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Abstract: We report results from experimental first-price, sealed-bid, all-pay auctions for a 

good with a common and known value. We observe bidding strategies in groups of two and 

three bidders and under two extreme information conditions. As predicted by the Nash 

equilibrium, subjects use mixed strategies. In contrast to the prediction under standard 

assumptions, bids are drawn from a bimodal distribution: very high and very low bids are 

much more frequent than intermediate bids. Standard risk preferences cannot account for 

our results. Bidding behavior is, however, consistent with the predictions of a model with 

reference dependent preferences as proposed by the prospect theory. 
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1. Introduction 

Bidding behavior in all-pay auctions has so far only received limited attention in empirical auction 

research. This might be due to the fact that most of the applications of auction theory do not involve 

the all-pay rule. However, occurrences of this auction format, where every bidder pays her bid are 

numerous: lobbying battles, political campaigns, promotion tournaments in firms and applications for 

science grants [1].  
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In this article, we report experimental data on bidding behavior from the simplest possible all-pay 

auction format. We conducted first-price, sealed-bid, common value auctions with two or three 

subjects and no uncertainty with regard to the value of the auctioned commodity. Every subject bids in 

an auction for a prize of 100 monetary units. Subjects choose their bids simultaneously, the highest 

bidder receives the prize, and all bidders pay their bid. In this game only mixed-strategy equilibria 

exist. While the hitherto existing literature on this auction format focuses on average outcomes, we 

concentrate on the distribution of bids. We analyze bidding behavior in ten subsequent auctions and 

under two information conditions. In the NoRecall treatment subjects do not receive any information 

about other subjects’ bids during the ten rounds and they are randomly rematched every round to a 

group of two or three players. In the Recall treatment subjects are matched into stable groups and have 

full information about the bidding history in their group. The two treatments differ in more than one 

dimension. The key idea is not to identify a causal effect of a single design feature, but to observe 

bidding strategies under two very different information conditions. In Recall it is highly salient that 

players’ actions should not be predictable. We expect this to be the condition most favorable for 

observing mixed strategies. On the other hand, in NoRecall players know that their competitors remain 

uninformed about their actions, so predictability of future bids from observed past bids is not an issue. 

Even if they play a mixed strategy, it is not clear whether they would draw their bid from the density 

only once or redraw a bid in every period.  

In both treatments we find that subjects indeed use mixed strategies, however, the observed 

distribution of bids shows interesting deviations from the predictions under standard assumptions. The 

mixed strategy Nash equilibrium under standard assumptions predicts uniformly distributed bids for 

groups of two players and a decreasing density function for larger group sizes. We find that subjects’ 

bidding strategies differ sharply from these predictions: on average, subjects apply bimodal bidding 

strategies which give most weight to both very low and very high bids, resulting in a bimodal bidding 

function. Bimodal bidding occurs for both group sizes and information conditions. We show that 

bimodal bidding is consistent with prospect theory. If players are risk seeking in the domain of losses 

and risk averse in the domain of gains, then equilibrium bidding strategies are bimodal. 

Previous evidence on bidding behavior in experimental all-pay auctions comes from Gneezy and 

Smorodinsky [2], who conducted similar all-pay auctions as we do with group sizes of four to twelve 

and focus on the effect of different group sizes on the auctioneers’ revenue. They report persistent 

overbidding, i.e., average bids were considerably higher than predicted by the Nash equilibrium for  

all group sizes.1 Müller and Schotter [6] examine four player contest games where players have  

private information about their abilities. This setup allows for Nash equilibria in pure strategies where 

optimal bids (efforts) are continuously related to ability. The data shows, however, that observed 

efforts bifurcate, i.e., subjects seem to play a threshold strategy of choosing either high effort or no 

effort at all. We observe a similar effect in a much simpler setup under perfect information. Both 

Müller and Schotter’s and our data are compatible with Prospect theory preferences. In Section 2 we 

present the theory and our experimental design. Section 3 presents the results and Section 4 discusses 

potential explanations for the bimodal bidding strategies observed in the experiment. 

