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Abstract: The modeling of awareness and unawareness is a significant topic in the doxastic logic
literature, where it is usually tackled in terms of full belief operators. The present paper aims at
a treatment in terms of partial belief operators. It draws upon the modal probabilistic logic that
was introduced by Aumann (1999) at the semantic level, and then axiomatized by Heifetz and
Mongin (2001). The paper embodies in this framework those properties of unawareness that have
been highlighted in the seminal paper by Modica and Rustichini (1999). Their paper deals with full
belief, but we argue that the properties in question also apply to partial belief. Our main result is a
(soundness and) completeness theorem that reunites the two strands—modal and probabilistic—of
doxastic logic.
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1. Introduction

Full (or categorical) beliefs are doxastic attitudes, like those ascribed when one says:

Pierre believes that φ.

Modal logic provides a way of modeling full beliefs. It is well known that it suffers from two main
cognitive idealizations. The first one is logical omniscience: a family of properties such as the closure
of beliefs under logical consequence (from the premise that φ implies ψ, infer that Bφ implies Bψ,
also known as the rule of monotonicity) or substitutability of logically equivalent formulas (from
the premise that φ is equivalent to ψ, infer that Bφ is equivalent to Bψ, also known as the rule of
equivalence). The second cognitive idealization is full awareness, which is more difficult to characterize
precisely. As a first approximation, let us say that, according to this assumption, the agent is supposed
to have a full understanding of the underlying space of possibilities and of the propositions that can
be built upon them.

Logicians and computer scientists have devoted much attention to the weakening of logical
omniscience. This literature is surveyed in [1], and in particular the two main extant solutions:
structures with subjective, logically-impossible states1 and awareness c© structures introduced by
R. Fagin and J. Halpern [4]2. The very same awareness c© structures are used to weaken the full
awareness assumption. More recently, game theorists have become interested in weakening awareness
in epistemic and doxastic logic and in related formalisms ([5–10])3. For a recent and detailed survey of
models of unawareness, see [14].

1 See [2,3].
2 In the whole paper we use “awareness c©” to denote the model of [4], to be distinguished from the attitude of awareness.
3 There is also a literature that studies games with unaware players. See, for instance, [11–13].
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Doxastic logic is a rather coarse-grained model of doxastic attitudes, because it excludes partial
beliefs, i.e., the fact that an agent believes that it is unlikely that φ or very likely that ψ. The main
formalism for partial beliefs makes use of probabilities in their subjective or epistemic interpretation,
where probability values stand for degrees of belief. There is a noteworthy contrast between modal
doxastic logic and those probabilistic models: whereas the former make beliefs explicit (part of
the formal language), they are left implicit in the latter. However, one may enrich the syntax with
explicit partial belief operators. For instance, R. Aumann has introduced in [15] an operator Lαφ

interpretable as

the agent believes at least to degree α that φ

A possible-world semantics is given for these operators (which is inspired by [16])4. This semantics
has been axiomatized by [19] under the form of a weak (soundness and) completeness theorem. This
probabilistic logic is the true counterpart of Kripkean epistemic logic for degrees of beliefs, and it is the
framework of this paper.

This probabilistic logic suffers from the same cognitive idealizations as doxastic logic:
logical omniscience and full awareness. In a preceding paper [20], we dealt with the problem of logical
omniscience in probabilistic logic. Our proposal was mainly based on the use of so-called impossible
states, i.e., subjective states where the logical connectives can have a non-classical behavior. The aim
of the present paper is to enrich probabilistic logic with a modal logic of unawareness. Our main
proposal is a generalization of Aumman’s semantics that uses impossible states like those of [5] and
provably satisfies a list of intuitive requirements. Our main result is a weak completeness theorem like
the one demonstrated by [19], but adapted to the richer framework that includes awareness. To our
knowledge, [21] is the closest work to ours: in this paper, the state-space model with “interactive
unawareness” introduced in [8] is extended to probabilistic beliefs in order to deal with the issue of
speculative trade. One of the differences with our paper is that their framework is purely set-theoretical,
whereas we rely on a formal language.

The remainder of the paper proceeds as follows. In Section 2, we try to provide some intuitions
about the target attitudes, awareness and unawareness. Section 3 presents briefly probabilistic logic, and
notably the axiom system of [19] (that will be called ‘system HM’). In Section 4, we vindicate a slightly
modified version of the Generalized Standard Structures of [5]. Section 5 contains the main contribution
of the paper: a logic for dealing with unawareness in probabilistic logic5. Our axiom system (named
‘system HMU’) enriches the probabilistic logic with an awareness operator and accompanying axioms.
Section 6 concludes.

2. Awareness and Unawareness

2.1. Some Intuitions

Unawareness is a more elusive concept than logical omniscience. This section gives insights on
the target phenomena and puts forward properties that a satisfactory logic of (un)awareness should
embody. Following the lead of [5], we may say that there is unawareness when

• there is “ignorance about the state space”
• “some of the facts that determine which state of nature occurs are not present in the subject’s mind”
• “the agent does not know, does not know that she does not know, does not know that she does

not know that she does not know, and so on...”

4 This is not the only way to proceed. Fagin, Halpern and Moses introduced in [17] an operator w(φ) and formulas
a1w(φ1) + ... + anw(φn) ≥ c interpretable as “the sum of a1 times the degree of belief in φ1 and...and an times the degree of
belief in φn is at least as great as c”. For a recent survey of probabilistic logic, see [18].

5 B. Schipper in [22] pointed out that a similar result has been stated in an unpublished paper by T. Sadzik; see [23].
The framework is slightly different from ours.
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Here is an illustrative example. Pierre plans to rent a house for the next holiday, and from the
observer’s point of view, there are three main factors relevant to his choice:

• p: the house is no more than 1 km far from the sea
• q: the house is no more than 1 km far from a bar
• r: the house is no more than 1 km far from an airport

There is an intuitive distinction between the two following doxastic states:

State (i): Pierre is undecided about r’s truth: he neither believes that r, nor believes that ¬r; there are
both r-states and ¬r-states that are epistemically accessible to him.

State (ii): the possibility that r does not come up to Pierre’s mind. Pierre does not ask himself: ‘is there
an airport no more than 1 km far from the house?”.

The contrast between the two epistemic states can be rendered in terms of a state space with either
a fine or coarse grain6. The observer’s set of possible states is:
where each state is labeled by the sequence of literals that are true in it. This state is also Pierre’s in
doxastic State (i). The doxastic State (ii), on the other hand, is:
Some states in the initial state space have been fused with each other; those that differ only in the truth
value they assign to the formula the agent is unaware of, namely r.7

2.2. Some Principles in Epistemic Logic

More theoretically, what properties should one expect awareness to satisfy? In what follows:

• Bφ means “the agent believes that φ,
• Aφ means “the agent is aware that φ”.

Here is a list of plausible properties for the operators B and A:

Aφ↔ A¬φ (symmetry)
A(φ ∧ ψ)↔ Aφ ∧ Aψ (distributivity over ∧)
Aφ↔ AAφ (self-reflection)
¬Aφ→ ¬A¬Aφ (U-introspection)

¬Aφ→ ¬Bφ ∧ ¬B¬Bφ (plausibility)
¬Aφ→ (¬B)nφ ∀n ∈ N (strong plausibility)
¬B¬Aφ (BU-introspection)

Natural as they are, these properties cannot be jointly satisfied in Kripkean doxastic logic. This has
been recognized by [6], who show that it is impossible to have both:

(i) a non-trivial awareness operator that satisfies plausibility, U-introspection and BU-introspection and
(ii) a belief operator that satisfies either necessitation or the rule of monotonicity8.

6 This is close to the “small world” concept of [24]. In Savage’s language, “world” means the state space or set of possible
worlds, itself.

7 Once again, the idea is already present in [24]: “...a smaller world is derived from a larger by neglecting some distinctions
between states”. The idea of capturing unawareness with the help of coarse-grained or subjective state spaces is widely
shared in the literature; see, for instance, [8] or [9]. By contrast, in the framework of first-order epistemic logic, unawareness
is construed as unawareness of some objects in the domain of interpretation by [25]. This approach is compared with those
based on subjective state spaces in [26].

8 For a recent elaboration on the results of [6], see [27].
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Of course, the standard belief operator of epistemic logic does satisfy both necessitation and the rule
of monotonicity. The main challenge is therefore to build a logic of belief and awareness that supports
the above intuitive principles. Since necessitation and the rule of monotonicity are nothing but forms of
logical omniscience, it becomes a major prerequisite to weaken the latter. Indeed, both the generalized
standard structures of [5] and the awareness c© structures of [4] do weaken logical omniscience.

