties. In (A1, B1), the owner’s portion of L1 is αL1 and the contractor’s
one is (1− α)L1; similarly, in A2B1, the owner’s share of L2 is βL2 and the contractor’s one is (1− β)L2,
resulting in the payoff matrix shown in Table 3.

Table 3. Generalised payoff matrix: Owner-Contractor.

Project Contractor
Project Owner

A1 A2

B1 (V1 − (1 − α)L1,−V1 − αL1) (D1 − (1 − β)L2,−D1 − βL2)

B2 (V2,−V2) (D2,−D2)

An assumption holds that the payment amount (i.e., resource) varies with both players’ attitude.
The project owner, by nature, is more dominant in shaping the contract terms; therefore, if the owner
“steps down” by acting dovish, the contractor who compromises (i.e., acting dovish too) receives a
higher contract amount than those who stay rigid and aggressive. In cases where the owner is acting
as a hawk, a more demanding hawk contractor would get paid more. The confrontation between the
hawk owner and the hawk contractor surely requires a longer time to resolve the dispute, translating
to the higher incurred additional cost. These conditions are expressed in constraints (1).

V1 > V2, D1 > D2

D1 > V1, D2 > V2

L1 > L2

(1)

To ensure that in the generalised Hawk-Dove game the best outcome for the owner and for the
contractor still occur in scenarios (A1, B2) and (A2, B1), further constraints are needed:

βL2 − αL1 < V1 − D1

β > 1 − D1−D2
L2

α < 1 − V1−V2
L1

(2)

These constraints set the conditions capturing the scenarios in which the opposing strategies,
(A1, B2) and (A2, B1), are the optimal cases for the project owner and the project contractor respectively.
This is consistent with the canonical Hawk-Dove game where the Hawk-Dove pair is always the most
advantageous for the hawk player. By applying the conditions, when the project owner is using
strategy A1 acting as a hawk, the project contractor has a tendency to move from B1 being a hawk to B2

being a dove, and vice versa. It is a common practice in the negotiation process known as the “strategic
and pragmatic approach” where both parties accept the adjustment to the original plan and is believed
to be the preferred method for producing cost effective outcomes [23]. Mathematically, Equation (2)
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set an upper boundary αmax for α and a lower bound βmin for β so that when the contractor acts as a
hawk (B1), there is a maximum cap αmax for the project owner to absorb L1 if he/she plays strategy A1;
if the project owner decides on strategy A2, the compromise is reflected by sharing at least βminL2.

In (A2, B1), when β equals to 1, the owner absorbs all additional costs with the contractor being
damage-free. This case evidently resembles the original Hawk-Dove model as the payoff clearly
favours the hawk contractor: having no loss from the confrontation. Conversely, when β slides to 0,
the payoff favours the dove owner while the hawk contractor pays the heavy toll for their aggression
by absorbing all the additional cost and the game is no longer a Hawk-Dove game.

3. Analytical Solutions

Let us set the expected probability of owner taking strategy A1 as q, and the expected probability
of owner taking strategy A2 holds as (1 − q). Similarly, the expected probabilities of the contractor
adapting strategy B1 and B2 are p and (1 − p) respectively. The partial expected revenue, UA1 and UA2
for owner, and UB1 and UB2, for contractor, correspond to the revenue generated from carrying out
strategy as hawk or dove, given the mixed strategy of the opponent, expressed as follows:{

UA1 = (−V1 − αL1)p − V2(1 − p)

UA2 = (−D1 − βL2)p − D2(1 − p)
(3)

The total expected revenue for the owner, UA, is thus derived as:

UA = UA1 q + UA2(1 − q) (4)

Expected partial revenue for the contractor follows the same mechanism and can be written as:{
UB1 = [V1 − (1 − α)L1]q + [D1 − (1 − β)L2](1 − q)

UB2 = V2q + D2(1 − q)
(5)

Therefore, the total expected revenue for the contractor, UB, is obtained as:

UB = UB1 p + UB2(1 − p) (6)

As pointed out by [21,24], the replicator equation shows the growth rate of a strategy, which
describes the selection process where the more successful strategy spreads until it becomes dynamically
stable. In other words, the strategy keeps adapting if the strategy’s payoff results in a higher payoff.
Hence, the replicator equation (i.e., growth rate) of the contractor acting as a hawk is:

dp
dt = p(UB1 − UB)
dp
dt = p(1 − p)[(V1 − V2 + D2 − D1 + (1 − β)L2 − (1 − α)L1)q + D1 − D2 − (1 − β)L2]