                                                 
1  See also Noussair and Silver [3] for all-pay auctions with private values and Barut et al. [4] for multiple unit all-pay 

auctions. Fehr and Schmid [5] study exclusion of bidders in all-pay auctions.  
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2. Theory and Experimental Design 

The game is played in groups of n = 2 or 3 bidders. All players choose their bid simultaneously. The 

auctioned commodity has a value of unity for all bidders. A player’s expected utility is defined as: 

,௜ሺܾ௜ݑ ܾି௜ሻ ൌ ቐ
1

ሺܾ௠௔௫ሻܯ
െ ܾ௜

െܾ௜

݂݅ ܾ௜ ൌ ܾ௠௔௫ ൒ ௝ܾ for all		݆ ് ݅
otherwise

 (1)

 ሺܾ௠௔௫ሻ counts the number of maximal bidders. Following this, we intuitively derive the Nashܯ

equilibria of this game assuming risk neutrality (this assumption is relaxed in Section 4). A thorough 

theoretical treatment of this game is provided by Baye et al. [7]. Clearly the game cannot have an 

equilibrium in pure strategies because the best reply to every bid in [0,1) is to overbid by the smallest 

amount possible. In every mixed strategy equilibrium it must hold that bidders are indifferent between 

the mixed strategy and any pure strategy included in their mixed strategy. As long as the support of the 

mixed strategy includes zero, the expected utility in the mixed strategy must be zero. For n = 2 this 

game has a unique equilibrium in mixed strategies where both players draw their bid from a uniform 

distribution over the support [0,1]. The expected utility then equals zero for both players.  

Could the two players improve their situation by restraining the support of their mixed strategy 

from above, i.e., both drawing their bid from ሾ0, തܾሿ with തܾ ൏ 1? No, because this would offer the 

opportunity of earning a strictly positive payoff by outbidding the other player with a pure strategy of 
bidding slightly more than തܾ. Could they improve by choosing their bid from ሾܾ, 1ሿ with ܾ ൐ 0? This is 

also not possible as bidding ܾ would then result in a certain loss and the player would prefer to bid 0. 

To conclude, both players choose their bid from a uniform distribution with support [0,1] and earn an 
expected payoff of zero. Expected bids are 0.5 and expected standard deviation is ඥ1/12 ൎ 0.289. 

Expected gross return of the auctioneer is 1, which equals the value of the auctioned commodity. 

For n = 3 the theoretical solution becomes more complicated. There exists a unique symmetric 

equilibrium where all players draw their bid from a distribution with density ݂ሺܾ௜ሻ ൌ 0.5ܾ௜
ି଴.ହ,				

ܾ௜ ∈ ሾ0,1ሿ. In addition, there is a continuum of equilibria of the following kind: two players randomize 
on [0,1] while the third player randomizes continuously on an interval ሾܾ, 1ሿ and concentrates the 

remaining mass at zero, with 0 ൑ ܾ ൑ 1. The equilibria reach from ܾ ൌ 0, which is the symmetric case 

to ܾ ൌ 1, in which the third player does not take part in the auction and the other two players choose 

their bids according to the equilibrium strategy in the two player case. Expected bids for the two 

players who randomize with full support range from one third to one half, expected bids from the third 

bidder range from zero to one third. All equilibria share the following features: the expected bids are 

one third, expected utility of all bidders is zero and the revenue for the auctioneer is unity. Standard 
deviations of the bids depend on the equilibrium and range from 0.298 for ܾ ൌ 0 to 0.333 for ܾ ൌ 1. 

We conducted two treatments, the Recall and the NoRecall treatment. In the Recall treatment 

subjects were allocated to groups of either two or three subjects and played ten consecutive but 

independent all-pay auctions for a prize of 100 ECU (experimental currency unit) in a partner 

matching.2 Full information about bids of group members in all previous rounds was provided. In the 

                                                 
2  In this treatment participants play a finitely repeated game. However, under standard assumptions (including subgame 

perfection) the equilibria of the static game derived above remain the same in each stage game of the repeated game. 
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NoRecall treatment subjects also played ten consecutive all-pay auctions for a prize of 100 ECU. In the 

latter we use a stranger matching, i.e., in each round subjects were randomly reallocated to groups of 

either two or three subjects. They were informed about their group size but received no information at 

all about the outcome of the auction and the other subjects’ bids.  