2.3. Some Principles in Probabilistic Logic

Probabilistic logics are both lesser known than and not so well unified as modal doxastic logics.
The syntactic framework, in particular, varies from one to another. The logic on which this paper is
based relies on a language that is quite similar to that of doxastic logic, and it therefore can be seen as
constituting a probabilistic modal logic: its primary doxastic operators are La, where a is a rational
number between zero and one (“the agent believes at least to degree a that...”)9 We can express the
relevant intuitive principles for La as:

Aφ↔ A¬φ (symmetry)
A(φ ∧ ψ)↔ Aφ ∧ Aψ (distributivity over ∧)
Aφ↔ AAφ (self-reflection)
¬Aφ→ ¬A¬Aφ (U-introspection)

¬Aφ→ ¬Laφ ∧ ¬La¬Laφ (plausibility)
¬Aφ→ (¬La)nφ ∀n ∈ N (strong plausibility)
¬La¬Aφ (LaU-introspection)
L0φ↔ Aφ (minimality)

Seven of these eight principles are direct counterparts of those put forward for modal doxastic
logic, minimality being the exception. On the one hand, if an agent believes to some degree (however
small) that φ, then he or she is aware of φ. This conditional is intuitive for a judgmental rather than
for a purely behavioral conception of partial beliefs, according to which degrees of beliefs are causal
determinants of behavior, which may or may not be consciously grasped by the agent10. The reverse
conditional roughly means that an agent aware of φ has some degree of belief toward φ. This directly
echoes Bayesian epistemology. These eight principles may be seen as a set of requirements for a
satisfactory probabilistic logic11.

3. Probabilistic (Modal) Logic

This section briefly reviews the main concepts of probabilistic logic following [15,19]12.
Probabilistic logic is of course related to the familiar models of beliefs where the doxastic states
are represented by a probability distribution on a state space (or on the formulas of a propositional
language), but the doxastic operator is made explicit here. Syntactically, as we have already said, this
means that the language is endowed with a family of operators La. Semantically, there are sets of
possible states (or “events”) corresponding to the fact that an agent believes (or does not believe) such
and such formula at least to such and such degree.

3.1. Language

Definition 1 (probabilistic language). The set of formulas of a probabilistic language LL(At) based on a set
At of propositional variables is defined by:

φ ::= p|⊥|>|¬φ|φ ∧ φ|Laφ

9 By contrast, in [28,29], one considers formulas like a1w(φ1) + ... + anw(φn) ≥ b, where a1, ..., an, b are integers, φ1, ...., φn are
propositional formulas and w(φ) is to be interpreted as the probability of φ.

10 For a philosophical elaboration on this distinction, see [30].
11 A similar list of properties is proven in [21].
12 Economists are leading contributors to the study of explicit probabilistic structures because they correspond to the so-called

type spaces, which are basic to games of incomplete information since [16]. See [31].
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where p ∈ At and a ∈ [0, 1] ∩Q.

From this, one may define two derived belief operators:

• Maφ = L1−a¬φ (the agent believes at most to degree a that φ)
• Eaφ = Maφ ∧ Laφ (the agent believes exactly to degree a that φ)13

3.2. Semantics

Probabilistic structures (PS), as introduced by [15], aim at interpreting the formal language we
just defined. They are the true probabilistic counterpart of Kripke structures for epistemic logic.
In particular, iterated beliefs are allowed because a probability distribution is attributed to each
possible state, very much like a Kripkean accessibility relation. We follow the definition of [19]:

Definition 2 (probabilistic structures). A probabilistic structure forLL(At) is a four-tupleM = (S, Σ, π, P) where:

(i) S is a state space
(ii) Σ is a σ-field of subsets of S

(iii) π : S× At→ {0,1} is a valuation for S s.t. π(., p) is measurable for every p ∈ At
(iv) P : S→ ∆(S, Σ) is a measurable mapping from S to the set of probability measures on Σ endowed with the

σ-field generated by the sets

{µ ∈ ∆(S, Σ) : µ(E) ≥ a} ∀E ∈ Σ, a ∈ [0,1].

Definition 3. The satisfaction relation, labeled �, extends π to every formula of the language according to the
following conditions:

(i) M, s � p iff π(p, s) = 1
(ii) M, s � φ∧ψ iffM, s � φ andM, s � ψ

(iii) M, s � ¬φ iffM, s 2 φ
(iv) M, s |= Laφ iff P(s)([[φ]]) ≥ a

As usual, [[φ]] denotes the set of states where φ is true, or the proposition expressed by φ. From a
logical point of view, one of the most striking features of probabilistic structures is that compactness
does not hold. Let Γ = {L1/2−1/nφ : n ≥ 2, n ∈ N} and ψ = ¬L1/2φ. For each finite Γ′ ⊂ Γ, Γ′ ∪ {ψ}
is satisfiable, but Γ∪{ψ} is not. As a consequence, an axiomatization of probabilistic structures will
provide at best a weak completeness theorem.

3.3. Axiomatization

Explicit probabilistic structures were not axiomatized in [15]. To deal with this issue, an axiom
system was proposed in [19] that is (weakly) complete for these structures. We coin it the system HM14.

13 Since a is a rational number and the structures will typically include real-valued probability distributions, it may happen in
some state that for no a, it is true that Eaφ. It happens when the probability assigned to φ is a real, but non-rational number.

14 The work in [19] calls this system Σ+.
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System HM

(PROP) Instances of propositional tautologies
(MP) From φ and φ→ ψ, infer ψ

(L1) L0φ

(L2) La>
(L3) Laφ→ ¬Lb¬φ (a + b > 1)
(L4) ¬Laφ→ Maφ

(DefM) Maφ↔ L1−a¬φ

(RE) From φ↔ ψ infer Laφ↔ Laψ

(B) From ((φ1, ..., φm)↔ (ψ1, ..., ψn)) infer
((
∧m

i=1 Laiφi) ∧ (
∧n

j=2 Mbjψj)→ L(a1+...+am)−(b1+...+bn)ψ1)

The inference rule (B) deserves attention. The content and origin of (B) is explained in [19], so we
can be brief. The pseudo-formula ((φ1, ..., φm)↔ (ψ1, ..., ψn)) is an abbreviation for:

∧max(m,n)
k=1 φ(k) ↔ ψ(k)

where:

φ(k) =
∨

1≤<l1...<lk≤m(φl1 ∧ ...∧ φlk )

(if k > m, by convention φ(k) = ⊥). Intuitively, φ(k) “says” that at least k of the formulas φi is true.
The meaning of (B) is simpler to grasp when it is interpreted set-theoretically. Associate (E1, ..., Em) and
(F1, ..., Fn), two sequences of events, with the sequences of formulas (φ1, ..., φm) and (ψ1, ..., ψn). Then,
the premise of (B) is a syntactical rendering of the idea that the sum of the characteristic functions is
equal, i.e., ∑m

i=1 IEi = ∑n
j=1 IFj . If P(Ei) ≥ αi for i = 1, ..., n and P(Fj) ≤ β j for j = 2, ..., m, then P(F1)

has to “compensate”, i.e.,

P(F1) ≥ (α1 + ... + αn)− (β2 + ... + βm)

The conclusion of (B) is a translation of this “compensation”. It is very powerful from the
probabilistic point of view and plays a crucial role in the (sophisticated) completeness proof.
In comparison with the modal doxastic logic, one of the issues is that it is not easy to adapt the
usual proof method, i.e., that of canonical models. More precisely, with Kripke logics, there is a natural
accessibility relation on the canonical state space. Here, we need to prove the existence of a canonical
probability distribution from relevant mathematical principles. This step is linked to a difficulty that
is well known in the axiomatic study of quantitative and qualitative probability: how to ensure a
(numerical) probabilistic representation for a finite structure of qualitative probability. A principle
similar to (B) has been introduced in an set-theoretical axiomatic framework by [32] and imported into
a probabilistic modal logic (with a qualitative binary operator) by [33].

4. A Detour by Doxastic Logic without Full Awareness

Our probabilistic logic without full awareness is largely an adaptation of the generalized standard
structures (GSS) introduced by [5] to deal with unawareness in doxastic logic. Actually, we will slightly
modify the semantics of [5] and obtain a partial semantics for unawareness. Before giving our own
logical system, we remind the reader of GSSs of the case of doxastic logic.

4.1. Basic Heuristics

Going back to the motivating example, suppose that the “objective” state space is based on the set
of atomic formulas At = {p, q, r} as in Figure 1. Suppose furthermore that the actual state is s = pqr
and that in this state, Pierre believes that p, is undecided about q and is unaware of r. In the language
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used in [5] , one would say that the actual state is “projected” to a subjective state ρ(s) = pq of a
“subjective” state space based on the set of atomic formulas that the agent is aware of, i.e., p and q
(Figure 2). In Kripkean doxastic logic, the agent’s accessibility relation selects, for each possible state s,
the set of states R(s) that are epistemically possible for him or her. GSSs define an accessibility relation
on this subjective state space. In Figure 3, projection is represented by a dotted arrow and accessibility
by solid arrows.