Analogously, the growth rate of the owner acting hawk is:

dq
dt = q(UA1 − UA)
dq
dt = q(q − 1)[(V1 − V2 + D2 − D1 + αL1 − βL2)p + V2 − D2]

By solving the differential equations, the equilibrium points are obtained as:{
p(1 − p)(Mpq − Np) = 0

q(q − 1)(Mq p − Nq) = 0
(7)
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where 
Mp = V1 − V2 + D2 − D1 + (1 − β)L2 − (1 − α)L1

Np = D1 − βL2 − (1 − β)L2

Mq = V1 − V2 + D2 − D1 + αL1 − βL2

Nq = V2 − D2

(8)

From Equation (7), p and q can be obtained as constant roots p0, p1, q0, q1, as well as a
parameter-dependent root pair p* and q*, yielding:

p0 = 0

p1 = 1

p∗ = Nq
Mq


q0 = 0

q1 = 1

q∗ = Np
Mp

(9)

The solutions p* and q* can be written in terms of the payment variables and cost sharing ratios:p∗ = D2−V2
V1−V2+D2−D1+αL1−βL2

q∗ = D2−D1+(1−β)L2
V1−V2+D2−D1+(1−β)L2−(1−α)L1

(10)

When p and q take constant roots p0, p1, q0, q1, their combinations form the equilibrium points
(0,0), (0,1), (1,0) and (1,1), each of which corresponds to scenario (A2, B2), (A1, B2), (A2, B1) and
(A1, B1). Pure and stable Nash equilibria are found at combinations (0,1), (1,0) [25]. When p* and
q* are taken, the equilibrium shifts to the unstable mixed strategy where the choice of strategy is
dependent on α and β.

4. Results

In order to further examine the stability of p* and q*, a specific set of contract values satisfying the
constraints (1) and (2) are set, shown in Table 4, and yielding the payoff matrix shown in Table 5.

Table 4. An example: contract values.

Parameter V1 L1 D1

Value 2600 1050 2950
Parameter L2 V2 D2

Value 150 2500 2550

Table 5. An example: payoff matrix.

Project Contractor
Project Owner

Hawk (A1) Dove (A2)

Hawk(B1) (2600 − 1050(1 − α),−2600 − 1050α) (2950 − 150(1 − β),−2950 − 150β)

Dove(B2) (2500,−2500) (2550,−2550)

4.1. Mixed Strategy Equilibrium under Stationary Conditions

The first results are obtained by varying sharing ratios α and β . While β slides between 0
and 1 freely, α is constrained by (2). β and α are varied and the variables of interest are computed:
the probabilities of the mixed strategy p* and q*, as well as the expected revenues UA and UB. A special
case where β = 1 is examined closely as it corresponds to the classical Hawk-Dove model where the
only Nash Equilibrium is (A2, B1).



Games 2017, 8, 42 7 of 18

4.1.1. β = 1: Classical Hawk-Dove Model

When β = 1, the contractor is exempted from sharing the additional cost and therefore has no
loss for acting as a hawk. In this case, α, ranging from 0.48 to 0.9, due to constraints (2), is the only
changing cost sharing ratio, completely affecting the expected probability and payoffs.

Figure 1 shows that with the increasing α, p* decreases whereas q* grows. The larger ratio α makes
the owner pay more on cost L1 and consequently stimulates the owner’s attitude towards acting as a
hawk. Contrarily, the increase of α leaves the contractor paying less on L1 and moving towards acting
as a dove. A balance of strategy between the two parties is noted by the change of α: when one leans
towards hawk, the other moves to dove and vice versa.

Figure 1. Expected probability of contractor p* and owner q*. Ten equally spaced α between 0.48
and 0.9.