Our experimental subjects were first year students from the University of St. Gallen. Subjects did 

not have prior knowledge in game-theory and had not participated in auction experiments before. The 

experiment was programmed and conducted with the software z-Tree [8]. Prior to the experiment 

subjects were given detailed instructions (see appendix). Bids were restricted to the interval [0,125] 

and a resolution up to three decimal places.3 At the beginning of the experiment subjects received a 

show-up fee of CHF 20 (about USD 20). Losses in the experiment were deducted from the show-up 

fee. The auctioned item was 100 ECU (which corresponded to CHF 1, about $1). We report results 

from 52 subjects in two sessions. We apply a within subject design where all subjects played both the 

Recall and NoRecall treatment, changing the order of the treatments between the sessions. In Recall we 

observe 14 (8) independent groups with n = 2 (3), in NoRecall all 28 subjects which played this 

treatment first are independent (due to the lack of feedback). The observations of NoRecall played as 

second treatment are dependent within group from the Recall treatment, which results in 10 

independent groups. The experiment lasted about an hour and the subjects earned an average of  

CHF 19.4 (about $19.5), which means that, on average, subjects made a small loss of CHF 0.6 in the 

20 auctions they played.  

3. Results 

We start by analyzing the data from the Recall treatment.4 In this treatment subjects had access to 

the whole history of bids within their group and played the game in stable groups. These are arguably 

the conditions most favorable for the establishment of a mixed-strategy equilibrium. Average bids over 

the ten rounds were 42.0 in groups of two and 36.9 in groups of three. Compared to the Nash 

prediction of 50 and 33.3 respectively, we observe underbidding in groups of two and overbidding in 

groups of three. The differences are, however, not significant.5  We do not observe convergence 

towards the Nash equilibrium over the course of the ten periods.6 Average bids are, however, not very 

informative when it comes to the bidding strategies subjects played. If we calculate the standard 

deviation of the bids, we observe 40.0 in groups of two which is higher than predicted by the Nash 

equilibrium (28.9). In groups of three, the observed standard deviation was 39.8 compared to the 

prediction which lies between 29.8 and 33.3.7 
                                                 
3  The upper bound of 125 was introduced to prevent subjects from making large losses due to erroneous entries. 

However, this upper bound was not communicated to the subjects in the instructions to prevent anchoring.  
4  We pool the data of both treatment orders for this analysis. It is important to note that the observations from the subjects 

who played NoRecall first are still independent, because no feedback was provided. 
5  A conservative test based on the independent group averages does not allow to reject the null hypothesis that average 

bids are equal to the Nash prediction (p = 0.153 for groups of two and p = 0.313 for groups of three, exact p-values, 

two-sided Wilcoxon signed-ranks test). 
6  We ran OLS regressions with the bid as dependent variable and the period as independent variable. For both group sizes 

the effect of period is small and insignificant (p > 0.7). 
7  In groups of two the difference is significant at p = 0.035, in groups of three insignificant with p = 0.313. 
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Striking differences to the Nash equilibrium under standard assumptions emerge if we take a closer 

look at the distribution of bids. Figure 1 shows histograms of the bids separated by group size. For 

both group sizes the distribution of bids is clearly bimodal. Very low and very high bids (up to 100) 

are much more frequent than intermediate bids.  

Figure 1. Histogram of bids in groups of two and three subjects in the Recall treatment. 

 

To facilitate the comparison between observed and predicted bids, Figure 2 shows the cumulative 

distribution of the observed bids (bold lines) and the cumulative densities of the Nash equilibria  

(thin lines). In the right panel we account for the fact that multiple equilibria exist and depict the 

cumulative densities of the two most extreme cases: The thin kinked curve corresponds to the 

equilibrium where one player abstains from the auction (hence the intercept at one third) and the other 

two players draw their bid from a uniform distribution; the smooth thin curve corresponds to the 

symmetric mixed strategy equilibrium.  