�

��� ���� ���� �����

���� ����� ����� ������

Figure 1. An objective state space.
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�������	

Figure 2. A subjective state space.
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Figure 3. Projection of an objective state in a subjective state space.

This picture does not represent all projections between objective states and subjective states,
and it corresponds to only one subjective state space. Generally, there are as many subjective state
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spaces S′X as there are subsets X of the set At on which the objective state space is based15. It is crucial
to specify in the right way the conditions on the projection ρ(.) from objective to subjective states.
Suppose that another objective state s′ is projected to pq, as well; then, two conditions should be
obtained. First, s = pqr and s′ should agree on the atomic formulas the agent is aware of; so, for
instance, s′ could not be ¬pqr, since the agent is aware of p. Second, the states accessible from s and s′

should be the same. Another natural assumption is that all of the states accessible from a given state
are located in the same “subjective” state space (see (v)(2) in Definition 4 below). Figure 4 pictures a
GSS more faithfully than the preceding one.
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���� ����� ����� ������
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�����	�
 �����	�


Figure 4. Partial picture of a generalized standard structure (GSS).

4.2. Generalized Standard Structures

The next definition is a precise rendering of the intuitive ideas. We have followed [7] rather than [5],
notably because he makes clear that GSSs can be seen as structures with impossible states.

Definition 4. A GSS is a t-tupleM = (S, S′, π, R, ρ):

(i) S is a state space
(ii) S′ =

⋃
X⊆At S′X (where S′X are disjoint) is a (non-standard) state space

(iii) π : S× At→ {0, 1} is a valuation for S
(iv) R : S→ ℘(S′) is an accessibility relation for S
(v) ρ : S→ S′ is an onto map s.t.

(1) if ρ(s) = ρ(t) ∈ S′X , then (a) for each atomic formula p ∈ X, π(s, p) = π(t, p) and (b) R(s) = R(t)
and

(2) if ρ(s) ∈ S′X , then R(s) ⊆ S′X

One can extend R and π to the whole state space:

15 In an objective state space, the set of states need not reflect the set of possible truth-value assignments to propositional
variables (as is the case in our example).
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(vi) π′ : S′ × At→ {0, 1} is a valuation for S′ s.t. for all X ⊆ At for all s′ ∈ S′X , π′(s′, p) = 1 iff (a) p ∈ X
and (b) for all s ∈ ρ−1(s′), π(s, p) = 1. We note π∗ = π ∪ π′.

(vii) R′ : S′ → ℘(S′) is an accessibility relation for S s.t. for all X ⊆ At for all s′ ∈ S′X, R′(s′) = R(s) for
some s ∈ ρ−1(s′). We note R∗ = R ∪ R′.

In comparison with Kripke structures, a modification is introduced as regards negation. In a
subjective state s′ ∈ S′X, for a negated formula ¬φ to be true, it has to be not only that φ is not true,
but also that φ belongs to the sub-language induced by X. Semantic partiality follows: it may be
the case that in some s′, neither φ, nor ¬φ is true (this is why subjective states are impossible states).
The main reason why, following [7], we introduce this semantics is that it is a very simple way of
inducing the “right” kind of partiality. This will be shown in the next subsection. In the sequel, LBA(X)

denotes the language containing the operators B (full beliefs) and A (awareness) and based on the set
X of propositional variables.

Definition 5. The satisfaction relation for GSS is defined for each s∗ ∈ S∗ = S ∪ S′:

(i) M, s∗ � p iff π∗(s∗, p) = 1
(ii) M, s∗ � φ ∧ ψ iffM, s∗ � φ andM, s∗ � ψ

(iii) M, s∗ � ¬φ iffM, s∗ 2 φ and either s∗ ∈ S, or s∗ ∈ S′X and φ ∈ LBA(X)
(iv) M, s∗ � Bφ iff for each t∗ ∈ R∗(s∗),M, t∗ � φ
(v) M, s∗ � Aφ⇔M, s∗ � Bφ ∨ B¬Bφ

Example 1. In Figure 3, let us consider s = pqr. M, ρ(s) 2 r given Clause (vi) of the definition of GSS.
However, M, ρ(s) 2 ¬r given Clause (iii) of the definition of the satisfaction relation. Clause (iv) of the
satisfaction relation and Clause (v)(2) of the GSS imply thatM, ρ(s) 2 Br and thatM, s 2 Br. However,
Clause (iii) of the satisfaction relation again implies thatM, ρ(s) 2 ¬Br. The same holds in the state accessible
from ρ(s). Therefore,M, s 2 B¬Br. By Clause (v) of the satisfaction relation, this implies thatM, s � ¬Ar.

4.3. Partial Generalized Standard Structures

The preceding definition characterizes awareness in terms of beliefs: Pierre is unaware of φ if,
and only if, he does not believe that φ and does not believe that he does not believe that φ. This is
unproblematic when one studies, as [5] do, partitional structures, i.e., structures where the accessibility
relation is an equivalence relation and, thus, induces a partition of the state space. Game theorists rely
extensively on this special case, which has convenient properties. In this particular case, the fact that
an agent does not believe that φ and does not believe that she/he does not believe that φ implies that
she/he does not believe that she/he does not believe...that she/he does not believe that φ-, at all levels
of iteration16. However, without such an implication, the equivalence between the fact that an agent is
unaware of φ and the fact that she/he does not believe that φ and does not believe that she/he does
not believe that φ is dubious, at least in one of the two directions.

We therefore need a more general characterization of awareness and unawareness. Our proposal
proceeds from the following observation: in the definition of satisfaction for GSS, the truth-conditions
for negated formulas introduce (semantic) partiality. If p /∈ X and s∗ ∈ S′X, then neitherM, s∗ � p
norM, s∗ � ¬p obtain. Let us indicate byM, s∗ ⇑ φ that the formula φ is undefined at s∗ and by
M, s∗ ⇓ φ that it is defined. The following is true:

Fact 1. LetM be a GSS and s∗ ∈ S′X for some X ⊆ At. Then:

16 Intuitively: if the agent does not believe that φ, this means that not every state of the relevant partition’s cell makes φ
true. If φ belonged to the sub-language associated with the relevant subjective state space, since the accessibility relation is
partitional, this would imply that ¬Bφ would be true in every state of the cell. However, by hypothesis, the agent does not
believe that she/he does not believe that φ. We have therefore to conclude that φ does not belong to the sub-language of the
subjective state space (see Fact 1 below). Hence, no formula B¬B¬B...¬Bφ can be true.
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M, s∗ ⇓ φ iff φ ∈ LBA(X)

Proof. see Appendix A.2.

We suggest to keep the underlying GSS, but change the definition of (un)awareness.
Semantical partiality, stressed above, is an attractive guide. In our introductory example, one would
like to say that the possible states that Pierre conceives of do not “answer” the question “Is is true that
r?”, whereas they do answer the questions “Is it true that p?” and “Is it true that q?”. In other words,
the possible states that Pierre conceives of make neither r, nor ¬r true. Awareness can be defined
semantically in terms of partiality:

M, s � Aφ iffM, ρ(s) ⇓ φ

Of course, the appeal of this characterization depends on the already given condition: if ρ(s) ∈ S′X ,
then R(s) ⊆ S′X. Let us call a partial GSS a GSS where the truth conditions of the (un)awareness
operator are in terms of partiality:

Fact 2. Symmetry, distributivity over ∧, self-reflection, U-introspection, plausibility and strong plausibility are
valid under partial GSSs. Furthermore, BU-introspection is valid under serial partial GSS.

Proof. This is left to the reader.

5. Probabilistic Logic without Full Awareness

5.1. Language

Definition 6 (Probabilistic language with awareness). The set of formulas of a probabilistic language with
awareness LLA(At) based on a set At of propositional variables is defined by:

φ ::= p|⊥|>|¬φ|φ ∧ φ|Laφ|Aφ

where p ∈ At and a ∈ [0, 1] ∩Q.

5.2. Generalized Standard Probabilistic Structures

Probabilistic structures make a full awareness assumption, exactly in the same way that Kripke
structures do. An obvious way to weaken this assumption is to introduce in the probabilistic setting
the same kind of modification as the one investigated in the previous section. The probabilistic
counterpart of generalized standard Structures are the following generalized standard probabilistic
structures (GSPS):

Definition 7 (Generalized standard probabilistic structure). A generalized standard probabilistic structure
for LLA(At) is a t-tuple

M = (S, (S′X)X⊆At, (Σ′X)X⊆At, π, (P′X)X⊆At) where:

(i) S is a state space.
(ii) S′X where X ⊆ At are disjoint “subjective” state spaces. Let S′ =

⋃
X⊆At S′X .