Naturally, the hawks benefit more in resource allocation contests, and this perception also
holds in this owner-contractor case (Figure 2). Both the contractor and the owner receive higher
payment when acting as a hawk and the increase reaches saturation when p* and q* approach to
1. However, the reward of acting as a hawk is more substantial for the owner for smaller values of
α. For example, the increase from 0.48 (minimum α available) to 0.5 results in much larger positive
payment difference (243.7) than the increase from 0.88 to 0.9 (maximum α available) which results in
near-zero payment difference, as shown in Figure 2. A steep gradient is observed for owner’s payment
until α goes beyond 0.65; the change for the contractor counterpart is more uniform with considerably
smaller magnitude.
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The decision on how to split the cost between owner and contractor, that is, the decision on
selecting α, then largely depends on some thresholds specifically determined by each party and their
attitude. The confrontation penalty L1 can be seen as a measure of risk since the higher L1 reduces
contingency and brings greater risk. A risk-seeking owner is less sensitive to the higher cost portion
shared in L1, in which case he can accept a smaller α. For example, the steeper gradient change in
payment with α in the range 0.55 ≤ α ≤ 0.6 indicates higher payment for the project owner compared
with the amount when α ≥ 0.65, but may still fall into the acceptable range in eyes of a risk-seeking
project owner. For a risk-averse owner, the case is quite the opposite, as a conservative owner is more
than likely to be rigid in maintaining large α, e.g., α ≥ 0.75. The contractor, in response, must adapt a
different strategy in reflection to the penalty assessment.

(a) (b)

Figure 2. Expected payment of contractor UB and owner UA. (a) payment with p∗ and q∗; (b) payment
with α.

In summary, when β = 1, conclusions are made such that:

• The increase of α encourages the owner to act as a hawk while suppressing the contractor to act
as a hawk.

• The higher the value of α, the more likely is the transition from (A2, B1) with small α to (A1, B2)

with large α.

4.1.2. Other Values of β < 1

Figure 3 gives a representation of how sharing ratios affect the expected probabilities.
Observations are made as following:

• p* reaches 1 when β approaches 1 with α at minima.
• With large α, p* is close to 0 regardless of which value β takes.
• q* approaches 1 when both β and α move towards 1, indicating that q* is positively related to both

β and α.
• Sharing ratios do impact on both p* and q* but the manipulation of α and β cannot create scenario

(A1, B1) with high p* and q*: the former requires small α and the latter requires greater α, where
α clearly cannot meet both requirements.

The results presented in Figure 4 echo the conclusion drawn in the one-dimensional case
(β = 1) discussed earlier. By acting as a hawk, the owner and the contractor gain higher benefit;
the two-dimensional view indicates that UA and UB are both more responsive to the change of q*
whereas higher p* does not give much gain to the payment. Figure 5 and Table 6 show how the
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combination of α and β affects payment, in which case the best combination for the owner is high α

with any β between 0 to 0.8 and for the contractor is low α and β.

Figure 3. Expected probability p and q as a function of α and β.

(a) (b)

Figure 4. Expected payment UA and UB as a function of expected probability p* and q*. (a) 3d view;
(b) 2d view.
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Figure 5. Expected payment UA and UB as a function of sharing ratios α and β.

Table 6. Best outcome.

Best Scenario α β UA UB

Owner 0.65–0.9 0–0.8 −2600 2505

Contractor 0.35 0 −2950 2535

4.2. Mixed Strategy Equilibrium under Noisy and Latent Conditions

To evaluate the dynamic stability of the obtained equilibria, the expected probabilities are
simulated over time using Vensim’s System Dynamics Modelling (SDM) software [26]. The Vensim
model is described in the Appendix A.

4.2.1. Stability of Nash Equilibria

The expected probabilities, p and q, are plotted against time as shown in Figure 6. A time interval
of 10 cycles (days) is set to capture the probability’s dynamics in detail. It is observed that for all
combinations of α and β, the expected probability for both the contractor and the owner converges to
pure Nash equilibria fairly quickly. The convergence also requires opposing attitudes of the players:
when p0 is met, the other goes to q1, and vice versa.
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(a) (b)

Figure 6. Original simulated expected probability. (a) β = 1 and varying α; (b) varying β and α.

Importantly, the simulations do not converge to the mixed strategy. Table 7 shows the
corresponding mixed Nash equilibria for the α and β pairs, simulation results of which are shown
in Figure 6. Clearly, there are no observations of mixed Nash equilibria. This is consistent with
the expectation that pure Nash equilibria are very stable and outperform the mixed strategy in the
generalised Hawk-Dove model. It is then of interest to investigate which role mixed Nash equilibria
play in this setting. The properties of the observed pure Nash equilibria shown in Figure 6 and
the “hidden” mixed Nash equilibria are studied by changing initial conditions of variables while
introducing noise and delay.