For the smaller group size, prediction and data are obviously very different. In the auctions with 

three bidders, the large mass at very low bids is compatible with an asymmetric mixed strategy 

equilibrium. Still, the mass of bids close to 100 is clearly incompatible with the prediction. If we apply 

Kolmogorov-Smirnov tests for the null hypothesis that the bids stem from the predicted densities we 

can reject the null hypotheses for both group sizes and all equilibria at p < 0.001.8 

                                                 
8  Simple Kolmogorov-Smirnov tests yield p-values of virtually zero. However, we have to take into account that 

observations within a group are not independent. We do this by using each group’s Kolmogorov Smirnov test statistic 

as an observation. We then ran a simulation (n = 1000) to calculate the test statistic for hypothetical bids drawn from the 

densities predicted by the symmetric Nash equilibria. In case of the asymmetric Nash equilibria, we test the distribution 

of the non-zero bids against the predicted distribution most favorable to mass at very high bids, which is the asymmetric 

equilibrium with one player abstaining from the auction. The test statistics for our data are always higher than for the 

simulated data. A Wilcoxon rank-sum test gives p < 0.001 in all cases. 
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Figure 2. Nash equilibrium (thin lines) and observed cumulative distribution functions of 

bids by group size in the Recall treatment (bold lines). 

 

3.1. Group and Individual Bidding Behavior 

In a next step, we will look at group differences and individual patterns. For groups of two bidders 

we observe a wide variety of outcomes, ranging from average bids of 5.2 to 93.3 over the ten periods. 

There is a cluster of five groups at around 25 while the majority of groups are located between 40 and 

55. The standard deviation of the average group bids is 22.1. For groups of three we observe less 

variation with average group bids ranging from 21.8 to 47.3 and a standard deviation of 8.5. Figure 3 

depicts small histograms for individual bidding behavior over the ten rounds of the Recall treatment, 

for both group sizes. Each vertical line corresponds to one subject in the experiment and shows the 

spread of the bids. Subjects are sorted according to average bid. The length of the small horizontal 

spikes corresponds to the frequency of the corresponding bid (bids are rounded to integers). The 

overwhelming majority of the subjects bid in the entire range from zero to (almost) 100. Three quarter 

of the subjects have a spread of 90 or more in their ten bids. The majority of the subjects changed their 

bid frequently during the ten rounds. If we calculate the number of different bids a subject chose, we 

obtain an average of 7.96 different bids in the 10 auctions. More than a quarter of the subjects chose 

different bids in all ten rounds. We can also look at the number of changes in a subject’s bid from one 

round to the next. In 90.4 percent of the cases subjects changed their bid from t to t + 1.9 
  

                                                 
9  These numbers refer to all subjects in the Recall treatments, irrespective of group size. 
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Figure 3. Individual histograms of the bids in the ten rounds of the Recall treatment. 

 
Note: Vertical lines show the spread of the bids of each individual, small horizontal lines depict the 
frequency of the corresponding bid (bids are rounded to integers). 

3.2. Reducing Information 

Thus far we have only analyzed data from the Recall treatments, where subjects learn of other 

subjects’ bids and can react to this information in subsequent rounds. In the NoRecall treatments 

subjects receive no feedback at all from the game and cannot find out the success of their strategies. In 

such a game it is even more difficult to infer a subject’s bidding strategy from the observed bids. Even 

if subjects play a mixed strategy, in the sense that they use a random draw from a probability 

distribution to determine their bid, it is unclear whether they draw every round or only once at the 

beginning of the experiment (possibly for each group size). 

Average bids (standard deviation) in NoRecall are 59.5 (36.1) and 41.2 (41.9) for groups of two and 

three subjects respectively. For both group sizes bids are higher than the Nash prediction.10 On the 

individual level we observe that subjects changed their bids less frequently in the NoRecall treatment 

compared to the Recall treatment, despite the fact that in the NoRecall treatment group size changed 

over time. During the ten rounds, subjects chose an average of 6.60 different bids (as opposed to 7.96 

in the Recall treatment). Still, the overall distribution of bids was clearly bimodal for both groups of 

two and three subjects. Figure 4 shows histograms for the bids in the NoRecall treatments. 
  

                                                 
10  Bids are significantly higher both compared to the theoretical benchmark and to the results from the Recall treatment 

for n = 2 (p < 0.01). The differences are not significant for n = 3 (p > 0.18, exact p-values, two-sided Wilcoxon  

signed-ranks test).  
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Figure 4. Histogram of bids in groups of two and three subjects in the NoRecall treatment. 