(ii) For each X ⊆ At, Σ′X is a σ-field of subsets of S′X .
(iii) π : S× At→ {0, 1} is a valuation.
(iv) P′X : S′X → ∆(S′X , Σ′X) is a measurable mapping from S′X to the set of probability measures on Σ′X endowed

with the σ-field generated by the sets {µ ∈ ∆(S′X , Σ′X) : µ(E) ≥ a} for all E ∈ Σ′X , a ∈ [0, 1].
(v) ρ : S→ S′ is an onto map s.t. if ρ(s) = ρ(t) ∈ S′X , then for each atomic formula p ∈ X, π(s, p) = π(t, p).

By definition, P∗(s∗) = P∗(ρ(s∗)) if s ∈ S and P∗(s∗) = P′X(s
∗) if s∗ ∈ S′X .
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(vi) π′ : S′ × At → {0, 1} extends π to S′ as follows: for all s′ ∈ S′X, π′(s′, p) = 1 iff p ∈ X and for all
s ∈ ρ−1(s′), π(s, p) = 117. For every p ∈ At, s′ ∈ S′X , π′(., p) is measurable w.r.t. (S′X , Σ′X).

Two comments are in order. First, Clause (iv) does not introduce any special measurability
condition on the newly-introduced awareness operator (by contrast, there is still a condition for
the doxastic operators). The reason is that in a given subjective state space S′X, for any formula
φ, either there is awareness of φ everywhere, and in this case [[Aφ]] ∩ S′X = S′X, or there is never
awareness of φ, and in this case [[Aφ]] ∩ S′X = ∅. These two events are of course already in any Σ′X.
Second, Clause (v) imposes conditions on the projection ρ. With respect to GSSs, the only change is
that we do not require something like: if ρ(s) ∈ S′X , then R(s) ⊆ S′X . The counterpart would be that if
ρ(s) ∈ S′X , then Supp(P(s)) ⊆ S′X . However, this is automatically satisfied by the definition.

Example 2. In Figure 5, the support of the probability distribution associated with s = pqr is {ρ(s) =

pq, p¬q}, P′{p,q}(ρ(s))(pq) = a and P′{p,q}(ρ(s))(p¬q) = 1− a.

�
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���� ����� ����� ������
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�����	�
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Figure 5. Projection of an objective state to a subjective state space in a probabilistic setting.

Definition 8 (Satisfaction relation for GSPS). The satisfaction relation for GSPS is defined for each s∗ ∈
S∗ = S ∪ S′:

(i) M, s∗ � p iff π(s∗, p) = 1
(ii) M, s∗ � φ ∧ ψ iffM, s∗ � φ andM, s∗ � ψ

(iii) M, s∗ � ¬φ iffM, s∗ 2 φ and either s∗ ∈ S, or s∗ ∈ S′X and φ ∈ LLA(X)
(iv) M, s∗ � Laφ iff P∗(s∗)([[φ]]) ≥ a andM, ρ(s) ⇓ φ
(v) M, s∗ � Aφ iffM, ρ(s∗) ⇓ φ

The following fact is the counterpart for GSPS of what was proven above for GSS.

Fact 3. LetM be a GSPS and s′ = ρ(s) ∈ S′X for some s ∈ S. Then:

M, s′ ⇓ φ iff φ ∈ LLA(X)

17 It follows from Clause (v) above that this extension is well defined.
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Proof. The proof is analogous to the one provided for Fact 1 above.

One can show that all of the properties mentioned in Section 2.3 are valid under GSPSs.

Proposition 1. For all GSPSM and all standard states s ∈ S, the following formulas are satisfied:

Aφ↔ A¬φ (symmetry)
A(φ ∧ ψ)↔ Aφ ∧ Aψ (distributivity over ∧)
Aφ↔ AAφ (self-reflection)
¬Aφ→ ¬A¬Aφ (U-introspection)

¬Aφ→ ¬Laφ ∧ ¬La¬Laφ (plausibility)
¬Aφ→ (¬La)nφ ∀n ∈ N (strong plausibility)
¬La¬Aφ (LaU-introspection)
L0φ↔ Aφ (minimality)

Proof. This is left to the reader.

5.3. Axiomatization

Proposition 1 suggests that GSPSs provide a plausible analysis of awareness and unawareness
in a probabilistic setting. To have a more comprehensive understanding of this model, we need to
investigate its logical properties. It turns out that an axiom system can be given that is weakly complete
with respect to GSPS. We call it system HMU

18.

System HMU

(PROP) Instances of propositional tautologies
(MP) From φ and φ→ ψ, infer ψ

(A1) Aφ↔ A¬φ

(A2) A(φ ∧ ψ)↔ Aφ ∧ Aψ

(A3) Aφ↔ AAφ

(A4L) Aφ↔ ALaφ

(A5L) Aφ→ L1 Aφ

(L1U) Aφ↔ L0φ

(L2U) Aφ→ La(φ ∨ ¬φ)

(L3) Laφ→ ¬Lb¬φ (a + b > 1)
(L4U) (¬Laφ ∧ Aφ)→ Maφ

(REU) From φ↔ ψ and Var(φ) = Var(ψ), infer (Laφ↔ Laψ)

(BU) From ((φ1, ..., φm)↔ (ψ1, ..., ψn)), infer:
((
∧m

i=1 Laiφi) ∧ (
∧n

j=2 Mbjψj)→ (Aψ1 → L(a1+...+am)−(b1+...+bn)ψ1))

Some comments are in order. (a) Axioms (A1)–(A5L) concern the awareness operator and
its relationship with the doxastic operators. The subscript “L” indicates an axiom that involves
a probabilistic doxastic operator, to be distinguished from its epistemic counterpart indicated by “B”
in the axiom system for doxastic logic reproduced in Appendix A.3. The other axioms and inference
rules were roughly part of probabilistic logic without the awareness operator appearing in them.
Subscript “U” indicates a modification with respect to the System HM due to the presence of the

18 In what follows, Var(φ) denotes the set of propositional variables occurring in φ.
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awareness operator. (b) Axiom (L1U) substitutes Aφ↔ L0φ for L0φ. This means that in our system,
the awareness operator can be defined in terms of the probabilistic operator. However, this does not
imply that a non-standard semantics is not needed: if ones defines Aφ as L0φ, Aφ is valid for any φ in
standard semantics19. (c) The relationship between logical omniscience and full awareness comes out
clearer in the restriction we have to impose on the rule of equivalence (RE)20. It is easy to see why in
semantical terms why the rule of equivalence no longer holds universally. Suppose that L1/2 p holds at
some state of some model. From propositional logic, we know that p ≡ (p∧ q)∨ (p∧¬q). However, if
the agent is not aware of q, it is not true that L1/2((p ∧ q) ∨ (p ∧ ¬q)). (d) For the same kind of reason,
the inference rule (B) no longer holds universally. Consider for instance φ1 = (p ∨ ¬p), φ2 = (r ∨ ¬r)
ψ1 = (q ∨ ¬q) and ψ2 = (p ∨ ¬p). Additionally, suppose that that the agent is aware of p and r, but
not of q. Clearly, the premise of (B), i.e., ((φ1, φ2)↔ (ψ1, ψ2)) is satisfied. Furthermore, the antecedent
of (B)’s conclusion, i.e., L1φ1 and M1ψ2 is satisfied, as well. However, since the agent is unaware of q,
we cannot conclude what we should conclude were (B) valid, i.e., that L1ψ1.

We are now ready to formulate our main result.

Theorem 1 (Soundness and completeness of HMU). Let φ ∈ LLA(At). Then:

|=GSPS φ iff `HMU φ

Proof. See the Appendix B.

6. Conclusions

This study of unawareness in probabilistic logic could be unfolded later in several directions.
First, we did not deal with the extension to a multi-agent framework, an issue tackled recently by [8];
second, we did not investigate applications to decision theory or game theory. However, we would
like to end by stressing another issue that is less often evoked and nonetheless conceptually very
challenging: the dynamics of awareness. The current framework, as much of the existing work, is
static, i.e., it captures the awareness and doxastic states at a given time. It does not tell anything of the
fact that, during an inquiry, an agent may become aware of some new possibilities21.