Table 7. Mixed strategy Nash equilibria.

Tested Combination p* q*

α = 0.48 β = 1 0.926 0.473
α = 0.60 β = 1 0.278 0.556
α = 0.80 β = 1 0.128 0.784
α = 0.90 β = 1 0.101 0.987
α = 0.34 β = 0 0.877 0.297

α = 0.38 β = 0.3 0.926 0.349
α = 0.42 β = 0.6 0.980 0.400
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Phase portraits are constructed to further investigate the properties of the observed Nash
equilibria. Four representative combinations of α and β are considered, each with a distinct mixed
strategy, summarised in Table 8. The initial conditions of variables, namely the initial numbers of
hawk owner, hawk contractor, dovish owner, and dovish contractor, are changed in simulated runs
to cover diverse combinations of scenarios. Each scenario corresponds to a quadrant in which three
sets of expected probabilities (p and q) are selected, given the same combination of α and β, but with
changing initial conditions specified according to Figure 7.

Table 8. Phase portrait combination with p* and q*.

Tested Combination p* q*
α = 0.48 β = 1 0.926 0.473
α = 0.5 β = 0.5 0.3333 0.4333
α = 0.7 β = 0.5 0.1388 0.6019
α = 0.9 β = 0.1 0.0794 0.9815

Figure 7. Phase portrait: initial conditions.

Figure 8 shows that the two pure Nash equilibria are stable with dynamics moving towards
(p0, q1) and (p1, q0). Mixed Nash equilibrium is a saddle point as dynamics change direction around
it, for all α and β combinations, confirming the instability of the mixed Nash equilibrium in the
generalised model.

The other two points, (p0, q0) and (p1, q1) are also unstable as the dynamics run away from these
two extremes, indicating the instability of scenario (A1, B1) and (A2, B2).

The choice of α and β does impact on which pure Nash equilibrium the dynamic settles at.
With β = 1, the increase of α shifts the equilibrium from (A1, B2) to (A2, B1). The scenario (A2, B1)

is also more stable when the costs are shared equally (β = 0.5, α = 0.5) or when β is small (β = 0.1,
α = 0.9). In summary, it is confirmed that the mixed Nash equilibrium is an unstable saddle point as
expected, and the introduction of α and β alters the dynamics on pure Nash equilibria, however it
does not challenge the dominance of these pure equilibria.
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(a) (b)

(c) (d)

Figure 8. Phase portrait: mixed combination. (a) α = 0.48 β = 1; (b) α = 0.5 β = 0.5; (c) α = 0.7 β = 0.5;
(d) α = 0.9 β = 0.1.

4.2.2. Noise and Delay

The players may receive information about the numbers of hawk and dove opponents with a
delay and with noise, as described in the Appendix A.

To investigate the stability of the Nash equilibria under the noisy and latent conditions, evaluation
of the dynamics for a range of combination of α and β is made, observing the following (Figure 9):

• Pure Nash equilibria retain their robustness, and the combination of α and β do not affect the
resultant expected probability.

• The addition of noise and delay postpones but does not challenge the convergence to pure
Nash equilibria.

• Noise creates noticeable oscillations but does not have a lasting impact once it is removed (in this
case, after 200 days).

• The mixed Nash equilibrium, (p*, q*), is not attained.
• The combination of α and β, as shown earlier, determines whether the expected probability

converges to 0 or 1.
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(a) (b)

Figure 9. Expected probability with varying α and β. (a) β = 1; (b) varying α and β.

Figure 10 confirms these observations for different values of noise and delay, taking case β = 1 and
α = 0.48 as an example. By adding noise and delay, the overall dynamic is not influenced: the mixed
strategy remains the saddle point and pure Nash equilibria are robust.

Figure 10. Phase portrait: delay and noise under different initial conditions. (top left) (A1, B2);
(top right) (A1, B1); (bottom left) (A2, B2); (bottom right) (A2, B1).
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5. Application in Context of Project Management

The obtained results confirmed that only the pure Nash equilibria are stable when two parties
adapt different strategies; therefore, only a confrontational balance between the owner and the
contractor attitudes can achieve the optimal benefit.