 

4. Why Bimodal Bidding? 

Why should one adopt a bimodal bidding strategy? Recall that the theoretical prediction derived in 

Section 2 assumed risk neutral bidders. It is thus natural to explore the game theoretic predictions 

under different assumptions with regard to the utility function. Let us consider an arbitrary utility 

function ݑሺݔ௜ሻ where ݔ௜ is the monetary payoff and ݑᇱ ൐ 0. For every mixed-strategy equilibrium with 

n homogeneous players it must hold that: 

ሺܾ௜ሻܷܧ ൌ ሺ1ݑሺܾ௜ሻ௡ିଵܨ െ ܾ௜ሻ ൅ ሺ1 െ ሺെܾ௜ሻݑሺܾ௜ሻ௡ିଵሻܨ ൌ ሺ0ሻ (2)ݑ

The expected utility of every bid ܾ௜  used in the strategy equals the probability of winning the 

auction times the utility in case of a win, plus the probability of losing the auction times the respective 

utility. Both terms depend on F( ), which is the cumulative density of the bidding strategy of the other 

bidders. For a mixed strategy with full support to be a best reply, this expression must be constant and 

equal to the utility of bidding zero. Following we assume ݑሺ0ሻ ൌ 0 without loss of generality. Thus, 

the utility of winning the auction will be positive and losing the auction will yield zero or negative 

utility. From this expression we can easily derive the cumulative density of the equilibrium bidding 

strategy with arbitrary (but symmetric) utility functions as: 

ሺܾ௜ሻܨ ൌ ൤
ሺെܾ௜ሻݑ

ሺെܾ௜ሻݑ െ ሺ1ݑ െ ܾ௜ሻ
൨

ଵ
௡ିଵ

݄ݐ݅ݓ 0 ൑ ܾ௜ ൑ 1 (3)

What densities ݂ሺܾ௜ሻ can we generate with standard risk preferences?11 If we introduce different 

risk preferences into the utility function using a function with hyperbolic absolute risk aversion,  

                                                 
11  For all-pay auctions with private values Fibich et al. [9] show that risk aversion leads low value bidders to reduce their 

bid and high value bidders to increase their bid relative to the risk neutral case. 
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we can only predict unimodal bidding strategies in groups of two players. Relative to the risk neutral 

case, risk aversion shifts mass towards low bids while risk seeking preferences shift mass towards  

high bids.12  

It turns out that the bidding strategies observed in our experiment can be explained by the curvature 

of the utility function if we allow for concave and convex regions, like in Kahneman and Tversky’s [10] 

prospect theory. A core element of prospect theory is that players evaluate their outcome relative to a 

reference point. If they earn more than their reference point, they are in the domain of gains, otherwise 

in the domain of losses. Kahneman and Tversky propose a ‘value function’ that is concave in the 

domain of gains and convex in the domain of losses. In addition to that, Kahneman and Tversky 

introduce a ‘loss aversion’ parameter, which incorporates the notion that most people suffer more from 

the loss of a certain amount of money than they enjoy the win of the same amount. For illustration 

purposes we use the parametric specification proposed in Tversky and Kahneman [11]: 

ሻݔሺݒ ൌ ൜
ఈݔ

െߣሺെݔሻఈ
if ݔ ൒ 0
else

 (4)

We denote the amount of money a player earns in an auction by ݔ ߙ ;  is a parameter for the 

curvature of the value function. Risk aversion in gains and risk seeking in losses requires 0 ൏ ߙ ൏  ߣ ;1

is a shifting parameter in the domain of losses, which is larger than one for loss aversion. We assume 

that in every auction the reference point is the actual wealth when entering the auction. Thus, winning 

the auction with a bid below 100 puts a player in the domain of gains while losing the auction with a 

positive bid puts a player in the domain of losses.13 A second integral part of prospect theory is the 

probability weighting function which maps objective probabilities into subjective probabilities.  