Let us consider our initial example where Pierre is aware of p and q, but not of r, and let us
suppose that Pierre’s partial beliefs are represented by some probability distribution on a subjective
state space S{p,q}. Assume that at some time, Pierre becomes aware of r; for instance, someone has
asked him whether he thinks that r is likely or not. It seems that our framework can be extended to
accommodate the situation: Pierre’s new doxastic state will be represented on a state space S{p,q,r}
appropriately connected to the initial one S{p,q} (see Figure 6). Typically, a state s′ = pq will be split
into two fine-grained states s1 = pqr and s2 = pq¬r. However, how should Pierre’s partial beliefs
evolve? Obviously, a naive Laplacian rule according to which the probability assigned to s′ is equally
allocated to s1, and s2 will not be satisfactory. Are there rationality constraints capable of determining
a new probability distribution on S{p,q,r}? Or should we represent the new doxastic state of the agent
by a set of probability distributions?22 We leave the answers to these questions for future investigation.

19 I thank an anonymous referee for suggesting to me to clarify this point.
20 This restricted rule is reminiscent of the rule REsa in [5].
21 Note that he/she could become unaware of some possibilities as well, but we will not say anything about that.
22 The dynamics of awareness has been studied by [34] in doxastic logic and by [35] in doxastic logic. See also [36].
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Figure 6. The issue of becoming aware.
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Appendix A. Doxastic Logic: Proofs and Illustrations

Appendix A.1. Illustration

Let us consider a GSSM where:

• the actual state is s ∈ S
• s is projected in s1 ∈ S′X for some X ⊆ At
• R(s1) = {s2, s3}, R(s2) = {s2} and R(s3) = {s3}
• M, s2 � p andM, s3 � ¬p

The relevant part of the model is represented in Figure A1.

�
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��
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���

Figure A1. Unawareness without partitions.
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It is easy to check thatM, s � Up andM, s � B(B¬p ∨ Bp), sinceM, s2 � Bp andM, s3 � B¬p.

Appendix A.2. Proof of Fact 1

For greater convenience, we give the proof for partial GSSs, but Fact 1 holds for original GSSs,
as well. We have to show that ifM is a partial GSS and s∗ ∈ S′X for some X ⊆ At, thenM, s∗ ⇓ φ iff
φ ∈ LBA(X). The proof is by induction on the complexity of formulas:

• if φ := p, thenM, s∗ � p orM, s∗ � ¬p iff (p ∈ LBA(X) and π(ρ−1(s∗), p) = 1) or (p ∈ LBA(X)

and not π(ρ−1(s∗), p) = 1) iff p ∈ LBA(X).
• if φ := ¬ψ, thenM, s∗ � φ orM, s∗ � ¬φ iffM, s∗ � ¬ψ orM, s∗ � ¬¬ψ iff (ψ ∈ LBA(X) and
M, s∗ 2 ψ) or (¬ψ ∈ LBA(X) andM, s∗ 2 ¬ψ) iff (ψ ∈ LBA(X) andM, s∗ 2 ψ) or (ψ ∈ LBA(X)

andM, s∗ � ψ) iff ψ ∈ LBA(X) iff ¬ψ ∈ LBA(X)
• if φ := ψ1 ∧ ψ2, then M, s∗ � φ or M, s∗ � ¬φ iff (M, s∗ � ψ1 and M, s∗ � ψ2) or (ψ1 ∧ ψ2 ∈
LBA(X) and (M, s∗ 2 ψ1 or M, s∗ 2 ψ2)) iff by IH (ψ1 ∧ ψ2 ∈ LBA(X) and M, s∗ � ψ1 and
M, s∗ � ψ2) or (ψ1 ∧ ψ2 ∈ LBA(X) and not (M, s∗ � ψ1 andM, s∗ � ψ2)) iff ψ1 ∧ ψ2 ∈ LBA(X)

• if φ := Bψ, thenM, s∗ � φ orM, s∗ � ¬φ iff (for each t∗ ∈ R∗(s∗),M, t∗ � φ) or (Bψ ∈ LBA(X)

and M, s∗ 2 Bψ) iff, by the induction hypothesis and since each t∗ ∈ R∗(s∗) belongs to SX -
(Bψ ∈ LBA(X)M, s∗ � Bψ) or (Bψ ∈ LBA(X) andM, s∗ 2 Bψ) iff Bψ ∈ LBA(X)

• if φ := Aψ, thenM, s∗ � φ orM, s∗ � ¬φ iffM, s∗ ⇓ ψ or (Aψ ∈ LBA(X) andM, s∗ 2 Aψ) iff
(by Induction Hypothesis) ψ ∈ LBA(X) or (Aψ ∈ LBA(X) andM, s∗ ⇑ ψ) iff (by the induction
hypothesis) ψ ∈ LBA(X) or (Aψ ∈ LBA(X) and ψ /∈ LBA(X)) iff ψ ∈ LBA(X) iff Aψ ∈ LBA(X).

Appendix A.3. An Axiom System for Partial GSSs

We may obtain a complete axiom system for serial partial GSS thanks to [37] who relates GSS and
awareness c© structures. Actually, one obtains a still closer connection with serial partial GSS. Let us
first restate the definition of awareness c© structures.

Definition A1. An awareness c© structure is a t-tuple (S, π, R, A) where

(i) S is a state space,
(ii) π : At× S→ {0, 1} is a valuation,

(iii) R ⊆ S× S is an accessibility relation,
(iv) A : S→ Form(LBA(At)) is a function that maps every state in a set of formulas (“awareness c© set”).

The new condition on the satisfaction relation is the following:
M, s � Bφ iff ∀t ∈ R(t)M, t � φ and φ ∈ A(s)
Let us say that an awareness c© structureM = (S, R,A, π) is propositionally determined (p.d.)

if (1) for each state s, A(s) is generated by some atomic formulas X ⊆ At, i.e., A(s) = LBA(X), and
(2) if t ∈ R(s), then A(s) = A(t).

Proposition A1 (Adapted from Halpern 2001 Theorem 4.1).

1. For every serial p.d. awareness c© structureM, there exists a serial partial GSSM′ based on the same state
space S and the same valuation π s.t. for all formulas φ ∈ LBA(At) and each possible state s

M, s �a c© φ iffM′, s �pGSS φ
2. For every serial partial GSSM, there exists a serial p.d. awareness c© structureM′ based on the same state

space S and the same valuation π s.t. for all formulas φ ∈ LBA(At) and each possible state s

M, s �pGSS φ iffM′, s �a c© φ

An axiom system has been devised in [37] that is (sound and) complete with respect to p.d.
awareness c© structures. An axiom system for serial p.d. awareness c© structures can be devised by
enriching this axiom system with:
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(DU) Bφ→ (¬B¬φ ∧ Aφ)

The resulting axiom system, coined KDU , is this one:

System KDU

(PROP) Instances of propositional tautologies
(MP) From φ and φ→ ψ, infer ψ

(K)Bφ ∧ B(φ→ ψ)→ Bψ

(Gen)From φ, infer Aφ→ Bφ

(DU) Bφ→ (¬B¬φ ∧ Aφ)

(A1) Aφ↔ A¬φ

(A2) A(φ ∧ ψ)↔ (Aφ ∧ Aψ)

(A3) Aφ↔ AAφ

(A4B) ABφ↔ Aφ

(A5B) Aφ→ BAφ

(Irr)If no atomic formulas in φ appear in ψ, from Uφ→ ψ, infer ψ

The following derives straightforwardly from Proposition 2.

Proposition A2 (Soundness and completeness theorem). Let φ ∈ LBA(At). Then:

�spGSS φ iff `KDU φ

Appendix B. Probabilistic Logic: Proof of the Completeness Theorem for HMU

Proof. (⇐). Soundness is easily checked and is left to the reader. (⇒). We have to show that if
|=GSPS φ, then `HMU φ. The proof relies on the well-known method of filtration. First, we define a
restricted language LLA

[φ] as in [19]: LLA
[φ] contains:

• as atomic formulas, only Var(φ), i.e., the atomic formulas occurring in φ,
• only probabilistic operators La belonging to the finite set Q(φ) of rational numbers of the form

p/q, where q is the smallest common denominator of indexes occurring in φ and
• only formulas of epistemic depth smaller than or equal to that of φ (an important point is that

we stipulate that the awareness operator A does not add any epistemic depth to a formula:
dp(Aψ) = dp(ψ)).

As we will show, the resulting language LLA
[φ] is finitely generated: there is a finite subset B of

LLA
[φ] called a base, such that ∀ψ ∈ LLA

[φ] , there is a formula ψ′ in the base, such that `HMU ψ ↔ ψ′.

In probabilistic structures, it is easy to construct such a base23. The basic idea is this:

(1) consider D0, the set of all the disjunctive normal forms built from B0 = Var(φ), the set of
propositional variables occurring in φ.

(2) Bk is the set of formulas Laψ for all a ∈ Q(φ) where ψ is a disjunctive normal form built with
“atoms” coming from B0 to Bk−1.