Cost sharing ratios which may vary across cases are the key introduction leading to the
generalisation of Hawk-Dove model; these ratios, once adopted by the other party, can in fact also
serve as some indicators usable by project managers in anticipation of the attitudes of the other
participants. The choice of those ratios may depend on practical factors that project managers consider:
some are assumed knowledge, such as specific commonly perceived rules in a particular industry;
some are specifically tailored to the organisational and individual level, such as the organisation’s
tolerance towards risks and the course of negotiation, and project managers’ personal attitude to
conflicts triggered by economic incentives, fear and uncertainty [27]. The level of trust also has a role
in deciding these ratios. If participants focus on short-sighted benefits, the opportunity to obtaining
maximum gain is most paramount; if participants lay their visions ahead for long-term benefits, the
pay-off can be adjusted for a trust-based relationship [28]. As a result, by using the generalised model,
project managers may gain insights into the strategy adaptation, and more importantly, understand
the reasons leading to aggression or co-operation.

An earlier qualitative study showed that the adaptation of attitude has stimuli which can
be tracked down to corporate or industry nature, or even deeper, to cultural influences [29].
Project managers can take these factors into consideration when deciding on sharing ratios. Though
the model generalises stakeholder conflicts between the owner and the contractor, the framework
holds for most stakeholders who have clashing interests and therefore can be applied to a wide range
of scenarios with no limitation on the project’s background.

6. Conclusions

Game theory can be described as the “conflict and co-operation analysis” [4], providing much
needed answers to conflict and negotiation management. It has been widely applied in natural and
social sciences, but its application in project management has not gained much prevalence [30].

In this paper, a generalised Hawk-Dove model is introduced to simulate the dynamics of strategy
adaptation between two parties: the owner and the contractor. The model includes cost sharing ratios,
studying their role and impact on strategy adaptation.

The results are verified in three stages: analytical solutions are derived for the generalised model,
followed by simulation of stationary and dynamic behaviour. It is found that pure Nash equilibria are
stable, as expected, while the mixed strategy is a saddle point with unstable dynamics.

Confrontational practice between the project owner and the contractors is also noted, as the
optimal case occurs when one acts as a hawk and the other plays as a dove, and vice versa.
The prediction of a specific confrontational strategy is not easily achievable, and so cost sharing
ratios are considered to simplify decision-making. When the project contractor steps up acting as a
hawk, taking the strategy B1, the additional efforts in the communication and negotiation process
produce financial costs to be shared between the two parties, shown as L1 when the project owner acts
as a hawk (A1) and L2 when the project owner acts as a dove (A2). A hawk project owner would share
the penalty L1 with the hawk contractor via cost sharing ratio α while a dovish owner’s share of cost
in L2 is manipulated by β. It is found that although the introduction of α and β does not challenge the
general convergence to a pure Nash equilibrium, their combination drives the destination of the pure
Nash equilibrium, in which case either the owner favours large α with any β in the allowed range,
or the contractor leans towards small α and β.

This study may also apply to other roles of project participants engaged in a conflict of interest.
The generic feature of the constructed model fits into an array of projects and the scope can be further
expanded by including more than two players, unveiling the possibility of incorporating more sharing
ratios, and leading to different Nash equilibria. Though the case with multiple players is not explored
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in this paper, future research in this direction may prove fruitful, expanding the significance of game
theory applications in project management.

Author Contributions: S.L.C and M.P conceived and designed the methodology; S.L.C performed the analytical
and computational anlysis; S.L.C and M.P wrote the paper. These authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

A Vensim model is constructed to reflect the strategy adaptation of both players. Figure A1 shows
the model, in which stock variables, shown in boxes, denote the expected probabilities, the historical
accumulation of the number of hawks and doves for both players. The probabilities are computed as
ratios of the corresponding numbers of hawk and dove players of each type, similar to the SDM model
developed by [31]. All payment variables are set as constants, as well as the noise and delay (delay in p,
delay in q, and noise) which feed into the flow rate variables (change in p and change in q), and ultimately
into the expected probabilities.

The noise is simulated as a set of randomly generated numbers (rand p, and rand q) within defined
boundaries (noise) and time steps. The simulation is carried out over 1000 days under Euler integration
method with time step of 0.125 days.

Figure A1. Vensim model.
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