For simplicity we do not consider the probability weighting function in our context because, unlike in 

the typical application of prospect theory, subjects in our game do not know the probability of winning 

and losing.14 

Substituting Equation (4) into (3) and replacing ݑሺെܾ௜ሻ by െߣሺܾ௜ሻఈ and ݑሺ1 െ ܾ௜ሻ by ሺ1 െ ܾ௜ሻఈ we 

get the predicted cumulative density. The first order derivative gives us the mixed-strategy density 

function for prospect theory players. We use maximum likelihood to estimate the preference 

parameters ߙ and ߣ from the bids observed in the experiment. The log likelihood is 

                                                 
12  For example, if we assume a utility function with constant relative risk aversion (CRRA), such as u(x) = x(1 − γ)/(1 − γ) 

we cannot produce a bimodal bidding function for groups of two bidders. For groups of three, it is possible to generate 

bimodal bidding functions but it requires strong risk loving preferences. 
13  The reference point is usually defined as the status quo. Köszegi and Rabin [12] discuss the role of reference point 

determination and present a model where the reference point can differ from the status quo. In our context we think that 

an outcome of zero is a natural reference point.  
14  In our context the probability weighting function as usually assumed in cumulative prospect theory does not offer 

additional predictive power. If subjective probabilities deviate from objective probabilities, then Equation (3) provides a 

condition for the subjective densities in equilibrium. In prospect theory it is usually assumed that changes in 

probabilities close to zero and one have more weight than changes in intermediate probabilities. Thus, in the extreme 

case it could be that two prospect theory agents draw their bids from the uniform distribution and perceive the winning 

probabilities as depicted by the bold line in the right panel of Figure 5, i.e., we could have an equilibrium where 

probability weighting offsets the effects of the prospect theory specific shape of the utility function. 
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ln ܮ	 ൌ෍ln ቎ߙሺܾߣ௜
ఈ ൅ ሺ1 െ ܾ௜ሻఈሻ

ିଶ௡ିଵ௡ିଵ ܾ௜

ఈ
௡ିଵ ߣ

ଶ௡ିଵ
௡ିଵ ሺܾ௜ െ ܾ௜

ଶሻఈ ൅	ߣ
௡

௡ିଵ		ሺ1 െ ܾ௜ሻଶఈ

ሺ݊ െ 1ሻܾߣ௜ሺ1 െ ܾ௜ሻ
቏

ே

௜ୀଵ

 (5)

Because the theoretical solution is the same for both treatments, we pool the data from the Recall 

and NoRecall treatments. The estimates for the preference parameters are ߙ ൌ 0.301 (se: 0.032), and 

ߣ ൌ 0.873 (se: 0.095).15,16 The left panel in Figure 5 depicts the value function. The right panel depicts 

the fitted cumulative densities and the observed bids.  

Figure 5. Left panel: Prospect theory value function with estimated parameters. Right panel: 

Observed (bold lines) and predicted (thin lines) cumulative densities for both group sizes. 

 

Figure 5 shows that the combination of risk aversion in the domain of gains and risk seeking 

behavior in the domain of losses as proposed by Kahneman and Tversky [10] can account for bimodal 

bidding behavior.17 Intuitively the subjects use a make-or-break strategy, i.e., they either submit a very 

low bid and hope for the lucky punch or they submit a very high bid in order to increase the winning 

probability. Submitting low bids is not costly, offsetting the low winning probability. Submitting high 

bids increases the winning chances but also the amount to lose. The potentially high loss connected 

with this strategy is acceptable due to the risk seeking preferences in the domain of losses.  

                                                 
15  An alternative would be to estimate for each treatment and group size separately: For n = 2 we get α = 0.225(se: 0.037) 

and λ = 1.39 (0.369) in Recall, and α = 0.413 (0.066) and λ = 0.740 (0.098) in NoRecall. For n = 3 we get α = 0.311 

(0.040) and λ = 0.660 (0.129) in Recall, and α = 0.340 (0.042) and λ = 0.585 (0.149) in NoRecall. 
16  The literature provides a relatively wide range of parameter estimates. Tversky and Kahneman [11] report α = 0.88 and  