(3) the construction has to be iterated up to the epistemic depth n of φ, hence to Bn. The base B is
Dn, i.e., the set of disjunctive normal forms built with “atoms” from B0 to Bn.

23 The work in [19] leaves the construction implicit.
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Obviously, B is finite. It can be shown by induction that LLA
[φ] is finitely generated by B.

For formulas with a Boolean connective as top connective, this is obvious. For formulas of the form
Laψ, it comes from substitutability under logically-equivalent formulas: by the induction hypothesis,
there is a formula ψ′ equivalent to ψ in B. Therefore, there is in B a formula equivalent to Laψ′.
However, since `HM ψ↔ ψ′, it follows that `HM Laψ↔ Laψ′. We will now show how to unfold these
ideas formally.

Definition B1. Let X = {ψ1, ...ψm} be a finite set of formulas. DNF(X) is the set of disjunctive normal forms
that can be built from X, i.e., the set of all possible disjunctions of conjunctions of the form e1ψ1 ∧ ...∧ emψm

where ei is a blank or ¬. The members of X are called the atomic components of DNF(X).

Definition B2. The base B for a language LL
[φ] where dp(φ) = n is defined as Dn in the following

doubly-inductive construction:

(i) B0 = Var(φ) (B0 is the set of atomic components of epistemic depth 0)
(i’) D0 = DNF(B0) (D0 is the set of disjunctive normal forms based on B0)

(ii) Bk = {Laψ : ψ ∈ Dk−1}
(ii’) Dk = DNF(

⋃k
l=0 Bl).

Notation B1. Let ψ ∈ DNF(X) and X ⊆ Y. The expansion of ψ in DNF(Y) is the formula obtained by the
replacement of each conjunction e1ψ1 ∧ ...∧ emψm occurring in ψ by a disjunction of all possible conjunctions
built from e1ψ1 ∧ ...∧ emψm by adding literals of atomic components in Y− X.

For instance, consider X = {p} and Y = {p, q}: the DNF p is expanded in (p ∧ q) ∨ (p ∧ ¬q).

Fact B1.

(i) ∀k, ∀ψ ∈ Dk ∪ Bk, dp(ψ) = k.
(ii) For each ψ ∈ Dk, in each Dl , l > k, there is a formula ψ′, which is equivalent to ψ

Proof. (i) is obvious; (ii) follows from the fact that any formula ψ ∈ Dk can be expanded in ψ′ from Dl ,
l > k and that (by propositional reasoning) ψ and ψ′ are equivalent.

It can be proven that B = Dn is a finite base for LL
[φ]. First, for each ψ ∈ LL

[φ], there is a formula ψ′

in Dl s.t. `HM ψ↔ ψ′ where dp(ψ) = l. Since ψ′ can be expanded in a logically-equivalent formula
ψ′′ ∈ Dn, it is sufficient to conclude that for each ψ ∈ LL

[φ], there is an equivalent formula in the base.

(i) ψ := p: ψ is obviously equivalent to some DNF in D0 and dp(p) = 0.
(ii) ψ := (χ1 ∧ χ2): by the induction hypothesis, there is χ′1 equivalent to χ1 in Ddp(χ1)

and χ′2
equivalent to χ2 in Ddp(χ2)

. Suppose w.l.o.g.that dp(χ2) > dp(χ1) and, therefore, that dp(ψ) =
dp(χ2). Then, χ′1 can be expanded in χ′′1 ∈ Ddp(χ2)

. Obviously, the disjunction of the conjunctions
occurring both in χ′′1 and χ′2 is in Ddp(χ2)

and equivalent to ψ.
(iii) ψ := Laχ: by IH, there is χ′ equivalent to χ in Ddp(χ). Note that dp(χ) < n = dp(φ). By

construction, La(χ′) ∈ Bdp(χ)+1. Consequently, there will be in Ddp(χ)+1 a DNF ψ′ equivalent to
La(χ′). Since dp(χ) + 1 ≤ n, this DNF can be associated by expansion to a DNF in the base Dn.
Furthermore, since `HM χ ↔ χ′ and `HM Laχ′ ↔ ψ′, it follows by the rule of equivalence that
`HM Laχ↔ ψ′.

There are changes needed to deal with unawareness. (1) First, the awareness operator A has to be
included. This is not problematic given that for any formula ψ, `HMU Aψ↔ ∧

m Apm where Var(ψ) =
{p1, ..., pm, ...pM}. Consequently, the only modification is to include any formula Ap with p ∈ Var(φ)
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in B0. (2) With unawareness, it is no longer true that if `HMU ψ ↔ χ, then `HMU Laψ↔ Laχ.
For instance, it is not true that `HMU La p ↔ La((p ∧ q) ∨ (p ∧ ¬q)): the agent may be unaware
of q. Nevertheless, the rule holds restrictedly: under the assumption that Var(ψ) = Var(χ), then if
`HMU ψ↔ χ, then `HMU Laψ↔ Laχ (REU). We can use this fact to make another change to the basis:
instead of considering only the disjunctive normal forms built from the whole set Var(φ), we consider
the disjunctive normal forms built from any non-empty subset X ⊆ Var(φ).

Definition B3. Let X ⊆ Var(φ);
(i) BX

0 = X ∪ {Ap : p ∈ X}
(i’) DX

0 = DNF(B0)

(ii) BX
k = {Laψ : ψ ∈ Dk−1} and

(ii’) DX
k = DNF(

⋃k
l=0 BX

l ).

Fact B2.

(i) ∀k ≤ n, ψ ∈ DX
k where X ⊆ Var(φ), dp(ψ) = k.

(ii) ∀X ⊆ Var(φ), ∀ψ ∈ DX
k , ∀DX

l , l > k, there is a formula ψ′ ∈ DX
l , which is equivalent to ψ.

(iii) ∀X ⊆ Y ⊆ Var(φ), if ψ ∈ DX
k , then there is a formula ψ′, which is equivalent to ψ in DY

k .
(iv) ∀X ⊆ Var(φ), ∀ψ ∈ DX

k , Var(ψ) = X.

Proof. (i)–(ii) are similar to the classical case; (iii) is straightforwardly implied by Clause (ii’) of
Definition 12; (iv) is obvious.

We are now ready to prove that B =
⋃

X⊆Var(φ) DX
n is a basis for LLA

[φ] . We will actually show

that for any ψ ∈ LLA
[φ] with dp(ψ) = k, there are X ⊆ Var(φ) and ψ′ ∈ DX

k s.t. `HMU ψ ↔ ψ′ and
dp(ψ) = dp(ψ′) = k and Var(ψ) = Var(ψ′) (Induction Hypothesis, IH).

(i) ψ := p: ψ is obviously equivalent to some DNF ψ′ in D{p}
0 . Clearly, dp(ψ) = dp(ψ′) and

Var(ψ) = Var(ψ′).
(ii) ψ := (χ1 ∧ χ2): by IH,

- there is χ′1 s.t. `HMU χ1 ↔ χ′1 and Var(χ1) = Var(χ′1) = X1 and χ′1 ∈ DX1
dp(χ1)

- there is χ′2 s.t. `HMU χ2 ↔ χ′2 and Var(χ2) = Var(χ′2) = X2 and χ′2 ∈ DX2
dp(χ2)

Let us consider X′ = X1 ∪ X2 and suppose without loss of generality that dp(χ2) > dp(χ1).
One may expand χ′1 from DX1

dp(χ1)
to DX′

dp(χ1)
and expand the resulting DNF to χ′′1 ∈ DX′

dp(χ2)
. On

the other hand, χ′2 may be expanded to χ′′2 ∈ DX′
dp(χ2)

. ψ′ is the disjunction of the conjunctions
common to χ′′1 and χ′′2 . Obviously, dp(ψ) = dp(ψ′) and Var(ψ) = Var(ψ′).

(iii) ψ := Aχ: by IH, there is χ′ equivalent to χ in DX
dp(χ) with Var(χ) = Var(χ′). Aχ′ is equivalent to∧

m Apm where Var(χ′) = {p1, ..., pm, ...pM}. Each Apm is in BX
0 , so by expansion in DX

dp(χ), there
is a DNF equivalent to it and, therefore, a DNF equivalent to

∧
m Apm.

(iv) ψ := Laχ: by IH, there is χ′ equivalent to χ in DX
dp(χ) with dp(χ) = dp(χ′) and Var(χ) = Var(χ′).

Note that dp(χ) < n = dp(φ). By construction, La(χ′) ∈ BX
dp(χ)+1. Consequently, there will be in

DX
dp(χ)+1 a DNF ψ′ logically equivalent to La(χ′). Since dp(χ) + 1 ≤ n, there will be in the base a

formula ψ′′ logically equivalent to ψ′. Furthermore, since `HMU χ ↔ χ′ and Var(χ) = Var(χ′)
and `HMU Laχ′ ↔ ψ′′, it follows that `HMU Laχ↔ ψ′′.