λ = 2.25; Camerer and Ho [13] find α = 0.32; Wu and Gonzalez [14] find α = 0.50, the latter two do not include the loss 

aversion parameter. Booij et al. [15] estimate the parameters in a representative sample allowing for different powers in 

gains and losses. They report no significant differences for the power in gains and losses and find α = 0.86 and λ = 1.58. 
17  It is indeed the curvature of the value function that produces bimodal bidding functions and not some other 

characteristic like e.g., the loss aversion parameter. If we set α = 1 we can only produce unimodal bidding functions. On 

the other hand, λ mostly determines the expected bids, i.e., if bids are excessive relative to the prediction under standard 

assumptions, as it is the case with three players in our experiment, then λ < 1 and vice versa. 
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Surprisingly, the point estimate for the loss aversion parameter ߣ is smaller than one, which means 

the opposite of loss aversion, i.e., some sort of loss tolerance.18 This is at odds with many observations 

from experiments on loss aversion in risky choice situations, which find values above one (see e.g., 

Gächter et al., [16] or Abdellaoui et al. [17]). We think that the main difference between this existing 

literature and our results is that we observe risky choices in a strategic situation with competitive 

characteristics.19 We speculate that there is a preference for competing, which makes winning in an 

auction more attractive than earning the same amount of money from a ‘simple’ lottery. This is 

consistent with the frequently found excessive entry or bidding behavior in market entry games, 

contests, and auctions (e.g., Fischbacher and Thöni [18]; Sheremeta [19]; Cooper and Fang [20]). We 

could enrich the utility function with an additional parameter measuring the joy of winning the auction, 

like e.g., multiplying the upper part of Equation (4) with some parameter ߭ (for victory). However,  

our data does not allow identifying ߭ independently from ߣ and we have to leave this question for 

future research. 

Prospect theory can account for bimodal bidding and for the fact that mass is shifted from the 

higher mode to the lower mode of the distribution when the number of contestants in the auction 

increases. This corresponds to the observations in our experiment and also to the data reported by 

Gneezy and Smorodinsky [2]. Furthermore, by allowing a ߣ lower than one, we can account for the  

fact that in larger groups bids are typically higher than predicted by the Nash equilibrium under 

standard assumptions.  

5. Conclusions 

We investigated bidding strategies in very simple common value all-pay auctions with no pure 

strategy equilibria. Bidders in our experiment use bimodal, mixed strategies that are remarkably 

different from the mixed strategies predicted by the Nash equilibrium under standard assumptions. 

Bimodal bidding strategies are observed under two very distinct information conditions: They occur in 

Recall, where bidders are in stable groups with full information about the bidding history, as well as in 

NoRecall, where bidders do not receive any information about other bidders’ strategies.  

The bimodality in the distribution of bids cannot be explained by standard risk preferences but fits 

very well to the S-shaped value function proposed by Kahneman and Tversky’s [10] prospect theory. 

We use our data to estimate preference parameters. For the curvature of the value function, our 

parameter estimates are comparable to the ones reported in previous literature. For the second 

ingredient of the prospect theory’s value function—loss aversion—we find different results. The 

observed bidding strategies are best explained when assuming the contrary of loss aversion. The reason 

for this is presumably not because our subjects like losses, but because the competitive structure of the 

game offers them additional utility when winning the auction. 

                                                 
18  In the overall sample the coefficient estimate for λ is not significantly different from 1, which is mainly due to our 

results from the Recall treatment with n = 2, where we observe conservative bids. In the remaining three combinations 

of treatment and group size the estimate for λ is significantly different from 1 (at 5%). 
19  Müller and Schotter [6] would be a good comparison, because they also find that prospect theory preferences are in line 

with the pattern observed in the experiment. Unfortunately they do not provide parameter estimates for α and λ. 
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This hypothesized additional utility for winning an auction can also explain why bids tend to 

become excessive in larger groups, leading to systematic losses for the bidders in such all-pay 

auctions. Anderson et al. [21] propose the logit equilibrium as a solution concept to account for 

excessive bids. In this framework players are boundedly rational in the sense that they make random 

errors when choosing their bid. The probability of choosing a strategy that is not a best reply is 

negatively related to the expected payoff of that strategy. The distribution of bids we observe in our 

data makes this explanation highly unlikely, as a bimodal distribution of bids is not compatible with 

this kind of erroneous bids. Errors simply shift the densities predicted by the Nash equilibrium under 

standard assumptions towards the uniform distribution, but cannot produce a second mode at high bids. 