We will now build: (1) the objective state space; (2) the subjective states spaces and the projection
ρ; and (3) the probability distributions.

(1) The objective state space:
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The objective states of the φ-canonical structure are the intersections of the maximally-consistent
sets of formulas of the language LLA(At) and the restricted language LLA

[φ] :

Sφ = {Γ ∩ LLA
[φ] : Γ is a maximal HMU-consistent set}

First, let us notice that the system HMU is a “modal logic” ([38], p. 191): a set of formulas (1) that
contains every propositional tautologies; (2) such that the Lindenbaum lemma holds.

Definition B4.

(i) A formula φ is deducible from a set of formulas Γ, symbolized Γ `HMU φ, if there exists some formulas
ψ1, ..., ψn in Γ s.t. `HMU (ψ1 ∧ ...∧ ψn)→ φ.

(ii) A set of formulas Γ is HMU-consistent if it is false that Γ `HMU ⊥
(iii) A set of formulas Γ is maximally HMU-consistent if (1) it is HMU-consistent and (2) if it is not included

in a HMU-consistent set of formulas.

Lemma B1 (Lindenbaum Lemma). If Γ is a set of HMU-consistent formulas, then there exists an extension
Γ+ of Γ that is maximally HMU-consistent.

Proof. See, for instance, [38] (p.199).

Notation B2. For each formula ψ ∈ LLA
[φ] , let us note [ψ] = {s ∈ Sφ : ψ ∈ s}

Lemma B2. The set Sφ is finite.

Proof. This Lemma is a consequence of the fact that LLA
[φ] is finitely generated.

(a) Let us say that two sets of formulas are ∆-equivalent if they agree on each formula that belongs
to ∆. Sφ identifies the maximal HMU-consistent sets of formulas that are LLA

[φ] -equivalent. Sφ is
infinite iff there are infinitely many maximal HMU-consistent sets of formulas that are not
pairwise LLA

[φ] -equivalent.
(b) If B is a base for LLA

[φ] , then two sets of formulas are LLA
[φ] -equivalent iff they are B-equivalent.

Suppose that ∆1 and ∆2 are not LLA
[φ] -equivalent. This means w.l.o.g. that there is a formula ψ

s.t. (i) ψ ∈ ∆1, (ii) ψ /∈ ∆2 and (iii) ψ ∈ LLA
[φ] . Let ψ′ ∈ B be a formula s.t. `HMU ψ↔ ψ′. Clearly,

ψ′ ∈ ∆1 and ψ′ ∈ LLA
[φ] and ¬ψ′ ∈ ∆2. Therefore, ∆1 and ∆2 are not B-equivalent. The other

direction is obvious.
(c) Since B is finite, there are only finitely many maximal HMU-consistent sets of formulas that are

not pairwise B-equivalent. Therefore, Sφ is finite.

(2) The subjective state spaces and the projection ρ(.):
As it might be expected, the subjective state associated with an objective state Γ ∈ Sφ will be

determined by the formulas that the agent is aware of in Γ.

Definition B5. For any set of formulas Γ, let Var(Γ) be the set of atomic formulas that occur in the formulas
that belong to Γ. For any Γ ∈ Sφ, let:

(i) A+(Γ) = {ψ : Aψ ∈ Γ} and A−(Γ) = {ψ : ¬Aψ ∈ Γ}
(ii) a+(Γ) = {p ∈ Var(LLA

[φ] ) : Ap ∈ Γ} and a−(Γ) = {p ∈ Var(LLA
[φ] ) : ¬Ap ∈ Γ}.

Lemma B3. Let Γ ∈ Sφ.

(i) A+(Γ) = LLA
[φ] (a+(Γ))
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(ii) A+(Γ) ∪ A−(Γ) = LLA
[φ]

Proof. (i) Follows from (A1)-(A4L); (ii) follows from (i) and the fact that since Γ comes from a maximal
consistent set, ¬ψ ∈ Γ iff ψ /∈ Γ.

One may group the sets that have the same awareness profile into equivalence classes:
|Γ|a = {∆ ∈ Sφ: a+(∆) = a+(Γ)}. The sets that belong to the same equivalence class |Γ|a will be
mapped in the same subjective state space S′|Γ|a . We are now ready to define the projection ρ and these
subjective states.

Definition B6. The projection ρ : Sφ → ⋃
Γ∈Sφ S′|Γ|a is defined by:

ρ(Γ) = Γ ∩ A+(Γ)

where S′|Γ|a = {∆ ∩ A+(Γ) ∩ LLA
[φ] : ∆ is a maximal HMU-consistent set and a+(∆) = a+(Γ)}.

Note that in the particular case where the agent is unaware of every formula, A+(Γ) = ∅.
Therefore, each objective state where the agent is unaware of every formula will be projected in
the same subjective state ∅ ∈ S′∅ = {∅}. More importantly, one can check that ρ is an onto map:
suppose that Λ ∈ S′|Γ|a where Γ ∈ Sφ. By definition, for some ∆ (a maximal HMU-consistent set),

Λ = ∆ ∩ A+(Γ) ∩ LLA
[φ] and a+(∆) = a+(Γ). As a consequence, A+(∆) = A+(Γ), and therefore,

Λ = ∆ ∩ A+(∆) ∩ LLA
[φ] . Hence, Λ = ρ(∆ ∩ LLA

[φ] ). One can show also the following lemma.

Lemma B4.

(i) For each Γ ∈ Sφ, S′|Γ|a is finite.
(ii) For each subset E ⊆ S′|Γ|a , there is ψ ∈ A+(Γ) ∩ LLA

[φ] s.t. E = [ψ]S′|Γ|a
where [ψ]S′|Γ|a

denotes the set of

states of S′|Γ|a to which ψ belongs.
(iii) For all ψ1, ψ2 ∈ A+(Γ) ∩ LLA

[φ] , [ψ1]S′|Γ|a
⊆ [ψ2]S′|Γ|a

iff `HMU ψ1 → ψ2

Proof. (i) Follows trivially since the objective state space is already finite; (ii) let us pick a finite base BΓ

for A+(Γ) ∩ LLA
[φ] . For each element β of this base and each ∆ ∈ S′|Γ|a , either β ∈ ∆ or ¬β ∈ ∆. Two sets

∆ and ∆′ ∈ S′|Γ|a differ at least by one such formula of BΓ. Let C(∆) =
∧

m emβm where βm ∈ BΓ and
em is a blank if βm ∈ ∆ and ¬ if βm /∈ ∆. For two distinct sets ∆ and ∆′, C(∆) 6= C(∆′). For each
event E ⊆ S′|Γ|a , one can therefore consider the disjunction

∨
k C(∆k) for each ∆k ∈ E. Such a formula

belongs to each ∆k and only to these ∆k. (iii) (⇒). For each formula ψ ∈ A+(Γ) ∩ LLA
[φ] and each

∆ ∈ S′|Γ|a , ¬ψ ∈ ∆ iff ψ /∈ ∆. Therefore, there are two possibilities for any ∆: either ψ ∈ ∆ or ¬ψ ∈ ∆.
(a) If ψ1 ∈ ∆, then by hypothesis ψ2 ∈ ∆ and given the construction of the language, ¬ψ1 ∨ ψ2 ∈ ∆,
hence ψ1 → ψ2 ∈ ∆. (b) If ψ1 /∈ ∆, then ¬ψ1 ∈ ∆, hence ψ1 → ψ2 ∈ ∆. This implies that for any ∆,
ψ1 → ψ2 ∈ ∆. Given the definition of S′|Γ|a and the properties of maximal consistent sets, this implies

that `HMU ψ1 → ψ2. (⇐). Given the construction of the language, if ψ1, ψ2 ∈ A+(Γ) ∩ LLA
[φ] , then

ψ1 → ψ2 ∈ A+(Γ) ∩ LLA
[φ] . Since `HMU ψ1 → ψ2, for each ∆, ψ1 → ψ2 ∈ ∆. If ψ1 ∈ ∆, clearly ψ2 ∈ ∆,

as well. Therefore, [ψ1]S′|Γ|a
⊆ [ψ2]S′|Γ|a

.

(3) The probability distributions:

Definition B7. For Γ ∈ Sφ and ψ ∈ LLA
[φ] , let:

• ã = max{a : Laψ ∈ Γ}
• b̃ = min{b : Mbψ ∈ Γ}
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In the classical case [19], ã and b̃ are always defined. This is not so in our structure with
unawareness: if the agent is not aware of ψ, no formula Laψ will be true because of (A0U) Aψ↔ L0ψ.
Given (A1) and (DefM), one can derive:

`HMU Aψ↔ M1ψ

The construction of the language implies that for any Γ, Aψ ∈ Γ iff L0ψ ∈ Γ iff M1ψ ∈ Γ. Therefore,
ã and b̃ are defined iff Aψ ∈ Γ.