Many competitive situations in the real world involve aspects of all-pay auctions, like lobbying 

battles, competing for research money and so on. In small groups we find that average bids are 

relatively close to the Nash equilibrium under standard assumptions but the distribution of bids is 

strikingly different. In accordance to what Müller and Schotter [6] report for contest games we find 

that the average subject employs an ‘all-or-nothing’ strategy, i.e., either goes for a lucky punch with a 

small bid or tries to ensure winning the auction with a very large bid. A rational bidder seeking to 

maximize monetary payoff should therefore always bid slightly above the lower mode. With our data 

this would have corresponded to a bid of 6.10 for groups of two and 13.10 for groups of three subjects. 

Our results provide evidence for predictive power of models of reference dependent preferences 

such as prospect theory in a highly competitive environment. In line with Müller and Schotter [6], but, 

in a much simpler game, we show that the notion of risk aversion in the domain of gains, and risk 

seeking behavior in the domain of losses, predicts mixed strategies more accurately than the standard 

expected utility theory.  
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Appendix: Experimental Instructions (translated from the original instructions written in 

German) 

General Explanation for the Participants 

You are now taking part in an economic experiment that is financed by different research-promoting 

facilities. If you read the following explanation carefully, you can—depending on your decisions—

make a considerable amount of money. Hence, it is important that you read this explanation carefully.  

The instructions you will receive are for your private information only.  

During the Experiment Absolute Silence Is Required. Communication Is Prohibited 

If you have any questions please direct them towards us. Non-observance of these rules will lead to 

exclusion from the experiment and any payments. 

In the experiment we do not quote Swiss Francs. Your income will be calculated in points. At the 

end of the experiment, the attained points will be transferred into Swiss Francs, where  

1 point = 1 centime. (A1)

At the end of the experiment you will receive your earned points (in CHF) plus CHF 20 for 

participating, in cash. If you make a loss, it will be deducted from the CHF 20. You cannot make an 

overall loss. 

The next pages describe the detailed procedure of the experiment. 

Experiment Instructions: Recall Treatment  

You are taking part in an auction. In total there are 10 rounds and in each of these rounds a prize of 

100 points is auctioned. 

You will be put in a group of either two or three participants. Hence there will be one other or  

two other bidders in your group besides yourself. The group composition will remain constant 

during the 10 rounds, i.e., in each round you will remain in the same group with either one or two 

other participants. You will not know who else in this room is in your group; your identity will be kept 

secret. When the auction begins you will have to place your bid. All participants do so at the same 

time. You can place a bid up to three decimal places. In each group the participant placing the highest 

bid wins. If more than one participant bids the same highest value, the computer randomly assigns the 

winner. In contrast to normal auctions you might know, not only the winner but all bidders have to 

pay their bid. As soon as the experiment starts you will see the following screen: 
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On the screen, you can see whether you are placed in a group with 2 or 3 participants. In the right 

hand upper corner you can note the time remaining for you to place your bid. Type your bid into the 

field. After submitting the bid [pressing OK] you will not be able to change it again. You only bid once 

in each round. You can place bids from, and including, zero and up to three decimal places. 

As soon as all the participants have submitted their bids, the computer will calculate the highest bid 

and determine the earnings in points. It will then appear on a screen showing the outcome of the 

auction: 

 

You will be notified if you won the auction and of your revenue earned in each round. Additionally 

you will see the bids of the other participant(s) as well as your own. Subsequently press the ‘continue’ 

button to proceed to the next round.   
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An example to clarify the rules: 

Assuming that in a group of three participants the following bids are submitted:  

Anton: 10 points 

Berta: 50 points 

Claus: 80 points 

Claus wins the auction and has a revenue of 20 points (=100-80) in this round. Anton and Berta do 

not win, but have to pay their bid nevertheless. The revenue of Anton is therefore −10 and that of Berta 

is −50 in this round.  

Do you have any questions? 

Experiment Instructions: NoRecall Treatment 

Explanation to the Second Experiment 

The second experiment also consists of 10 rounds, in each of which 100 points are to be auctioned. 

There are two important modifications: 

 You will not receive any information whether or not you won the auction in this round. You 

will also not receive any information about the bids of the other participants.  

 The constellation of the group changes in each round. The group size varies between 2 and 3. 

The computer will randomly assign you in a group of 2 or of 3. You will be able to see the size on 

the screen.  

Do you have any questions?  
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