Lemma B5. Let us suppose that Aψ ∈ Γ.

(i) ∀c ∈ Q(φ), c ≤ ã implies Lcψ ∈ Γ, and c ≥ b̃ implies Mcψ ∈ Γ
(ii) There are only two cases: (i) either ã = b̃ and Eãψ ∈ Γ while Ecψ /∈ Γ for c 6= ã, (ii) or ã < b̃ and Ecψ /∈ Γ

for any c ∈ Q(φ).
(iii) b̃− ã ≤ 1

q (where q is the common denominator to the indexes)

Proof. See [19]; the modifications are obvious.

Definition B8. Given Γ ∈ Sφ and ψ ∈ LLA
[φ] , if Aψ ∈ Γ, let

IΓ
ψ be either {ã} if ã = b̃ or (ã, b̃) if ã < b̃.

Lemma A.5 in [19] can be adapted to show that for each S′|Γ|a and Γ ∈ S′|Γ|a , there is a probability

distribution P′|Γ|a(Γ) on 2S′|Γ|a , such that

(C) for all ψ ∈ LLA
[φ] if Aψ ∈ Γ, P′|Γ|a(Γ)([ψ]S′|Γ|a

) ∈ IΓ
ψ.

The proof in [19] relies on a theorem by Rockafellar that can be used because of the inference rule
(B). It would be tedious to adapt the proof here. One comment is nonetheless important. In our axiom
system HMU , the inference rule holds under a restricted form (BU). Therefore, one could wonder
whether this will not preclude adapting the original proof, which relies on the unrestricted version (B).
It turns out that the answer is negative. The reason is that the formulas involved in the application of
(B) are only representatives for each subset of the state space. We have previously shown how to build
these formulas in our case, and they are such that the agent is necessarily aware of them. Therefore,
the restriction present in (BU) does not play any role, and we may define the φ-canonical structure
as follows.

Definition B9. The φ-canonical structure is the GSPSMφ = (Sφ, Sφ′ , (2S′|Γ|a )Γ∈Sφ , πφ, (Pφ

|Γ|a)Γ∈Sφ) where:

(i) Sφ = {Γ ∩ LLA
[φ] : Γ is a maximal HMU-consistent set}

(ii) Sφ′ =
⋃

Γ∈Sφ S′|Γ|a where S′|Γ|a = {∆ ∩ A+(Γ) ∩ LLA
[φ] : ∆ is a maximal HMU-consistent set, and

a(∆) = a(Γ)}
(iii) for each Γ ∈ Sφ, ρ(Γ) = Γ ∩ A+(Γ)
(iv) for all state Γ ∈ Sφ ∪ Sφ′ and atomic formula p ∈ At, πφ(p, Γ) = 1 iff p ∈ Γ

(v) for Γ ∈ Sφ, Pφ

|Γ|a is a probability distribution on 2S′|Γ|a satisfying Condition (C)24.

We are now ready to state the crucial truth lemma.

Lemma B6 (Truth lemma). For every Γ ∈ Sφ and every ψ ∈,LLA
[φ] ,

24 In the particular case where A+(Γ) = ∅, the probability assigns maximal weight to the only state of S′∅.
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Mφ, Γ � ψ iff ψ ∈ Γ

Proof. The proof proceeds by induction on the complexity of the formula.

• ψ := p; following directly from the definition of πφ.
• ψ := ¬χ. Since Γ is a standard stateMφ, Γ �φ ¬χ iffMφ, Γ 2 χ iff (by IH) χ /∈ Γ. We shall show

that χ /∈ Γ iff ¬χ ∈ Γ. (⇒) Let us suppose that χ /∈ Γ; χ is in LLA
[φ] ; hence, given the properties

of maximally-consistent sets, ¬χ ∈ Γ+ where Γ+ is the extension of Γ to LLA(At) (the whole
language). Additionally, since Γ = Γ+ ∩ LLA

[φ] , ¬χ ∈ Γ. (⇐) Let us suppose that ¬χ ∈ Γ. Γ is
coherent, therefore χ /∈ Γ.

• ψ := ψ1 ∧ ψ2. (⇒). Let us assume thatMφ, Γ � ψ1 ∧ ψ2. Then,Mφ, Γ � ψ1 andMφ, Γ � ψ2. By
IH, this implies that ψ1 ∈ Γ and ψ2 ∈ Γ. Given the properties of maximally-consistent sets, this
implies in turn that ψ1 ∧ ψ2 ∈ Γ. (⇐). Let us assume that ψ1 ∧ ψ2 ∈ Γ. Given the properties
of maximally-consistent sets, this implies that ψ1 ∈ Γ and ψ2 ∈ Γ and, therefore, by IH, that
Mφ, Γ � ψ1 andMφ, Γ � ψ2.

• ψ := Aχ. We know that in any GSPS M, if s′ = ρ(s) ∈ S′X for some s ∈ S, then M, s′ ⇓ χ

iff χ ∈ LLA(X). In our case, s = Γ, s′ = ρ(Γ) and X = a+(Γ). Therefore, Mφ, Γ � Aχ iff
χ ∈ LLA(a+(Γ)). However, given that Aχ ∈ LLA

[φ] , χ ∈ LLA(a+(Γ)) iff Aχ ∈ Γ.
• ψ := Laχ. By definition Mφ, Γ |= Laχ iff P|ρ(Γ)|a(Γ)([[χ]]) ≥ a and Mφ, ρ(Γ) ⇓ χ.(⇐) Let us

suppose that P|ρ(Γ)|a(Γ)([[χ]]) ≥ a andMφ, ρ(Γ) ⇓ χ. Hence, ã is well defined. It is clear that
ã ≥ a given our definition of P|ρ(Γ)|a(Γ). It is easy to see that `HMU Laψ → Lbψ for b ≤ a.
As a consequence, Laψ ∈ Γ. (⇒) Let us suppose that Laψ ∈ Γ. This implies that Aψ ∈ Γ and,
therefore, thatMφ, ρ(Γ) ⇓ χ. By construction, a ≤ ã, and therefore, P|ρ(Γ)|a(Γ)([[χ]]) ≥ a. Hence,
Mφ, Γ |= Laχ.

Proof.

• If φ := p, thenM, s′ � p orM, s′ � ¬p

iff (p ∈ LLA(X) and π∗(s′, p) = 1) or (p ∈ LLA(X) and π∗(s′, p) = 0)

iff p ∈ LBA(X)

• If φ := ¬ψ, thenM, s′ � φ orM, s′ � ¬φ

iffM, s′ � ¬ψ orM, s′ � ¬¬ψ

iff (ψ ∈ LLA(X) andM, s′ 2 ψ) or (¬ψ ∈ LLA(X) andM, s′ 2 ¬ψ)

iff (ψ ∈ LLA(X) andM, s′ 2 ψ) or (ψ ∈ LLA(X) andM, s′ � ψ)

iff ψ ∈ LLA(X)

iff ¬ψ ∈ LLA(X)

• If φ := ψ1 ∧ ψ2, thenM, s′ � φ orM, s′ � ¬φ

iff (M, s′ � ψ1 andM, s′ � ψ2) or (ψ1 ∧ ψ2 ∈ LLA(X) and (M, s′ 2 ψ1 orM, s′ 2 ψ2))

iff by the induction hypothesis (ψ1 ∧ ψ2 ∈ LLA(X) andM, s′ � ψ1 andM, s′ � ψ2) or (ψ1 ∧ ψ2 ∈
LLA(X) and not (M, s′ � ψ1 andM, s′ � ψ2))

iff ψ1 ∧ ψ2 ∈ LLA(X)
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• if φ := Bψ, thenM, s′ � φ orM, s′ � ¬φ

iff (for each t∗ ∈ R∗(s′),M, t∗ � φ) or (Bψ ∈ LLA(X)) andM, s′ 2 Bψ)

iff, by the induction hypothesis and since each t∗ ∈ R∗(s′) belongs to SX - (Bψ ∈ LLA(X)

M, s′ � Bφ) or (Bψ ∈ LLA(X) andM, s′ 2 Bφ)

iff Bψ ∈ LLA(X)

• If φ := Aψ, thenM, s′ � φ orM, s′ � ¬φ

iff (M, s′ ⇓ ψ) or (Aψ ∈ LLA(X) and notM, s′ ⇓ ψ, impossible given the induction hypothesis)

iff (M, s′ ⇓ ψ)

iff ψ ∈ LLA(X) (by the induction hypothesis)

iff Aψ ∈ LLA(X)
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